Universitext

Editorial Board
(North America):

S. Axler
K.A. Ribet



Universitext

Editors (North America): S. Axler and K.A. Ribet

Aguilar/Gitler/Prieto: Algebraic Topology from a Homotopical Viewpoint
Aksoy/Khamsi: Nonstandard Methods in Fixed Point Theory
Andersson: Topics in Complex Analysis
Aupetit: A Primer on Spectral Theory
Bachman/Narici/Beckenstein: Fourier and Wavelet Analysis
Badescu: Algebraic Surfaces
Balakrishnan/Ranganathan: A Textbook of Graph Theory
Balser: Formal Power Series and Linear Systems of Meromorphic Ordinary
Differential Equations
Bapat: Linear Algebra and Linear Models (2nd ed.)
Berberian: Fundamentals of Real Analysis
Blyth: Lattices and Ordered Algebraic Structures
Boltyanskii/Efremovich: Intuitive Combinatorial Topology. (Shenitzer, trans.)
Booss/Bleecker: Topology and Analysis
Borkar: Probability Theory: An Advanced Course
Bottcher/Silbermann: Introduction to Large Truncated Toeplitz Matrices
Carleson/Gamelin: Complex Dynamics
Cecil: Lie Sphere Geometry: With Applications to Submanifolds
Chae: Lebesgue Integration (2nd ed.)
Charlap: Bieberbach Groups and Flat Manifolds
Chern: Complex Manifolds Without Potential Theory
Cohn: A Classical Invitation to Algebraic Numbers and Class Fields
Curtis: Abstract Linear Algebra
Curtis: Matrix Groups
Debarre: Higher-Dimensional Algebraic Geometry
Deitmar: A First Course in Harmonic Analysis (2nd ed.)
DiBenedetto: Degenerate Parabolic Equations
Dimca: Singularities and Topology of Hypersurfaces
Edwards: A Formal Background to Mathematics I a/b
Edwards: A Formal Background to Mathematics II a/b
Farenick: Algebras of Linear Transformations
Foulds: Graph Theory Applications
Friedman: Algebraic Surfaces and Holomorphic Vector Bundles
Fuhrmann: A Polynomial Approach to Linear Algebra
Gardiner: A First Course in Group Theory
Girding/Tambour: Algebra for Computer Science
Goldblatt: Orthogonality and Spacetime Geometry
Gustafson/Rao: Numerical Range: The Field of Values of Linear Operators and
Matrices
Hahn: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups
Heinonen: Lectures on Analysis on Metric Spaces
Holmgren: A First Course in Discrete Dynamical Systems
Howe/Tan: Non-Abelian Harmonic Analysis: Applications of SL (2, R)
Howes: Modern Analysis and Topology
Hsieh/Sibuya: Basic Theory of Ordinary Differential Equations
Humi/Miller: Second Course in Ordinary Differential Equations
Hurwitz/Kritikos: Lectures on Number Theory
Jennings: Modern Geometry with Applications
(continued after index)



Wolfgang Rautenberg

A Concise Introduction
to Mathematical Logic

@ Springer



Wolfgang Rautenberg

FB Mathematik und Informatik Inst.

Mathematik 11

Freie Universitiat Berlin
14195 Berlin

Germany
raut@math.fu-berlin.de

Editorial Board
(North America):

S. Axler

Mathematics Department

San Francisco State University
San Francisco, CA 94132
USA

axler@sfsu.edu

K. A. Ribet

Mathematics Department
University of California at Berkeley
Berkeley, CA 94720-3840

USA

ribet@math.berkeley.edu

Mathematics Subject Classification (2000): 03-XX 68N17

Library of Congress Control Number: 2005937016

ISBN-10: 0-387-30294-8
ISBN-13: 978-0387-30294-2

Printed on acid-free paper.

©2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York,
NY 10013, USA), except for brief excepts in connection with reviews or scholarly analysis. Use in con-
nection with any form of information storage and retrieval, electronic adaptation, computer software,

or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are

subject to proprietary rights.

Printed in the United States of America.

98765432

springer.com



Wolfgang Rautenberg

A Concise Introduction

to
Mathematical Logic

Textbook

Typeset and layout: The author
Version from December 2005



Foreword
by Lev Beklemishev, Utrecht

The field of mathematical logic—evolving around the notions of logical validity,
provability, and computation—was created in the first half of the previous century
by a cohort of brilliant mathematicians and philosophers such as Frege, Hilbert,
Godel, Turing, Tarski, Malcev, Gentzen, and some others. The development of this
discipline is arguably among the highest achievements of science in the twentieth
century: it expanded mathematics into a novel area of applications, subjected logical
reasoning and computability to rigorous analysis, and eventually led to the creation
of computers.

The textbook by Professor Wolfgang Rautenberg is a well-written introduction to
this beautiful and coherent subject. It contains classical material such as logical
calculi, beginnings of model theory, and Godel’s incompleteness theorems, as well
as some topics motivated by applications, such as a chapter on logic programming.
The author has taken great care to make the exposition readable and concise; each
section is accompanied by a good selection of exercises.

A special word of praise is due for the author’s presentation of Gddel’s second
incompleteness theorem in which the author has succeeded in giving an accurate
and simple proof of the derivability conditions and the provable 3;-completeness, a
technically difficult point that is usually omitted in textbooks of comparable level.
This textbook can be recommended to all students who want to learn the foundations
of mathematical logic.



Preface

This book is based on the second edition of my FEinfiihrung in die Mathematische
Logik whose favorable reception facilitated the preparation of this English version.
The book is aimed at students of mathematics, computer science, or linguistics. Be-
cause of the epistemological applications of Gddel’s incompleteness theorems, this
book may also be of interest to students of philosophy with an adequate mathemati-
cal background. Although the book is primarily designed to accompany lectures on a
graduate level, most of the first three chapters are also readable by undergraduates.
These first hundred pages cover sufficient material for an undergraduate course on
mathematical logic, combined with a due portion of set theory. Some of the sections
of Chapter 3 are partly descriptive, providing a perspective on decision problems,
automated theorem proving, nonstandard models, and related topics.

Using this book for independent and individual study depends less on the reader’s
mathematical background than on his (or her) ambition to master the technical
details. Suitable examples accompany the theorems and new notions throughout.
To support a private study, the indexes have been prepared carefully. We always
try to portray simple things simply and concisely and to avoid excessive notation,
which could divert the reader’s mind from the essentials. Linebreaks in formulas
have been avoided. A special section at the end provides solution hints to most
exercises, and complete solutions of exercises that are relevant for the text.

Starting from Chapter 4, the demands on the reader begin to grow. The challenge
can best be met by attempting to solve the exercises without recourse to the hints.
The density of information in the text is pretty high; a newcomer may need one hour
for one page. Make sure to have paper and pencil at hand when reading the text.
Apart from a sufficient training in logical (or mathematical) deduction, additional
prerequisites are assumed only for parts of Chapter 5, namely some knowledge of
classical algebra, and at the very end of the last chapter some acquaintance with
models of axiomatic set theory.

On top of the material for a one-semester lecture course on mathematical logic,
basic material for a course in logic for computer scientists is included in Chapter 4
on logic programming. An effort has been made to capture some of the interesting
aspects of this discipline’s logical foundations. The resolution theorem is proved
constructively. Since all recursive functions are computable in PROLOG, it is not
hard to get the undecidability of the existence problem for successful resolutions.

Chapter 5 concerns applications of mathematical logic in various methods of model
construction and contains enough material for an introductory course on model
theory. It presents in particular a proof of quantifier eliminability in the theory of
real closed fields, a basic result with a broad range of applications.

VII



VIII Preface

A special aspect of the book is the thorough treatment of Gédel’s incompleteness
theorems. Since these require a closer look at recursive predicates, Chapter 6 starts
with basic recursion theory. One also needs it for solving questions about decidability
and undecidability. Defining formulas for arithmetical predicates are classified early,
in order to elucidate the close relationship between logic and recursion theory. Along
these lines, in 6.4 we obtain in one sweep Gddel’s first incompleteness theorem,
the undecidability of the tautology problem by Church, and Tarski’s result on the
nondefinability of truth. Decidability and undecidability are dealt with in 6.5, and
6.6 includes a sketch of the solution to Hilbert’s tenth problem.

Chapter 7 is devoted exclusively to Godel’s second incompleteness theorem and
some of its generalizations. Of particular interest thereby is the fact that questions
about self-referential arithmetical statements are algorithmically decidable due to
Solovay’s completeness theorem. Here and elsewhere, Peano arithmetic PA plays a
key role, a basic theory for the foundations of mathematics and computer science,
introduced already in 3.3. The chapter includes some of the latest results in the
area of self-reference not yet covered by other textbooks.

Remarks in small print refer occasionally to notions that are undefined or will be
introduced later, or direct the reader toward the bibliography, which represents an
incomplete selection only. It lists most English textbooks on mathematical logic
and, in addition, some original papers, mainly for historical reasons. This book
contains only material that will remain the subject of lectures in the future. The
material is treated in a rather streamlined fashion, which has allowed us to cover
many different topics. Nonetheless, the book provides only a selection of results and
can at most accentuate certain topics. This concerns above all the Chapters 4, 5,
6, and 7, which go a step beyond the elementary. Philosophical and foundational
problems of mathematics are not systematically discussed within the constraints of
this book, but are to some extent considered when appropriate.

The seven chapters of the book consist of numbered sections. A reference like
Theorem 5.4 is to mean Theorem 4 in Section 5 of a given chapter. In cross-
referencing from another chapter, the chapter number will be adjoined. For instance,
Theorem 6.5.4 is Theorem 5.4 in Chapter 6. You may find additional information
about the book or contact me on my website www.math.fu-berlin.de/~raut .

I would like to thank the colleagues who offered me helpful criticism along the way;
their names are too numerous to list here. Particularly useful for Chapter 7 were
hints from Lev Beklemishev (Moscow) and Wilfried Buchholz (Munich). Thanks
also to the publisher, in particular Martin Peters, Mark Spencer, and David Kramer.

Wolfgang Rautenberg
December 2005
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Introduction

Traditional logic as a part of philosophy is one of the oldest scientific disciplines. It
can be traced back to the Stoics and to Aristotle.! It is one of the roots of what
is nowadays called philosophical logic. Mathematical logic, however, is a relatively
young discipline, having arisen from the endeavors of Peano, Frege and Russell to
reduce mathematics entirely to logic. It steadily developed during the twentieth
century into a broad discipline with several subareas and numerous applications in
mathematics, computer science, linguistics, and philosophy.

One of the features of modern logic is a clear distinction between object language
and metalanguage. The latter is normally a kind of a colloquial language, although
it differs from author to author and depends also on the audience the author has in
mind. In any case, it is mixed up with semiformal elements, most of which have their
origin in set theory. The amount of set theory involved depends on one’s objectives.
General semantics and model theory use stronger set-theoretical tools than does
proof theory. But on average, little more is assumed than knowledge of the most
common set-theoretical terminology, presented in almost every mathematical course
for beginners. Much of it is used only as a fagon de parler.

Since this book concerns mathematical logic, its language is similar to the language
common to all mathematical disciplines. There is one essential difference though. In
mathematics, metalanguage and object language strongly interact with each other
and the latter is semiformalized in the best of cases. This method has proved
successful. Separating object language and metalanguage is relevant only in special
context, for example in axiomatic set theory, where formalization is needed to specify
how certain axioms look like. Strictly formal languages are met more often in
computer science. In analysing complex software or a programming language, like
in logic, formal linguistic entities are the objects of consideration.

The way of arguing about formal languages and theories is traditionally called the
metatheory. An important task of a metatheoretical analysis is to specify procedures
of logical inference by so-called logical calculi, which operate purely syntactical.
There are many different logical calculi. The choice may depend on the formalized
language, on the logical basis, and on certain aims of the formalization. Basic
metatheoretical tools are in any case the naive natural numbers and inductive proof
procedures. We will sometimes call them proofs by metainduction, in particular
when talking about formalized theories that may speak about natural numbers and
induction themselves. Induction can likewise be carried out on certain sets of strings
over a fixed alphabet, or on the system of rules of a logical calculus.

L The Aristotelian syllogisms are useful examples for inferences in a first-order language with unary
predicate symbols. One of these serves as an example in Section 4.4 on logic programming.

XIII
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The logical means of the metatheory are sometimes allowed or even explicitly
required to be different from those of the object language. But in this book the logic
of object languages, as well as that of the metalanguage, are classical, two-valued
logic. There are good reasons to argue that classical logic is the logic of common
sense. Mathematicians, computer scientists, linguists, philosophers, physicists, and
others are using it as a common platform for communication.

It should be noticed that logic used in the sciences differs essentially from logic used
in everyday language, where logic is more an art than a serious task of saying what
follows from what. In everyday life, nearly every utterance depends on the context.
In most cases logical relations are only alluded to and rarely explicitly expressed.
Some basic assumptions of two-valued logic mostly fail, for instance, a context-
free use of the logical connectives. Problems of this type are not dealt with in this
book. To some extent, many-valued logic or Kripke semantics can help to clarify the
situation, and sometimes intrinsic mathematical methods must be used in order to
analyze and solve such problems. We shall use Kripke semantics here for a different
goal though, the analysis of self-referential sentences in Chapter 7.

Let us add some historical remarks, which, of course, a newcomer may find easier to
understand after and not before reading at least parts of this book. In the relatively
short period of development of modern mathematical logic in the last century, some
highlights may be distinguished, of which we mention just a few.

The first was the axiomatization of set theory in various ways. The most impor-
tant approaches are the ones of Zermelo (improved by Fraenkel and von Neumann)
and the theory of types by Whitehead and Russell. The latter was to become the
sole remnant of Frege’s attempt to reduce mathematics to logic. Instead it turned
out that mathematics can be based entirely on set theory as a first-order theory. Ac-
tually, this became more salient after the rest of the hidden assumptions by Russell
and others were removed from axiomatic set theory? around 1915; see [Hej].

Right after these axiomatizations were completed, Skolem discovered that there
are countable models of the set-theoretic axioms, a drawback for the hope for an
axiomatic definition of a set. Just then, two distinguished mathematicians, Hilbert
and Brouwer, entered the scene and started their famous quarrel on the foundations
of mathematics. It is described in an excellent manner in [KI2, Chapter IV] and
need therefore not be repeated here.

As a next highlight, Godel proved the completeness of Hilbert’s rules for predicate
logic, presented in the first modern textbook on mathematical logic, [HA]. Thus, to
some extent, a dream of Leibniz became real, namely to create an ars inveniendi for
mathematical truth. Meanwhile, Hilbert had developed his view on a foundation of

2 For instance, the notion of an ordered pair is indeed a set-theoretical and not a logical one.
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mathematics into a program. It aimed at proving the consistency of arithmetic and
perhaps the whole of mathematics including its nonfinitistic set-theoretic methods
by finitary means. But Godel showed by his incompleteness theorems in 1931 that
Hilbert’s original program fails or at least needs thorough revision.

Many logicians consider these theorems to be the top highlights of mathematical
logic in the twentieth century. A consequence of these theorems is the existence of
consistent extensions of Peano arithmetic in which true and false sentences live in
peaceful coexistence with each other, called “dream theories” in Section 7.2. It is an
intellectual adventure of holistic beauty to see wisdoms from number theory known
for ages, like the Chinese remainder theorem, or simple properties of prime num-
bers and Euclid’s characterization of coprimeness (page 193) unexpectedly assuming
pivotal positions within the architecture of Godel’s proofs.

The methods Godel developed in his paper were also basic for the creation of
recursion theory around 1936. Church’s proof of the undecidability of the tautology
problem marks another distinctive achievement. After having collected sufficient
evidence by his own investigations and by those of Turing, Kleene, and some others,
Church formulated his famous thesis (Section 6.1), although in 1936 no computers
in the modern sense existed nor was it foreseeable that computability would ever
play the basic role it does today.

As already mentioned, Hilbert’s program had to be revised. A decisive step was
undertaken by Gentzen, considered to be another groundbreaking achievement of
mathematical logic and the starting point of contemporary proof theory. The logical
calculi in 1.2 and 3.1 are akin to Gentzen’s calculi of natural deduction.

We further mention Gédel’s discovery that it is not the axiom of choice (AC) that
creates the consistency problem in set theory. Set theory with AC and the continuum
hypothesis (CH) is consistent provided set theory without AC and CH is. This is a
basic result of mathematical logic that would not have been obtained without the
use of strictly formal methods. The same applies to the independence proof of AC
and CH from the axioms of set theory by P. Cohen in 1963.

The above indicates that mathematical logic is closely connected with the aim of
giving mathematics a solid foundation. Nonetheless, we confine ourself to logic and
its fascinating interaction with mathematics. History shows that it is impossible
to establish a programmatic view on the foundations of mathematics that pleases
everybody in the mathematical community. Mathematical logic is the right tool for
treating the technical problems of the foundations of mathematics, but it cannot
solve its epistemological problems.



Notation

We assume that the reader is familiar with basic mathematical terminology and
notation, in particular with the elementary set-theoretical operations of wunion,
intersection, complemention, and cross product, denoted by U, N, \, and X,
respectively. Here we summarize only some notation that may differ slightly from
author to author, or is specific for this book.

N,Z,Q,R denote the sets of natural numbers including 0, integers, rational, and
real numbers, respectively. n,m, i, j, k denote always natural numbers unless stated
otherwise. Hence, extended notation like n € N is mostly omitted. N, Q,, R,
denote the sets of positive members of the corresponding sets.

The ordered pair of elements a,b is denoted by (a,b). It should not be mixed
up with the pair set {a,b}. Set inclusion is denoted by M C N, while M C N
means proper inclusion (i.e., M C N and M # N). We write M C N only if the
circumstance M # N has to be emphasized. If M is fixed in a consideration and
N varies over subsets of M, then M\ N may also be denoted by \N or =N. The
power set (= set of all subsets) of M is denoted FM. () denotes the empty set.

If one wants to emphasize that all elements of a set F' are sets, I is also called a
family or system of sets. |J F' denotes the union of a set family F, that is, the set of
elements belonging to at least one M € F, and () F' stands for the intersection of
F (% 0), which is the set of elements belonging to all M € F. If F = {M; |i € I}
then (J F" and (] F' are mostly denoted by (J;c; M; and (,c; M;, respectively.

A relation between M and N is a subset of M x N. Such a relation, call it f, is
said to be a function (or mapping) from M to N if for each a € M there is precisely
one b € N with (a,b) € f. This bis denoted by f(a) or fa or a’ and called the value
of f at a. We denote such an f also by f: M — N, or by f:z — t(z) provided
f(z) = t(z) for some term ¢ (terms are defined in 2.2). idy:x — x denotes the
identical function on M. ranf = {fx | x € M} is called the range of f, while
dom f = M is called its domain. f: M — N is injective if fx = fy = x =y, for all
x,y € M, surjective if ran f = N, and bijective if f is both injective and surjective.
The reader should basically be familiar with this terminology.

The set of all functions from M to N is denoted by N™. The phrase “let f be
a function from M to N” is sometimes shortened to “let f: M — N.” If f g are
mappings with rang C dom f then h:x — f(g(z)) is called their composition. 1t is
sometimes denoted by h = fog, but other notation is used as well.

Let I and M be sets, f:I — M, and call I the index set. Then f will often be
denoted by (a;)ic; and is named, depending on the context, a family, an I-tuple,
or a sequence. If 0 is identified with () and n > 0 with {0,1,...,n — 1}, as is
common in set theory, then M™ can be understood as the set of finite sequences or

XVI
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n-tuples (a;)i<n = (ag, - - -, an_1) of length n whose members are elements of M. In
concatenating finite sequences which has an obvious meaning, the empty sequence
(the only member of M® = {@}), plays the role of a neutral element. A sequence of
the form (ay,...,a,) will frequently be denoted by @. This is for n = 0 the empty
sequence, similar to {a1,...,a,} for n = 0 being always the empty set.

If A is an alphabet, i.e., if the elements of A are symbols or at least called symbols,
then the sequence (as,...,a,) is written as a1 - --a, and called a string or a word
over the alphabet A. The empty sequence is then called the empty string or the
empty word. Let &n denote the concatenation of the strings € and n. If £ = &nés
for some strings €1, &, and n # () then 7 is called a substring or segment of £. If, in
addition, & = @ then 7 is called an 4nitial, and if & = 0, a terminal segment of &.

Subsets P,@Q, R,... C M" are called n-ary predicates of M or n-ary relations. A
unary predicate will be identified with the corresponding subset of M. We may
write Pd instead of @ € P, and —Pd instead of @ ¢ P. Metatheoretical predicates
(or properties) cast in words will often be distinguished from the surrounding text
by single quotes, for instance, if we speak of the syntactic predicate ‘The variable
x occurs in the formula o’. We can do so since quotes inside quotes will not occur.
Single quoted predicates are often used in induction principles, or they are reflected
in a theory, while ordinary (“double”) quotes have a stylistic function only.

An n-ary operation of M is a function f: M™ — M. Almost everywhere fd will be
written instead of f(ay,...,a,). Since M® = {0}, a O-ary operation of M is of the
form {(0,¢)} with ¢ € M; it is denoted by ¢ for short and called a constant. Each
operation f:M™ — M is uniquely described by the graph of f,

gra‘phf = {(a17 .. '7a’n+l) S M7l+1 |f(a’l7 .. '7an) = an+l}-

Both f and graph f are essentially the same, but in most situations it is more
convenient, to distinguish between f and graph f.

If A, B are expressions of our metalanguage, A < B stands for “A iff B,” that is,
“A if and only if B” Similarly, A = B, A & B, and AV B mean “if A then B,”
“A and B, and “A or B,” respectively. This notation does not aim at formalizing
the metalanguage but serves improved organization of metatheoretic statements.
We agree that =, <, ... separate stronger than linguistic binding particles like
“there is” or “for all.” Hence, in TF a < «a € T, for all @ € L° (definition page 64)
the comma should not be omitted; otherwise some serious misunderstanding may
arise, since ‘e € T for all a € L°’ has the meaning ‘the theory T is inconsistent’.

A & B means that the expression A is defined by B. Similarly, s := ¢ means
that the term s is defined by the term ¢, or whenever s is a variable, the allocation
of the value of ¢ to s. W.l.o.g. or w.lL.o.g. abbreviates “Without loss of generality.”



Chapter 1
Propositional Logic

Propositional logic, by which we here mean two-valued propositional logic, arises
from analyzing connections of given sentences A, B, such as

Aand B, A or B, notA, ifA then B.

These connection operations can be approximately described by two-valued logic.
There are other connections that have temporal or local features, for instance, first
A then B or here A there B, as well as unary modal operators like it is necessarily
true that, whose analysis goes beyond the scope of two-valued logic. These opera-
tors are the subject of temporal, modal, or other subdisciplines of many-valued or
nonclassical logic. Furthermore, the connections that we began with may have a
meaning in other versions of logic that two-valued logic only incompletely captures.
This pertains in particular to their meaning in natural or everyday language, where
meaning may strongly depend on context.

In two-valued propositional logic such phenomena are set aside. This approach
not only considerably simplifies matters, but has the advantage of presenting many
concepts, for instance those of consequence, rule induction, or resolution, on a sim-
pler and more perspicuous level. This will in turn save a lot of writing in Chapter 2
when we consider the corresponding concepts in the framework of predicate logic.

We will not consider everything that would make sense in the framework of two-
valued propositional logic, such as two-valued fragments and problems of definability
and interpolation. The reader is referred instead to [KK] or [Ral]. We will concen-
trate our attention more on propositional calculi. While there exist a multitude of
applications of propositional logic, we will not consider technical applications such
as the designing of Boolean circuits and problems of optimization. These topics have
meanwhile been integrated into computer science. Rather, some useful applications
of the propositional compactness theorem are described comprehensively.



2 1 Propositional Logic

1.1 Boolean Functions and Formulas

Two-valued logic is based on two foundational principles: the principle of bivalence,
which allows only two truth values, namely true and false, and the principle of
extentionality, according to which the truth value of a connected sentence depends
only on the truth values of its parts, not on their meaning. Clearly, these principles
form only an idealization of the actual relationships.

Questions regarding degrees of truth or the sense-content of sentences are ignored
in two-valued logic. Despite this simplification, or indeed because of it, such a
method is scientifically successful. One does not even have to know exactly what
the truth values true and false actually are. Indeed, in what follows we will identify
them with the two symbols 1 and 0. Of course, one could have chosen any other
apt symbols such as T and 1 or t and f£. The advantage here is that all conceivable
interpretations of true and false remain open, including those of a purely technical
nature, for instance the two states of a gate in a Boolean circuit.

According to the meaning of the word and, the conjunction A and B of sentences
A, B, in formalized languages written as Ar B or A& B, is true if and only if A, B
are both true and is false otherwise. So conjunction corresponds to a binary function
or operation over the set {0, 1} of truth values, named the a-function and denoted
by . It is given by its value matriz <1 0) where, in general (101 L0

0 0)’ ’ "\ 001 000
the value matrix or truth table of a binary function o with arguments and values in
{0,1}. The delimiters of these small matrices will usually be omitted.

) represents

A function f:{0,1}* — {0,1} is called an n-ary Boolean or truth function. Since
there are 2" n-tuples of 0,1, it is easy to see that the number of n-ary Boolean
functions is 22". We denote their totality by B,. While B, has 2* = 16 members,
there are only four unary Boolean functions. One of these is negation, denoted by
— and defined by =1 =0 and -0 = 1. By consists just of the constants 0 and 1.

The first column of the table on the opposite page contains the common binary
connections with examples of their instantiation in English. The second column lists
some of its traditional symbols, which also denote the corresponding truth function,
and the third its truth table. Disjunction is the inclusive or and is to be distinguished
from the ezclusive disjunction. The latter corresponds to addition modulo 2 and got
therefore the symbol +. In Boolean circuits the functions +, ], 1 are often denoted
by zor, nor, and nand; the latter is also known as the Sheffer function.

A connected sentence and its corresponding truth function need not be denoted
by the same symbol; for example one might take A for conjunction and et as the
truth function. But in doing so one would only be creating extra notation, but no
new insights. The meaning of a symbol will always be clear from the context: if o, §
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are sentences of a formal language, then aa 8 denotes their conjunction. If on the
other hand, a, b are truth values, then a b just denotes a truth value. Occasionally,
we may want to refer to the symbols A, v ,—, ... themselves, setting their meaning
temporarily aside. Then we talk of the connectives or truth functors n, v ,—,...

compound sentence symbol | truth table
conjunction 10
A, &
A and B; A as well as B 00
disjunction 11
v,V
AorB 10
implication 1 0
=, =
if A then B; B if A 11
equivalence (biconditional) 10
VEGEES
A if and only if B; A iff B 01
exclusive disjunction N 01
either A or B but not both 10
nihilition I 00
neither A nor B 01
incompatibility N 01
not at once A and B 11

Sentences formed using connectives given in the table are said to be logically
equivalent if their corresponding truth tables are identical. This is the case, for
example, for the sentences

Aif B, AornotB, B onlyifA,
which represent the converse implication, denoted by A < B. It does not appear
in the table since it arises by swapping A, B in the implication. This and similar
reasons explain why only a few of the sixteen binary Boolean functions require
notation. Amazingly, converse implication is used in the programming language
PROLOG, dealt with in 4.4. Recall our agreement in the section Notation that the
symbols &, V, =, and < will be used only on the metatheoretic level.

In order to recognize and describe logical equivalence of compound sentences it
is useful to create a suitable formalism or a formal language. The idea is basically
the same as in arithmetic, where general statements are more clearly expressed by
means of certain formulas. As with arithmetical terms, we consider propositional
formulas as strings of signs built in given ways from basic symbols. Among these
basic symbols are variables, for our purposes called propositional variables, the set
of which is denoted by PV. Traditionally, these signs are symbolized by pg, p1, . . .
However, our numbering of the variables below begins with p; rather than with py,
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enabling us later on to represent Boolean functions more conveniently. Further,
we use certain logical signs such as A, v ,—,..., similar to the signs +,-,... of
arithmetic. Finally, the parentheses (, ) will serve as technical aids, although these
two symbols are dispensable as will be seen later on.

Fach time a propositional language is in question, the set of its logical symbols,
called the logical signature, and the set of its variables must be given in advance. For
instance, it is crucial in some applications of propositional logic in Section 1.5, for
PV to be an arbitrary set, and not a countably infinite one as indicated previously.
Put concretely, we define a propositional language F built up from the symbols
(,), A, v,7,p1,p2,... inductively as follows:

(F1) The one-element strings py, po, ... are formulas, called prime formulas.
(F2) If the strings «, 3 are formulas, then so too are (aa3), (o v 3), and —c.

This is an inductive definition in the set of strings on the alphabet of the mentioned
symbols, that is, only those strings gained using (F1) or (F2) are in this context
formulas. Stated set-theoretically, F is the smallest (that is, the intersection) of all
sets of strings S built from the aforementioned symbols with the properties

(f1) p1,po,--- €5, (2) a,8€ S = (anP),(avp),~aec St

Example. (p;a(p2 v —p1)) is a formula. On the other hand, its initial segment
(p1 A (p2 v —p1) is not, because a closing parenthesis is missing. It is intuitively clear
and will later be rigorously proved, that the number of left parentheses occurring in
a formula coincides with the number of its right parentheses. Every proper initial
segment of the example formula obviously fails to meet this condition.

The formulas so defined are called Boolean formulas, because they are obtained
using the Boolean signature {a, v ,=}. It should be noticed that in the definition
parentheses are needed only for binary connectives, not if a formula starts with the
unary operator —. Should further connectives belong to the logical signature, for
example — or <, (F2) of the above definition must be augmented accordingly.
But unless stated otherwise, & — 3 and «a <> 3 are here just abbreviations; namely
a—f:==(ar=f) and a < [ := (a = 0)a (8 = ).

Occasionally, it is useful to have symbols in the logical signature for always true
and always false, L and T respectively, say, called falsum and verum and sometimes
also denoted by 0 and 1. These are to be regarded as supplementary prime formulas,
and clause (F1) should be altered accordingly. In the Boolean signature, 1 and T
are used as abbreviations for the formulas p; A—p; and p; v —py, respectively.

1 This is a set-theoretical translation of the above inductive definition. Some authors like to add
a third condition to (F1), (F2), namely (F3): No other strings than those obtained by (F1) and
(F2) are formulas in this context. But this at most underlines that (F1),(F2) are the only formula
building rules; (F3) follows from our definition as its set-theoretical translation shows.
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For the time being we let F be the set of all Boolean formulas, although in what fol-
lows, everything said about F holds correspondingly for any propositional language.
Propositional variables will henceforth be denoted by the letters p,q, ..., formulas
by «, 3,7,6, ¢, ..., prime formulas also by 7, and sets of formulas by X,Y, Z, where
these letters may also be indexed.

In order not to have to write down too many parentheses in formulas, we set some
conventions similar to those used in writing arithmetical terms.

1. The outermost parentheses in a formula may be omitted (if there are any).
For example, (p v ¢) A—p may be written in place of ((p v ¢) A—p). Note that
(p v q) A—p is not itself a formula but denotes the formula ((p v ¢) A—p).

2. In the order —, A, v, —, 4>, each connective binds more strongly than those
following it. Thus, one may even write p v ga—p instead of (p v (ga—p)).

3. By the multiple use of — we associate to the right. So p —q —p is to mean
p — (¢ —p). Multiple occurrences of other binary connectives are associated
to the left, for instance, paga—p means (pag)a—p. In place of apgna -+ ray,
and agv - - - va, we may write /\ign o; and Vign v, respectively.

Also, in arithmetic, one normally associates to the left. An exception is 2" where
traditionally association to the right is used, (that is, 2V~ equals x(yz)). Association
to the right has some advantages in the writing of tautologies in which — plays a
main role; for instance, in the logical axioms listed in 1.3.

The above conventions are based on a reliable syntax in the framework of which
intuitively clear facts, such as the identical number of left and right parentheses
in a formula, are rigorously provable. These proofs are generally carried out using
induction on the construction of a formula. To make this clearer we denote by ¢
that a property £ holds for a string ¢. For example, let £ mean the property ‘@ is a
formula with equally many right- and left-hand parentheses’. Obviously, £ is valid
for prime formulas, and if E«, £ then clearly also E(anf), E(a v F), and E-a.
From this one may conclude that £ applies to all formulas, our reasoning being a
particularly simple instance of the following
Induction principle for formulas. Let £ be a property of strings such that

(o) &Em for all prime formulas T,
(s) Ea,EB = E(anp),E(av B),Ena, forall a, B € F.
Then Ep holds for all formulas .

The justification of this principle is straightforward. The set S of all strings with
the property & satisfies, thanks to (o) and (s), the conditions (f1) and (2) of page 4.
But JF is the smallest such set. Consequently, & C S. In other words, £ applies to
all formulas .
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It is intuitively clear that a compound formula ¢ (i.e., ¢ is not a prime formula) can
be decomposed uniquely. For instance, a formula aa 3 (outer parentheses omitted)
cannot at the same time be written o' v (3 with perhaps different formulas o/, 3.
Speaking more generally, compound formulas have the following basic property the
proof of which is not as trivial as might be expected. Nonetheless, it is left as an
exercise (Exercise 4) in order to maintain the flow of things.

Unique reconstruction property. Fach compound formula ¢ € F is of the form
= or (ao ), where a, $ € F and o € {n, v} are uniquely determined by .

It may be a surprise to the novice that for a unique reconstruction, parentheses
are dispensable throughout. Indeed, propositional formulas, like arithmetical terms,
can be written without any parentheses; this is realized in Polish Notation (= PN),
also called prefix notation, once widely used in the logic literature. The idea consists
in altering (F2) as follows: if a, 8 are formulas then so too are raf3, vaB, and —a.

Remark 1. Similar to PN is RPN (Reverse Polish Notation). It is used in some pro-
gramming languages. RPN differs from PN only in that the connectives are placed after
the arguments. For instance, (pA (g v —p)) is written in RPN as pgp—v a. Reading PN or
RPN requires more effort due to the high density of information; but by the same token
it can be processed very fast by a computer or a (high-tech) printer which gets its jobs as
RPN-based PostScript-programs. The only advantage of the parenthesized version is that
optical decoding is somewhat easier through the dilution of information.

Intuitively it is clear what a subformula of a formula ¢ is; for example, (gA—p) is
a subformula of (p v (ga—p)). All the same, for some purposes it is convenient to
characterize the set Sf ¢ of all subformulas of ¢ inductively:

St = {n} for prime formulas 7; Sf-a = Sfa U {-a},
Sf(awo ) =StfaUStBU{(aof)} for a binary connective o.
Thus, a formula is always regarded as a subformula of itself. The above is a typical
example of a recursive definition on the construction of formulas. Another example
of such a definition is the rank of a formula ¢, rk ¢, which provides a sometimes
more convenient measure of the complexity of ¢ than its length as a string and
occasionally simplifies inductive arguments. Intuitively, rk ¢ is the highest number
of nested pairs of parentheses or nested negation signs occurring in a formula ¢. Let
rk 7 = 0 for prime formulas 7, and if rk o and rk § are given, then
tk-a=1ka+1, rk(aof)=max{rka,rkg3} + 1 for a binary connective o.

We will not give a general formulation of this definition procedure because it is
so intuitive, and has been made sufficiently clear by the preceding examples. Its
justification is essentially based on the unique reconstruction property, in contrast
to justifying proofs by induction on formulas that immediately derive from the
definition of formulas. The theoretical background of all this is that F forms an
absolutely free algebra; see for instance [RS] for details.
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If a property is to be proved by induction on the construction of formulas ¢, we
will say that it is a proof by induction on . Similarly, the recursive construction of
a function f on F will generally be referred to as defining f recursively on ¢, often
not quite correctly paraphrased as defining f by induction. rk is an example.

Since the truth value of a connected sentence depends only on the truth values
of its constituent parts, we may assign to every propositional variable of a a truth
value rather than a sentence, thereby evaluating «, i.e., calculating a truth value.
Similarly, terms are evaluated in, say, the arithmetic of real numbers, whose value

is then a real (= real number). An arithmetical term ¢ in the variables x1,...,z,
describes an n-ary function whose arguments and values are reals, while a formula
@ in p1,...,p, describes an n-ary Boolean function.

To be more precise, a propositional valuation, or alternatively a realization or
(propositional) model, is a mapping w: PV — {0,1}. We can extend this to a map-
ping from the whole of F to {0, 1} (also denoted by w) according to the stipulations

(x) w(anrB) =warws; wlavP)=wavwf;, w-a=-wa.?

By the value wy of a formula ¢ under the valuation of variables we mean the
value given by this extension. We could denote the extended mapping by w, say,
but it is in fact not necessary to distinguish it symbolically from w: PV — {0,1}.
Similarly, we keep the same symbol if an operation in N is extended to a larger
domain. If the logical signature contains further connectives, for example — , the
conditions (%) must be supplemented accordingly, with w(a — ) = wa —»wf in
our example. However, if — is defined as in the Boolean case, then this equation
must be provable. Indeed, it is provable, because from our definition of a — 3 we
get w(a = 0B) = w-(ar—f) = w(aa—F) = =(wa s —~wf) = wa —-wg, for every
w. A corresponding remark could be made with respect to «». Similarly, always
wT = 1 and w1 = 0 by our definition of T, 1, in accordance with the meaning of
these symbols. However, if these or corresponding symbols belong to the logical
signature, then the last two equations must be added to the definition of w.

Let &, denote the set of all formulas of F in which at most the variables p1,...,p,
occur, n > 0. Then it can easily be seen that for o € F,,, wa depends only on the
truth values of the variables pq, ..., p,. In other words,

(*) wa = w'a whenever wp; = w'p; for i =1,... n.

The simple proof follows from induction on the construction of formulas in F,: the
property (x) holds for p € F,, and if (x) is valid for «, 5 € F,,, then also for —a, an g,
and « v 3. It is then intuitively clear that a given ¢ € JF, defines or represents an
n-ary Boolean function according to the following definition.

2We often use (*) or (x) as a temporary label for a condition (or property) that we refer back to
in the text following the labeled condition.
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Definition. A formula « € F,, represents the n-ary Boolean function f (or f is
represented by «) if wa = fwp for all valuations w, where wp := (wp, ..., wpy).

Because wa for a € F,, is uniquely determined by wps, ..., wp,, « represents pre-
cisely one function f € B, sometimes written as (™. For instance, both pyAps
and —(—p; v —p2) represent the a-function, as can easily be illustrated using a
table. Similarly, —p; v p2 and —(p; A—p2) represent the — -function, and p; v pa,
=(=p1A—pa), (p1 = p2) — po all represent the v-function. Incidentally, the last for-
mula shows that the v-connective can be expressed using implication alone.

There is a caveat though: since @ = p; v po, say, belongs not only to F» but to
F5 as well, « also represents the Boolean function f: (21, 22, x3) — x1vae. However,
the third argument is only “fictional,” or put another way, the function f is not
essentially ternary.

In general we say that an operation f: M™ — M is essentially n-ary if f has no
fictional arguments, where the ith argument of f is called fictional whenever

flrey, oo miy oo xn) = floa,. 0,200 ),
for all zy,..., 2 ..., @y, 2, € M. Identity and the —-function are the essentially
unary Boolean functions, and out of the sixteen binary functions, only ten are es-
sentially binary, as is seen in scrutinizing the possible truth tables.
Remark 2. If a, denotes temporarily the number of all n-ary Boolean functions and e,

the number of all essentially n-ary Boolean functions, it is not particularly difficult to prove

that a, = Zign (Tz‘)ez Solving for e, results in e, = Zign(fl)"*i(?)ai. However, we

will not make use of these equations, which become important only in a more specialized
study of Boolean functions; see any good textbook on discrete mathematics.

Exercises

1. f € B, is called linear if f(z1,...,2,) = ap + a1z + -+ - + a,x, for suitable
coefficients ay, . .., a, € {0,1}. Here + denotes exclusive disjunction (addition
modulo 2) and the not written multiplication is conjunction (a;z; = z; for
a; = 1 and a;x; = 0 for a; = 0). (a) Show that the above representation
of f is unique, (b) Determine the number of n-ary linear Boolean functions,
(c) Prove that each formula a in =, + (that is, « is a formula of the logical
signature {—, +}) represents a linear Boolean function.

2. Show that a compound Boolean formula ¢ is of the form ¢ = = or ¢ = (ar5)
or ¢ = (a v 3) for some a, € F. Hence, if £ is any string over the alphabet
of F then =€ € F & ¢ € F. Similarly, (§&1&) € F & &,6 € F, ete.

3. Prove that a proper initial segment of a formula ¢ is never a formula.

4. Prove (with Exercise 2 and 3) the unique reconstruction property.
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1.2 Semantic Equivalence and Normal Forms

Throughout this chapter w will always denote a propositional valuation. Formulas
a, § are called (logically or semantically) equivalent, and we write & = 3, when
wa = wf for all valuations w. For example oo = =—a. Obviously, a = (3 iff for any
n such that «, § € F,, both formulas represent the same n-ary Boolean function. It
follows that at most 22" formulas in F,, can be pairwise inequivalent, since there are
no more than 22" n-ary Boolean functions.

In arithmetics one writes simply s = ¢ to express the fact that the terms s,t
represent the same function. For example, (r + y)? = 2? + 27y + y? expresses the
equalitiy of values of the left- and right-hand terms for all values of x,y. This way
of writing is permissible because formal syntax plays a minor role in arithmetics.
In formal logic, however, as is always the case when syntactic considerations are to
the fore, one uses the equality sign in o = 3 only for the syntactic identity of the
strings « and (3. Therefore, the equivalence of formulas must be denoted differently.
Clearly, for all formulas «, 3, the following equivalences hold:

an(Bry) = anfry, av(Bvy)=avBvy (associativity);
anf = Bra, aviB=pBva (commutativity);
ara = q, ava =« (idempotency);
anr(avp) = a, avanrf =« (absorption);
an(fvy) = anfvany, avpfary = (avB)a(avy) (distributivity);
—(anf) = -~av-g, —(avf)=-arf (de Morgan rules).

Furthermore, o v ma =T, ar—a = 1, and arT = a v L = «. It is also useful to list
certain equivalences for formulas containing — , for example the frequently used
a=f=-avf a=0-v=arf-y=0—-a—7.

To generalize: a; — -+ =, = ayA -+ AQy_1 = ay,. Further, we mention the “left

distributivity” of implication with respect to A and v, namely
a=fry=(a—=PBrla—=7); a=Bvy=(a—=PF)v(a—7).

Should the symbol — lie to the right, then the following are valid:
anffoy=(a=7)v(B=7); avB-oy=(a—=7)a(B-7).

Remark 1. These last two equivalences are responsible for a curious phenomenon in

everyday language. For example, the two sentences

A: Students and pensioners pay half price, B: Students or pensioners pay half price
evidently have the same meaning. How do we explain this? Let the subjects student and
pensioner be abbreviated by S, P, respectively, and pay half price by H. Then

a: (S—=>H)A(P—H), B: (SvP)—H
express somewhat more precisely the factual content of A and B, respectively. Now,
according to our truth tables, the formulas o and 3 are simply logically equivalent. The
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everyday-language statements A and B of «a and (8 obscure the structural difference of «
and (3 through an apparently synonymous use of and and or.

Obviously, = is an equivalence relation, that is,
a=a (reflexivity),
a=03 = B=a (symmetry),
a=p,0=v = a=+v (transitivity).
Moreover, = is a congruence relation® on F. This is to mean that for all «, o/, 3, 3,
a=d,0=0 = aof=dof,~a=-d (oce{n, v}).
For this reason the so-called replacement theorem holds: a = o' = ¢ = ¢', where
¢ is obtained from ¢ by replacing one or several of the possible occurrences of the
subformula « in ¢ by o/. For instance, by replacing the subformula —p v —¢ by the
equivalent formula =(pag) in o = (=p v =¢) A (p v ¢) we obtain ¢’ = =(prg)a(p v q),
which is equivalent to . A similar replacement theorem also holds for arithmetical
terms and is constantly used in their manipulation. This procedure mostly goes
unnoticed, because = is written instead of =, and the replacement is, consciously
or not, usually correctly applied. The simple inductive proof of the replacement
theorem will be given in a somewhat broader context in 2.4.

Furnished with the equivalences —=(anf) = —a v =8, =(a v ) = mar—3 and
——a = «, and using the replacement theorem, it is easy to construct for each formula
¢ an equivalent formula in which the negation sign stands only immediately in front
of variables. For example, =(paq v r) = =(pag)a—r = (=p v =q) A—r is obtained
in this way. Such manipulations lead also purely syntactically to conjunctive and
disjunctive normal forms, considered below.

It is always something of a surprise to the newcomer that independent of its arity,
every Boolean function can be represented by a Boolean formula. While this can be
proved in various ways, we take the opportunity to introduce certain normal forms
and therefore begin with the following

Definition. Prime formulas and negations of prime formulas are called literals.
A disjunction ayv---va,, where each «a; is a conjunction of literals, is called a
disjunctive normal form, a DNF for short (also called an alternative normal form).
A conjunction By --- AfB,, where every 3; is a disjunction of literals, is called a
congunctive normal form, a CNF for short.

Example 1. The formula p v (¢ga—p) is a DNF; p v ¢ is at once a DNF and a CNF;
p v —(ga—p) is neither a DNF nor a CNF.

3 This concept, stemming originally from geometry, is meaningfully defined in every algebraic
structure and is one of the most important mathematical concepts; see 2.1. The definition is
equivalent to the condition a =o' = aof=d of8,foa=Fod,~a=~d, for all a,a’, .
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Theorem 2.1 states that every Boolean function is represented by a Boolean for-
mula, indeed by a DNF, and also by a CNF. It would suffice to show that for given n
there are at least 22" pairwise inequivalent DNFs (resp. CNFs). However, we present
instead a constructive proof whereby for a Boolean function given in tabular form a
representing DNF (resp. CNF) can explicitly be written down. In the formulation
of Theorem 2.1 we temporarily use the following notation: p' := p and p° := —p.
With this stipulation, w(p;* apy?) = 1 iff wp; = 21 and wpy = z5. More generally,
induction on n > 1 easily shows that for all z1,...,z, € {0,1},

(x)  wpta---apin)=1 o wp=7 (ie, wpy =T1,..., WP, = Tp).

Theorem 2.1. Every Boolean function f with f € B, (n > 0) is representable by
a DNF, namely by
api= V pita-apged
fi=1
At the same time, f is representable by the CNF
Bpi= N pi™t v vp
F&=0
Proof. By the definition of ay, the following holds for an arbitrary valuation w:
way =1 << thereis an & with f& =1 and w(py*a--- apir) =1
< there is an ¥ with f@ =1 and wp'= & (by (*))
< fwp=1 (replace ¥ by wp).
Thus, way = 1< fwp = 1. From this equivalence, and because there are only two
truth values, way = fwp follows immediately. The representability proof of f by
By runs analogously; alternatively, Theorem 2.3 below may be used. []

Example 2. For the exclusive-or function +, the construction procedure of Theo-
rem 2.1 gives the representing DNF py A—pa v —p1 Ape, because (1,0),(0,1) are the
only pairs for which + has the value 1. The CNF given by the theorem, on the other
hand, is (p1 v p2)A(—p1 v —pe); the equivalent formula (p1 v pa)A—(p1Ape) makes
the meaning of the exclusive-or compound particularly intuitive.

The DNF for the Boolean function — given by Theorem 2.1 is

P1AP2 vV TP1AP2 V TP ATIP2.

It is longer than the formula —p; v ps, which is also a representing DNF. But the
former is distinctive in that each of its disjuncts contains each variable occurring in

4The disjuncts of ay can be ordered, for instance according to the lexicographical order of the
n-tuples (z1,...,2,) € {0,1}™. If the disjunction is empty, in other words, if f does not take
the value 1, define ay to be L (= pyA—p1); similarly set the empty conjunction as T (= —1).
These conventions correspond to those in arithmetic, where the empty sum has the value 0 and
the empty product the value 1.
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the formula exactly once. A DNF of n variables with the analogous property is called
canonical. The notion of canonical CNF is correspondingly explained. For instance,
the «+»-function is represented by the canonical CNF (—pjvps) A (p1v—p2) according
to Theorem 2.1. As a matter of fact, this theorem always provides canonical normal
forms as representing formulas.

Functional completeness. A logical signature is called functional complete if
every Boolean function is representable by a formula in this signature. Theorem 2.1
shows that {—, o, v} is functional complete. Because of p v ¢ = —=(-par—q) and
prg = —(—p v 1q), one can further leave aside v, or alternatively a. This observation
is the content of

Corollary 2.2. Both {—, a} and {—, v} are functional complete.

Therefore, to show that a logical signature L is functional complete, it is enough
to represent =, A or else =, v by formulas in L. For example, because -p = p —0
and parqg = —(p — —q), the signature { —,0} is functional complete. On the other
hand, { =, A, v }, and a fortiori { — }, are not. Indeed, wyp = 1 for any formula ¢
in —, A, v and any valuation w such that wp = 1 for all p. This can readily be
confirmed by induction on . Thus, never —p = ¢ for any such formula ¢.

It is noteworthy that the signature containing only | is functional complete: from
the truth table for | we get —p = pip as well as pag = —pl—q. Likewise for {1},
because —=p = ptp and p v ¢ = —pt—g. That {+} must necessarily be functional
complete once we know that {1} is, will become obvious in the discussion of the
duality theorem below. Even up to term equivalence, there exist still infinitely
many signatures. Here signatures are called term equivalent if the formulas of these
signatures represent the same Boolean functions as in Exercise 2, for instance.

Define inductively on the formulas from F a mapping § : F — F by

P’ =p, (-a)=-a’, (@nB)l =a’v B, (avpB)P=a’r@.

o’ is called the dual formula of o and is obtained from « simply by interchanging
A and v. Obviously, for a DNF «, of is a CNF, and vice versa. Define the dual of
f € B, by f°7 := ~f~f with -~ := (a1, ..., -x,). Clearly f%° := (f°)° = f since
(f0)°% = =~ f——Z = fZ. Note that 1% = v, v0 = A, &9= 4+, 19 =1, but =0 = -
In other words, — is self-dual. One may check by going through all truth tables that
essentially binary self-dual Boolean functions do not exist. But it was Dedekind who
discovered the ternary self-dual function ds: (21,22, x3) = T1ATy v 1 AT3 V T2 AT3.
The above notions of duality are combined in the following

Theorem 2.3 (The duality principle for two-valued logic). If « represents
the function f then the dual formula of represents the dual function f°.

Proof by induction on «. Trivial for a = p. Let «, 3 represent fi, fa, respectively.
Then aaf represents f : & — fiZ A fof and, in view of the induction hypothesis,
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(a@nB)? =ad v 3 represents g : &+ O v f3. This is just the dual of f because
o8 = =[-8 = (fimT A foo) = ~find v = foo@ = [RT v {7 = g7

The induction step for v is similar. Now let « represent f. Then —a represents
—f:% + —f%. By the induction hypothesis, a® represents f?. Thus (=)’ = —a’

represents —f° which coincides with (—f)? as is readily confirmed. [

We know, for example, that <> is represented by paq v =pa—g, hence + (= %)
by (p v q)A(—p v =q). More generally, if f € B,, is represented by a canonical DNF
«, then by the theorem, f° is represented by the canonical CNF «°. Thus, if every
f € B, is representable by a DNF then every f must necessarily be representable
by a CNF, because f — f? constitutes a bijection of B,, as follows directly from
f%* = f. Note also that Dedekind’s ternary self-dual function ds defined above
shows that pag v parvgar=(pv g a(pvr)a(qgvr)in view of Theorem 2.3.
Remark 2. {A,v,0,1} is mazimally functional incomplete, that is, if f is any Boolean
function not representable by a formula in A,v,0,1, then {A,v,0,1, f} is functional com-
plete (Exercise 4). As was shown by E. Post (1920), there are up to term equivalence only
five maximally functional incomplete logical signatures: besides {A,v,0,1} only { —, A},
the dual of this, {+»,—}, and {ds,—}. The formulas of the last one represent just the
self-dual Boolean functions. Since —p = 1+ p, the signature {0, 1, +, -} is functional com-
plete, where - is written in place of A. The deeper reason is that {0,1,+,-} is also the
extralogical signature of fields (see 2.1). Functional completeness in the two-valued case
just derives from the fact that for a finite field, each operation on its domain is repre-
sented by a suitable polynomial. We mention also that for any finite set M of truth values
considered in many-valued logics there is a generalized two-argument Sheffer function, by
which every operation on M can be obtained, similarly to + in the two-valued case.

Exercises
1. Verify the logical equivalences
(P=@)rA (P =) =prqivDAG, PiAqi—=p2v g = (p1—p2) V(G =)

2. Show that the signatures {+,1}, {+,—}, {<,0}, and {<»,—} are all term
equivalent. The formulas of each of these signatures represent precisely the
linear Boolean functions.

3.5et 0 <0,0<1,and 1 <1 as usual. Show that the formulas in a,v,0,1
represent exactly the monotonic Boolean functions. These are the constants
from By and for n > 0 the f € B, such that fori=1,... n,

f(xh s 7xi71707xi+1> s 7zn) < f(l.lv sy Ti1, 1vxi+17 s 7xn)~

4. Show that the signature {a,v,0,1} is maximally functional incomplete.
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1.3 Tautologies and Logical Consequence

Instead of wa = 1 we prefer from now on to write w F « and read this w satisfies a.
Further, if X is a set of formulas, we write w F X if w F « for all & € X and say
that w is a (propositional) model for X. A given a (resp. X) is called satisfiable if
there is some w with w E « (resp. w E X). The relation E, called the satisfiability
relation, evidently has the following properties:
wEp & wp=1 (pePV) wkE-a & wkao
wEanf & wEaand wE S wFEFavf & wFaorwkEfg.

One can define the satisfiability relation w E « for a given w: PV — {0,1} also
inductively on «a, according to the clauses just given. This approach is particularly
useful for extending the satisfiability conditions in 2.3.

It is obvious that w: PV — {0,1} will be uniquely determined by setting down
in advance for which variables w F p should be valid. Likewise the notation w F «
for a € F, is already meaningful when w is defined only for p;...,p,. One could
extend such a w to a global valuation by setting, for example, wp = 0 for all not
mentioned variables p.

For formulas containing other connectives the satisfaction conditions are to be
formulated accordingly. For example, we would expect that

wEa—-F < ifwEathenwE/}S.
If — is taken to be a primitive connective, this clause is required. However, we
defined — in such a way that this satisfaction clause is provable.

Definition. « is called logically valid or a (two-valued) tautology, in short E «, if
w E « for all w. A formula not satisfiable at all is called a contradiction.

Examples. p v —p is a tautology and so is o v —a for every formula «, the so-called
law of the excluded middle or the tertium non datur. On the other hand, ar =« and
«a <>« are always contradictions. The following tautologies in — are mentioned
in most textbooks on logic (association to the right is applied only to some extend,
to keep these formulas more easily in mind):

pP—=p,

(p=q)=(g=r)=>(p-r),

(p—qg-r)=(g—p-r),

poq—p (premise charge),

(p—=q—1r)=(p—q) = (p—-r) (Frege’s formula),

((p=q)—=p)—=p (Peirce’s formula).

It will later turn out that all tautologies in — alone are derivable (in a sense still
to be explained) from the last three named formulas.
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Clearly, it is decidable whether a formula « is a tautology, in that one tries out the
valuations of the variables of cr. Unfortunately, no essentially more efficient method
is known; such a method exists only for formulas of a certain form. We will have
a somewhat closer look at this problem in 4.2. Various questions like checking the
equivalence of formulas can be reduced to a decision about whether a formula is a
tautology. Observe, in particular, that « = < F a + (.

Definition. « is a logical consequence of X, written X F «, if w E a for every model
w of X. In short, wEF X = w E «, for all w.

While we use F both as the symbol for logical consequence (which is a relation
between sets of formulas X and formulas «) and the satisfiability property, it will
always be clear from the context what F actually means. Evidently, « is a tautology
iff ) E «, so that F o can be regarded as an abbreviation for §) F a.

In this book, X F «a, (3 will always mean ‘X F « and X F (3’. More generally,
X EY is always to mean ‘X F g for all 8 € Y’. We also write ay,...,a, F 3 in
place of {a1,...,a,} E 3, and more briefly, X, « E 3 in place of X U {a} E 3.

Before giving examples, we note the following obvious properties:

(R) aeX=XFu (reflexivity),
M) XEa& XCX = X'Ea (monotonicity),
(T) XEY&YFa = XEa (lransitivity).

Examples of logical consequence. (a) o, F arf and arf E «, (. This is
evident from the truth table of A. In view of (T), property (a) can also be stated
as X Foa e XEFanf (b) o,a—=FE 3, because 1 »x =1 =z =1 according
to the truth table of —. (¢) X F 1 = X F « for each a, because X F L = p; a—py
clearly means that X is unsatisfiable (has no model). X = {p, -p} is an example.
(d) X,aE & X,maEf = XFEpf Indeed, let wE X. If wE o then X,a F
and hence w E 3; but if w F =« then w E g follows from X, -« E 8. Note that (d)
reflects our case distinction made in the metatheory.

The property exemplified by (b) is also called modus ponens when formulated as
a rule of inference, as will be done in 1.6. Example (d) is another formulation of
the often-used procedure of proof by cases: In order to conclude a sentence 8 from
a set of premises X it suffices to show it to be a logical consequence both under an
additional supposition and under its negation. This is generalized in Exercise 3.

Useful for many purposes is the closure of the logical consequence relation under
substitution, which is a generalization of the fact that from p v —p all tautologies of
the form a v =« arise from substituting a for p.

Definition. A (propositional) substitution is a mapping ¢ : PV —J that can be
extended in a natural way to a mapping o : F — F as follows:
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(anf) =a’rf7, (avp) =avp, (-a)’=-a°.

Like valuations, substitutions can be considered as operating on the whole of . For
example, if p” = « for some fixed p and ¢° = ¢ otherwise, then ¢ arises from ¢ by
substituting « for p at all occurrences of p in . For X C Flet X7 := {7 | ¢ € X }.
The observation F ¢ = F 7 turns out to be the special instance X = @) of the
interesting property
(S) XFa= X"Fa’ (substitution invariance).

In order to verify (S), let w” for a given valuation w be defined by wp = wp’.

We first need to prove by induction on « that
(*) wFa” & w Fa

With « a prime formula, (x) certainly holds. Further,

wE (arfB) S wkEa A’ wkEa’, [
< w’ Ea,f (induction hypothesis)
< w’ Eanpf.
The reasoning for v and — is analogous and so (*) holds. To prove (S), let X E «
and w F X?. By (*), we get w” F X. Thus w’ F «, and again by (%), w E a”.
Another property of F, important for applications, will be proved in 1.4, namely
(F) XFEFa = X,F a for some finite subset Xy C X.

E shares the properties (R), (M), (T), and (S) with almost all classical and non-
classical (many-valued) logical systems. A relation F between sets of formulas and
formulas of an arbitrary propositional language F is called a (propositional) con-
sequence relation if F has the properties corresponding to (R), (M), (T), and (S).
These properties are the starting point for a general and strong theory of logical sys-
tems created by Tarski, which underpins nearly all the logical systems considered in
the literature. Should I satisfy the correspondingly formulated property (F) (which
is not supposed, in general), then | is called finitary.

Remark. Notions such as tautology, consistency, maximal consistency (to be considered
in 1.4), and so on can be used with reference to any consequence relation i-. For instance,
a set of formulas X is called consistent in - whenever X ¥ « for some «, and + itself
is consistent when ¥ «a for some «. If F contains — then the consistency of X is often
defined by X F «, -« for no . But the aforementioned definition has the advantage of
being completely independent on any assumption concerning the occurring connectives.
Another example of a general definition is this: A formula set X is called deductively
closed in F provided X F o = a € X, for all & € F. Because of (R), this condition can
be replaced by X F a & a € X. Examples in F are the set of all tautologies and the
whole of F. The intersection of a family of deductively closed sets is again deductively
closed. Hence, each X C JF is contained in a smallest deductively closed set, called the
deductive closure of X. The notion of a consequence relation can also be defined in terms
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of properties of the deductive closure. We mention that (F) holds not just for our E which
is given by a two-valued matrix, but for the consequence relation of any finite logical
matrix in any propositional language. This is stated and at once essentially generalized
in Exercise 3 from 5.7 as an application of the ultraproduct theorem.

A special property of F, easily provable, is
(D) X,aEp = XEa-0.
called the (semantic) deduction theorem for propositional logic. To see this suppose
X,a F 3 and let w be a model for X. If w E «a then by the supposition w F 3. If
w ¥ o then w F o — 3 as well. This proves w F o — 8 and hence (D).
As is immediately seen, the converse of (D) holds as well, that is, one may replace
= in (D) by <. Iterated application of this simple observation yields

ag, ..., o, Ef & Fay—say— - sa, =0 & FEajnagn - ray, = 0.

In this way, 8’s being a logical consequence of a finite set of premises is transformed
into a tautology. Using (D) it is easy to obtain tautologies. For instance, to prove
E p—q—p, it is enough to verify p F ¢ —p, for which it in turn suffices to show
that p,q E p, and this is trivial. By some simple applications of (D) each of the
tautologies in the examples on page 14 can be obtained, except the formula of Peirce.
As we shall see in Chapter 2, all properties of E derived above and in the exercises
will carry over to the consequence relation of a first-order language.

Exercises

1. Use the deduction theorem similar to its application in the text to prove
(@) F(p—qg-r)=(poq)~>@p-r) (b) Flpoq) >(g-7)>(p-r)
2. Suppose that X E a — (. Prove that X F (y = a) — (v = ).

3. Verify the (rule of) disjunctive case distinction: if X, F v and X, 5 F v then
X,a v B E~. This implication is written more suggestively as
X,aFy|X,BFy
X,avBEy

4. Verify the following rules of contraposition:
X,aFp X, =B F -«
——— and —/———.
X,—0F -« X,aEFp

5. Let - be a consequence relation in F and X := {a € F | X F a}. Show that
X is the smallest deductively closed set of formula containing X.
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1.4 A Complete Calculus for F

We will now define a derivability relation F by means of a calculus operating solely
with some structural rules. - turns out to be identical to the consequence relation F.
The calculus F is of the so-called Gentzen type and its rules are given with respect
to pairs (X, «) of sets of formulas X and formulas a. Another calculus for F, of the
Hilbert type, will be considered in 1.6. In distinction to [Ge], we do not require
that X be finite; our particular goals here make such a restriction dispensable. If
F applies on the pair (X, a) then we write X b « and say that « is derivable or
provable from X (made precise below); otherwise we write X ¥ a.

Following [K11], Gentzen’s name for (X, o), Sequenz, is translated as sequent. The
calculus is formulated in terms of A, = and encompasses the following six rules, called
the basic rules. Other rules derived from these are called provable or derivable. The
choice of {A,—} as the basic signature is a matter of convenience and justified by
its functional completeness. The other standard connectives are introduced by the
definitions a v 8 := =(=ar=f), a =8 :==(ar=f0), a+ §:=(a—=0)r (8 —=a).

Of course, one could choose any other functional complete signature and change
or adapt the basic rules correspondingly. But it should be observed that a complete
calculus in =, A, v, —, say, must also include basic rules concerning v and — , which
makes induction arguments on the basic rules of the calculus more lengthy.

Each of the basic rules below has certain premises and a conclusion. Ounly (IS)
has no premises. It allows the derivation of all sequents o F «v. These are called the
initial sequents, because each derivation must start with these. We mention that
each of the six basic rules is really needed for proving the completeness of .

. XFa  _, -
/ D
(IS) - (initial sequent)  (MR) e (X’ 2 X, monotonicity)
XFag XFan
U XFans 2 XFap
X Fa, X,aFB | X -akp
U =x+5 (-2) XFg

Here and in the following X F a, 3 is to mean X - o and X F 3. This convention is
important since X F «, 3 has another meaning in Gentzen calculi, which are given
with respect to pairs of sets of formulas and which play a role in proof-theoretical
investigations. Thus, the rules (n1) and (—1) actually have two premises, just like
(—2). Note further that (A2) really consists of two subrules corresponding to the
conclusions X F aand X F 3. In (—2), X, a stands for XU{a}, and this abbreviated
form will always be used when there is no risk of misunderstanding.
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ai,...,a, B B stands for {ag,...,a,} F 8; in particular a b 8 for {a} F 3 and
F « for § F «, just as with E. The rule (MR) becomes provable if all (X, «) with
a € X are called initial sequents, that is, if (IS) is strengthened to o (a € X).

X F a (read “X derivable @) is to mean that the sequent (X, «) can be obtained
though a stepwise application of the basic rules. We can make this idea of “stepwise
application” of the basic rules rigorous and formally precise (intelligible to a com-
puter, so to speak) in the following way: a derivation is to mean a finite sequence
(So;...;Sn) of sequents such that every S; is either an initial sequent or is obtained
through the application of some basic rule to preceding elements in the sequence.
So « is derivable from X when there is a derivation (Sy;...;S,) with S, = (X, «).
An example with the end sequent a, 3 F aa 3 is the derivation

(aFa;a,fFa; BF B a,fF B a, B anp).
More interesting is the derivation of additional rules, which we will illustrate with

the examples to follow. The second example, a generalization of the first, is the
often-used proof method reductio ad absurdum: « is proved from X by showing
that the assumption —« leads to a contradiction. The other examples are given
with respect to the defined — -connective. Hence, for instance, the — -elimination

XE=(an—
mentioned below runs in the original language M
X,akp
Examples of provable rules
X,-atk«a X )
~ra proof applied
(—-elimination) 1 X,aFo (IS), (MR)
X,~abka«a supposition
3 Xtha (—2)
X, ~ak 3,26
XFa
(reductio ad absurdum) 1 X,-at f,-0 supposition
X,~at o (1)
3 Xtka —-elimination
XFa-p
X,akFp
( —-elimination) X, a,-0Fa -0 (IS), (MR)
X, a,~08Fanr=p (a1)

X F—(ar—f) (=a—pF) supposition
X,a,—fF =(ar—p) (MR)

X, a,-8Ff (=1) on 2 and 4
X,akF g —-elimination

TR W N
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Xtal|Xakp

XT3 proof applied

(cut rule) 1 X,-ata supposition, (MR)
2 X,-akF -a (IS), (MR)
3 X,-atp (-1)
4 X,akpg supposition
5 XEp (—2) on 4 and 3

X,akFp

XFa-=p

( —-introduction) 1 X,ar—f,ak supposition, (MR)

2 X,arfFa (IS), (MR), (r2)
3 X,an0FpS Cut rule
4 X,an—-fF-p (IS), (MR), (r2)
5 X,an—fFa-=g (=1)
6 X,~(ar=p)Fa-p5 (IS), (MR)

7 XFa-=g (—2) on b and 6
The example of — -introduction is nothing other than the syntactic form of the
deduction theorem that was semantically formulated in the previous section.

Remark 1. The deduction theorem also holds for intuitionistic logic. However, it is
not in general true for all logical systems dealing with implication, thus indicating that
the deduction theorem is not an inherent property of every meaningful conception of
implication. For instance, it is not valid for certain formal systems of relevance logic that
attempt to model implication as a cause-and-effect relation.

A simple consequence of — -elimination and the cut rule is the detachment rule
XFaa-p
Xkp
For notice that the premise X F o — 3 yields X, a F # by — -elimination, and since
X F a, the cut rule yields X + 3. Applying detachment on X = {a, o — 5}, we
obtain a, a« — 3 F (. This collection of sequents is known as modus ponens, which
will be more closely considered in 1.6.

Many properties of - are proved through rule induction, which we describe after
introducing some convenient terminology. We identify a property £ of sequents with
the set of all pairs (X, «) to which £ applies. In this sense the logical consequence
relation F is the property applying to all pairs (X, «) with X F .

All the rules considered here are of the form
Xika| - [Xaban

XFa
and are referred to as Gentzen-style rules. We say that £ is closed under R when
E(Xy, ), ..., E(Xn, o) implies £(X, «). For a rule without premises, i.e., n = 0,

R:
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this is just to mean £(X, «). For instance, consider the property £ : X F a. Each
basic rule of I is closed under £. In detail this means

aFa, XFa = XFafoorX'DX, XFa B = XFanrs, etc

From the latter it will follow that £ applies to all provable sequents; in other words,
F is (semantically) sound. What we need here is the following easily justifiable

Principle of rule induction. Let £ (C BF x F) be a property closed under all
basic rules of F. Then X F a implies E(X, o).

Proof by induction on the length of a derivation of the sequent S = (X, «). If the
length is 1, £S holds since S must be an initial sequent. Now let (Sp;...;S,) be
a derivation of the sequent S := S,. By the induction hypothesis we have £S; for
all © < n. If S is an initial sequent then £S holds by assumption. Otherwise S has
been obtained by the application of a basic rule on some of the S; for ¢ < n. But
then £5 holds, because £ is closed under all basic rules. []

As already remarked, the property X E « is closed under all basic rules. Therefore,
the principle of rule induction immediately yields the soundness of the calculus, that
is, F C E. More explicitly, X F o = X F «, for all X, a.

There are several equivalent definitions of . One that is purely set-theoretical is
the following: t is the smallest of all relations C BF x F that are closed under all
basic rules. The equivalence proofs of such definitions are wordy but not particularly
contentful. We therefore do not elaborate further, especially because we henceforth
only use rule induction and not the lengthy definition of -. Using rule induction
one can also prove X - a = X7 - o, and in particular the following theorem, for
which the soundness of F is completely irrelevant.

Theorem 4.1 (Finiteness theorem for ). If X b « then there is a finite subset
XO Q X with XO F a.

Proof. Let £(X, a) be the property ‘Xo b « for some finite Xy C X’. Certainly,
E(X,a) holds for X = {a}, with Xy = X. If X has a finite subset Xj such that
Xo F «, then so too does every set X’ such that X’ O X. Hence & is closed under
(MR). Let £(X, ), £(X, 3), with, say, X1 F «, Xo b (3 for finite X, Xy € X. Then
we also have Xy - «, 8 for Xy = X7 U X, by (MR). Hence Xo b an@ by (a1). Thus
E(X,anB) holds, and & is closed under (a1). Analogously one shows the same for
all remaining basic rules of F. The claim then follows by rule induction. [}

Of great significance is the notion of formal consistency. It fully determines the
derivability relation, as the lemma to come shows. It will turn out that “consistent”
formalizes adequately the notion “satisfiable.” The proof of this adequacy is the
clue to the completeness problem.
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Definition. X C F is called inconsistent (in our calculus F) if X F « for all o € F,
and otherwise consistent. X is called mazimally consistent if X is consistent but
each Y D X is inconsistent, or equivalently, o ¢ X = X, a -  for all g.

The inconsistency of X can be identified by the derivability of a single formula,
namely 1 (= p; A—p;1). This is so because X 1 implies X  py, =p; by (42), hence
X b afor all @ by (—1). Conversely, when X is inconsistent then in particular X + 1.
Thus, X F 1 may be read as “X is inconsistent,” and X ¥ 1 as “X is consistent.”
The most important is resumed by the following lemma in the properties C* and
C~, which can also each be understood as a pair of provable rules.

Lemma 4.2. The derivability relation = has the properties
ct: XFa & X,-ak 1, C: XF-a & Xak .l

Proof. If X F « holds then so too does X, -« F «. Since certainly X, —a F —a, we
have X, -« = (3 for all 5 by (—1), in particular X, —a b 1. Conversely, let X, —a - 1
be the case, so that in particular X, —a - «, and thus X F a by —-elimination on
page 19. C~ is proved completely analogously. [

The claim E C F, not yet proved, is equivalent to X ¥ o = X ¥ a, for all X
and «. But so formulated it becomes apparent what needs to be done to obtain the
proof. Since X ¥ « is by C* equivalent to the consistency of X’ := X U {—a}, and
likewise X K « to the satisfiability of X’, we need only show that consistent sets
are satisfiable. To this end we state the following lemma whose proof, exceptionally,
jumps ahead of matters in that it uses Zorn’s Lemma from 2.1 page 37.

Lemma 4.3 (Lindenbaum’s theorem). Every consistent set X can be extended
to a maximally consistent set X' D X.

Proof. Let H be the set of all consistent Y O X, partially ordered with respect to C.
H # 0, because X € H. Let K C H be a chain, ie., Y C Zor Z C Y, for all
Y,Z € K. Then U = |J K is an upper bound for K. Indeed, Y € K =Y C U.
Moreover, and this is here the point, U is consistent, so that U € H. Assume U F 1.
Then Uy F 1 for some finite Uy = {ag,...,an} CU. If, say, ¢; € ¥; € K, and YV
is the biggest of the sets Yj,...,Y,, then oy € Y for all ¢ < n, hence also Y F 1
by (MR). This contradicts Y € H. By Zorn’s lemma, H therefore has a maximal
element X', which is necessarily a maximally consistent extension of X. [J

Remark 2. The advantage of this proof is that it is free of assumptions regarding the
cardinality of the language. Lindenbaum'’s original construction was based, however, on
countable languages F and runs as follows: Let X := X C F be consistent and «ag, aq, . ..
be an enumeration of F. Set X,+1 = X,, U {ay} if this set is consistent and X,+1 = X,
otherwise. Then Y = J,,, X, is a maximally consistent extension of X, as can be easily
verified. Here Zorn’s lemma, which is equivalent to the axiom of choice, is not required.
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Lemma 4.4. A maximally consistent set X has the property
-] XF-a e XFa, for arbitrary o.
Proof. If X F =, then X F « cannot hold due to the consistency of X. If on

the other hand X ¥ o, then X, —a is by CT a consistent extension of X. But then
-« € X, because X is maximally consistent. Consequently X F —a. []

Only property [—] from Lemma 4.4 and property (2] X F arf < X F o, are
used in the simple model construction for maximally consistent sets in the following
lemma, which reveals the requirements for proposional model construction in the
logical base {A,—}. If this base is changed, we need corresponding properties.

Lemma 4.5. A maximally consistent set X is satisfiable.

Proof. Define w by wkE p & X F p. We are going to show that for all «,
(*) Xta & wEa

For prime formulas this is trivial. Further:

XFtang & XtFa,f (rules(al),(r2))
< wkEa,f (induction hypothesis)
< wkEanrf  (definition)

XF-a & XFa (Lemma 4.4)
& wka (induction hypothesis)
< wk-a  (definition).

By (), w is a model for X, thereby completing the proof. []

The above shows the equivalence of the consistency and satisfiability of a set of
formulas. From this fact we easily obtain the main result of the present section.

Theorem 4.6 (Completeness theorem). X Fa & X FEa, for all X, o.

Proof. The direction = is the soundness of . Conversely, X ¥ a implies that
X, is consistent. Let Y be a maximally consistent extension of X, =«, Lemma 4.3.
By Lemma 4.5, Y is satisfiable, hence also X, —a. Therefore X ¥ a. [J

An immediate consequence of Theorem 4.6 is the finiteness property (F) mentioned
already in 1.3, which is almost trivial for - but not for F:

Theorem 4.7 (Finiteness theorem for F). If X E «a, then so too Xy E « for
some finite subset Xo of X.

This is clear because the finiteness theorem holds for F (Theorem 4.1). A further
very important consequence of the completeness theorem is the following

Theorem 4.8 (Compactness theorem). A set X is satisfiable provided each
finite subset of X is satisfiable.
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This theorem holds because if X is unsatisfiable, i.e., X E 1, then by Theorem 4.7 we
also know that Xy F 1 for some finite Xy C X, thus proving the claim. Conversely,
one can easily obtain Theorem 4.7 from Theorem 4.8; that is, both theorems are
directly derivable from one another.

Because Theorem 4.6 makes no assumptions regarding the cardinality of the set
of variables, the compactness theorem following from it is likewise valid without the
respective restrictions. That means that the theorem has many useful applications,
as the next section illustrates.

Let us notice that direct proofs of Theorem 4.8 or appropriate reformulations of it
can be given that have nothing to do with a calculus of logical rules. For example,
the theorem is equivalent to (),cxy Mda =0 = (,cx, Mda = @ for some finite
Xo € X, where Md a denotes the set of all models of a. In this formulation the
compactness of a certain naturally arising topological space is claimed; the points
of this space are the valuations of the variables, hence the name “compactness
theorem.” More on this subject can be found in [RS].

Another approach to completeness (probably the simplest one) is provided by
Exercises 3 and 4. This approach makes some elegant use of substitutions. It yields
not only Theorems 4.6, 4.7, and 4.8 in one go, but also some further remarkable
properties: Neither new tautologies nor new rules can consistently be adjoined to the
consequence relation F, the so-called Post completeness and structural completeness
of F, respectively; see for instance [Ral] for details.

Exercises

1. Prove using Theorem 4.6: if X U{-a|a € Y} is inconsistent and Y # (), then
there exist formulas ay,...,a, € Y with X Fagv -+ v a,.

2. Augment the signature {—, A} by v and prove the completeness of the calculus
obtained by supplementing the basic rules used so far with the rules
XFa ) X,ozl—ﬂX,ﬂl—fy
XFavp pBva X,avi3ky

3. Let F be a finitary consequence relation in F{r, =} with the properties (1)
through (—2). Show that - is mazimal, which is to mean F « for all «, for
every proper extension ' D k. The latter is readily shown with the so-called
substitution method explained in the Hints to the Exercises.

4. Show by referring to Exercise 3: there is exactly one consequence relation in
F{r,—} satistying (A1)—(—2). This obviously implies the completeness of the
calculus F, for both E and F have these properties.
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1.5 Applications of the Compactness Theorem

Theorem 4.8 is very useful in carrying over certain properties of finite structures to
infinite ones. There follow some typical examples. While these could also be treated
with the compactness theorem of predicate logic in 3.3, the examples demonstrate
how the consistency of certain sets of sentences in predicate logic can also be obtained
in propositional logic. This approach is also useful for Chapter 4.

1. Every set M can be (totally) ordered.®
This means that there is an irreflexive, transitive, and connex relation < on M. For
finite M this follows easily by induction on the number of elements of M. The claim
is obvious when M = §) or is a singleton. Let now M = N U {a} with an n-element
set N and a ¢ N, so that M has n + 1 elements. Then we get an order on M from
that for N by “setting a to the end,” that is, defining x < a for all x € N.

Now let M be any set. We consider for every pair (a,b) € M x M a propositional
variable p,. Let X be the set consisting of the formulas

“Paa (a € M),
Pab APbc —* Pac (CL, b7 cE M)
Pab vV Pba (CL 7é b)

From a model w for X we obtain an order <, simply by putting a < b < w E pgp.
w E —p,, says the same thing as a £ a. Analogously, the remaining formulas reflect
transitivity and connexity. Thus, according to Theorem 4.8, it suffices to show that
every finite subset Xy C X has a model. In X only finitely many variables occur.
Hence, there are finite sets M; C M and X; O Xg, where X is given exactly
as X except that a,b, ¢ now run through the finite set M; instead of M. But X3
is satisfiable, because if < is an order of the finite set M; and w is defined by
w F pgp < a < b, then w is clearly a model for X7, hence also for Xj.

2. The four-color theorem for infinite planar graphs.

A simple graph is a pair (V, E) with an irreflexive symmetrical relation £ C V2.
The elements of V' are called points or vertices. It is convenient to identify E with
the set of all unordered pairs {a, b} such that aEb and to call these pairs the edges
of (V,E). If {a,b} € E then we say that a,b are neighbors. (V, E) is k-colorable it V
can be decomposed into k color classes C; # 0, V = CyU---UCy, with C; N C; =10
for i # j, such that neighboring points do not carry the same color; in other words,
if a,b € C; then {a,b} ¢ Efori=1,... k.

5 Unexplained notions are defined in 2.1. Our first application is interesting because in set theory
the compactness theorem is weaker than the axiom of choice (AC) which is equivalent to the
statement that every set can be well-ordered. Thus, the ordering principle is weaker than AC
since it follows from the compactness theorem.
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The figure shows the smallest four-colorable graph that is not
three-colorable; all its points neighbor each other. We show that
a graph (V, E) is k-colorable if every finite subgraph (Vg, Ey) is
k-colorable. Eq consists of the edges {a,b} € E with a,b € Vj.
To prove our claim consider the following set X of formulas built
from the variables p,; for a € V and 1 <7 < k:
Paa Vv =V Pak, _'(pa,i/\pa,j) (a € V 1 < { <j < k)7
“(Pairpyi)  ({a,b} € E, i=1,... k).
The first formula states that every point belongs to at least one color class; the
second ensures their disjointedness, and the third that no neighboring points have
the same color. Once again it is enough to construct some w F X. Defining then the
Ci by a € C; & w E p,; proves that (V, E) is k-colorable. We must therefore satisfy
each finite Xy C X. Let (Vy, Ey) be the finite subgraph of (V| E) of all the points
that occur as indices in the variables of Xy. The assumption on (Vp, Ey) obviously
ensures the satisfiability of X, for reasons analogous to those given in Example 1,
and this is all we need to show. The four-colour theorem says that every finite planar
graph is four-colorable. Hence, the same holds for all graphs whose finite subgraphs
are planar. These cover all planar graphs, embeddable in the real plane.

3. KoOnig’s tree lemma.

There are several versions of this lemma. For simplicity, ours refers to a directed tree.
This is a pair (V, <) with an irreflexive relation <t C V2 such that for a certain point
¢, the root of the tree, and any other point a there is precisely one path connecting
¢ with a. This is a sequence (a;)i<n With ag = ¢, a, = a, and a; < a;41 for all i < n.
From the uniqueness of a path connecting ¢ with any other point it follows that each
b # ¢ has exactly one predecessor in (V, <), that is, a point a with a < b.

The lemma in question then reads as follows: If every a € V' has only finitely many
successors and V' contains arbitrarily long finite paths, then there is an infinite path
through V' starting at c. By such a path we mean an infinite sequence (¢;);en such
that ¢g = ¢ and ¢; < ¢;11 for each i. In order to prove Konig’s lemma we define
inductively Sp = {c} and Sk41 = {b € V| there is some a € Si with a <1 b}. Since
every point has only finitely many successors, every “layer” S} is finite, and since
there are arbitrarily long paths starting in ¢, no Sy is empty. Now let p, for every
a € V be a propositional variable, and let X consist of the formulas

(A) VaESk. Doy,  —(Parps) (a., be Sy, a#b, ke N),

(B) Db = Pa (a.,bEV7 a<lb).
Suppose that w E X. Then by the formulas under (A), for every & there is precisely
one a € Sy with w F p,, denoted by c;. In particular, ¢g = c¢. Moreover, ¢ < cgi1
for all k. Indeed, if a is the predecessor of b = ¢j41, then w F p, in view of (B),
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hence necessarily a = ¢. Thus, (¢;)ien is a path of the type sought. Again, every
finite subset X, C X is satisfiable; for if X contains variables with indices up to at
most the layer S, then Xy is a subset of a finite set of formulas X; that is defined
as X, except that k runs only up to n, and for this case the claim is obvious.

4. The marriage problem (in linguistic guise).
Let N be a set of words or names (in speech) with meanings in a set M. A name
v € N can be a synonym (i.e., it shares its meaning with other names in N), or
a homonym (i.e., it can have several meanings), or even both. We proceed from
the plausible assumption that each name v has finitely many meanings and that k
names have at least k meanings. It is claimed that a pairing-off exists; that is, an
injection f: N — M that associates to each v one of its original meanings.

For finite N, the claim will be proved by induction on the number n of elements
of N. It is trivial for n = 1. Now let n > 1 and assume that the claim holds for all
k-element sets of names whenever k < n.

Case 1: For each k (< n): k names in N have at least k + 1 distinct meanings.
Then to an arbitrarily chosen v from N, assign one of its meanings a to it so that
from the names out of N\{v} any k names still have at least k£ meanings # a. By
the induction hypothesis there is a pairing-off for N\{r} that together with the
ordered pair (v, a) yields a pairing-off for the whole of N.

Case 2: There is some k-element K C N (0 < k& < n) such that the set M
of all meanings of the v € K has only k¥ members. Every v € K can be assigned
its meaning from Mg by the induction hypothesis. From the names in N\ K any i
names (i < n — k) still have ¢ meanings not in M, as is not hard to see. By the
induction hypothesis there is also a pairing-off for N\ K with a set of values disjoint
from Mp. Joining the two obviously results in a pairing-off for the whole of N.

We will now prove the claim for arbitrary sets of names N: assign to each pair
(v,a) € N x M a variable p,, and consider the set of formulas

(prerDuy) WEN, z,yeM, z#y).
If w F X, then we obtain a pairing-off for N by f(v) =b < w FE p,,. But every
finite Xy C X has a model, because only finitely many names appear in it as indices.
This case was already covered, thus proving that X has a model.

X { DvaV o+ VDye (VEN, a,..., e the meanings of v),

5. The ultrafilter theorem.

This theorem is of fundamental significance in topology (from which it originally
stems), model theory, set theory, and elsewhere. Let I be any nonempty set. A
nonempty collection of sets F' C B is called a filter on I if for all M, N C I,

(a) M\Ne F=MNN € F, (b)) Me F& MCN= NEF.
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As is easily verified, (a) and (b) are equivalent to just a single condition, namely
(" MANEF & McFandN€F

Since F' # ), (b) shows that always I € F. Forfixed K CI,{JCI|J2 K}isa
filter, the principal filter generated by K. It is a proper filter provided K # (), which
in general is to mean a filter with § ¢ F'. Another example on an infinite I is the
set of all cofinite subsets M C I, i.e., =M (= I\ M) is finite. This holds because
M, N My is cofinite iff My, My are both cofinite, so that (n) is satisfied.

A filter F is said to be an ultrafilter on I provided it satisfies, in addition,

() "MeF & M¢F.

Ultrafilters on an infinite set I containing all cofinite subsets are called nontrivial.
That such ultrafilters exist will be shown below. It is nearly impossible to describe
them more closely. Roughly speaking, “we know they exist but we cannot see them.”
A trivial ultrafilter on I contains at least one finite subset. {J C I |ig € J} is an
example for each ig € I, also called a principal ultrafilter. All trivial ultrafilters
are of this form; Exercise 3. Thus, trivial and principal ultrafilters coincide. In
particular, each ultrafilter on a finite set I is trivial in this sense.

Each proper filter F' obviously satisfies the assumption of the following theorem
and can thereby be extended to an ultrafilter.

Ultrafilter theorem. Fvery subset FF C Bl can be extended to an ultrafilter U on
a set I, provided Mo N ---N M, # 0 for alln and all My,... M, € F.

Proof. Consider along with the propositional variables p, (J C I) the formula set

X Py <7 PuAPys Pope <7 Pus Py (]W,N €I, Je F)

Let w E X. Then (n),(—) are valid for U := {J C I | w F p,}, hence U is an
ultrafilter and also F' C U. It therefore suffices to show that every finite subset of
X has a model, for which it is in turn enough to prove the ultrafilter theorem for
finite . But this is easy: let F = {My, ..., M,}, D:=MyN---NM,, and ig € D.
Then U = {J C I|ip € J} is an ultrafilter with U 2 F. []

Exercises

1. Prove (using the compactness theorem) that every partial order <, on a set
M can be extended to a total order < on M.

2. Let F be a proper filter on I (# (). Show that F' is an ultrafilter if and only
fMUNeF & MeForNeF.

3. Show that an ultrafilter U on [ is trivial iff there is an i € I such that
U={J21|ig € J}. Thus, each ultrafilter on a finite set I is of this form.
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1.6 Hilbert Calculi

In a certain sense the simplest logical calculi are so-called Hilbert calculi. They
are based on tautologies selected to play the role of logical axioms; this selection
is, however, rather arbitrary and depends considerably on the logical signature.
They use rules of inference like, for example, modus ponens MP: o, —3/3%. An
advantage of these calculi consists in the fact that formal proofs, defined below as
certain finite sequences, are immediately rendered intuitive. This advantage will
pay off above all in the arithmetization of proofs in 6.2.

In the following we consider such a calculus with MP as the only rule of inference;
we denote this calculus for the time being by K, in order to distinguish it from
the calculus - of 1.4. The logical signature contains just —, A. In the axioms
of i, however, we will also use implication defined by o - := —=(aar—03), thus
considerably shortening the writing down of the axioms.

The logical axiom scheme of our calculus consists of the set A of all formulas of
the following form (not forgetting the right association of parentheses):

Al (a=f—=7)=(a=P0)»a—=y, A2 a—=p—-anrf,

A3 arf—a, anf =P, M (a—=-p) = —a.
A consists only of tautologies. Moreover, all formulas derivable from A using MP are
tautologies as well, because F o, « — 3 implies E 3. We will show that all 2-valued
tautologies are provable from A by means of MP.

Definition. A proof from X (in k) is a sequence ® = (go,...,®,) such that for
every k < n either ¢, € X UA or there exist indices 4, j < k such that ¢; = ¢; — ¢y
(i.e., @y results from applying MP to terms of ® proceeding ¢x). A proof (¢o, ..., ¢n)
with ¢, = a is called a proof of a from X of length n. When such a proof exists we
write X ba and say that « is provable or derivable from X.

Example. (p,¢,p -q —=prg,q —=prgq,prq) is a proof of pag from X = {p,q}. The
last two terms in this sequence derive with MP from the previous ones, which are
members of X U A.

Since a proof contains only finitely many formulas, the preceding definition leads
immediately to the finiteness theorem for ~, formulated correspondingly to Theo-
rem 4.1. Every proper initial segment of a proof is obviously a proof itself. Moreover,
concatenating proofs of a and o —  and adjoining 3 to the resulting sequence will
produce a proof for 3, as is plain to see. This observation implies

(¥*) Xra,a—0 = Xr0.

6 Putting it crudely, this notation should express the fact that 3 is held to be proved from a
formula set X when « and o — 3 are provable from X. Modus ponens is an example of a binary
Hilbert-style rule; for a general definition of this type of rule see, for instance, [Ral].




30 1 Propositional Logic

In short, the set of all formulas derivable from X is closed under MP. In applying the
property () we will often say “MP yields...” It is easily seen that X r~« iff a belongs
to the smallest set containing X and is closed under MP. For the arithmetization of
proofs and for automated theorem proving, however, it is more appropriate to base
derivability on the finitary notion of a proof. Fortunately, the following theorem
relieves us of the necessity to verify a property of formulas o derivable from X each
time by induction on the length of a proof of o from X.

Theorem 6.1 (Induction principle for r). Let X be given and € be a property
of formulas. Then & holds for all o with X a, provided

(0) &€ holds for allo € X UA, (s) Ea and E(a — F) imply EB, for all a, 5.

Proof by induction on the length n of a proof ® of o from X. If a € X U A then
Ea holds by (o), which applies in particular if n = 0. If « ¢ X U A then n > 1 and
® contains members ¢; and ¢; = ¢; -« both having proofs of length < n. Hence
Ep; and Ey; by the induction hypothesis, and so Ea by (s). [4

An application of Theorem 6.1 is the proof that ~ C E, or more explicitly
Xra = XEa (soundness).
To see this let Ea be the property ‘X F o’ for fixed X. Certainly, X F « holds
for a € X. The same is true for & € A. Thus, £a for all @« € X U A, and (o) is
confirmed. Now let X F o, a — 3; then so too X F 3, thus confirming the inductive
step (s). By Theorem 6.1, £« (that is, X F «) holds for all o with X ~a.

Unlike the proof of completeness for I, the one for ~ requires a whole series of
derivations to be undertaken. This is in accordance with the nature of things: to
get Hilbert calculi up and running one must often begin with drawn-out derivations.

In the following, we shall use without further comment the evident monotonicity
property X’ D Xra = X'ba, where as usual, ~a stands for O~ a.

Lemma 6.2. (a) Xra——0 = XrG—--a, (b) bra—=f-a,
() Pa—a, (d) ra—-—-a, (&) FE—=-0-a.

Proof. (a): Clearly X+~ (o ——0) = ——-a by Axiom A4. From this and from
Xbha——p the claim is derived by MP. (b): By A3 ~@ar—a ——a, and so with
(a) Pa——(fr-a) =a—=F—a. (c): From v :=a«a, §:= a—a in Al we obtain
r(a—(a—a) »a) = (a—a—a) = a —a, which gives together with (b) the claim
by applying MP twice; (d) then follows from (a) using ~—a ——a. (e): Due to
r=Ba-a ——f and (a), we get 3 ——(=faa) =00 —-a. (]

Part (e) of this lemma immediately yields that h satisfies the rule (—1) of 1.4, and
hence X+, -0 = X ra. Because of A2, A3, ~ also satisfies (n1) and (A2). After
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some preparation we will show that (—2) holds for ~ as well, thereby obtaining the
desired completeness result. A crucial step in the completeness proof is

Lemma 6.3 (Deduction theorem). X, ary implies X o — .

Proof by induction in k with a given set of premises X, «. Let X, ar~y, and let
Ev now mean ‘Xr~a—v". To prove (0), let v € AUX U{a}. If v = « then
clearly X o —+ by Lemma 6.2(c). If v € X U A then certainly X ~v. Because
also X~y —a =~ by Lemma 6.2(b), MP yields X ~«a —+, thus proving (o). To
show (s) let X,ar g and X,ar 3 -+, so that X ra — (3, a — [ - by the induc-
tion hypothesis. Applying MP to Al twice yields X r~a — -+, thus confirming (s).
Therefore, by Theorem 6.1, £v for all v, which completes the proof. [J

Lemma 6.4. ~——a —«.

Proof. By A3 and MP we have =——aa—-ak -, -—a. Choose any 7 with ~7. The
already-proved rule (—1) gives =—aar—-ak -7, and Lemma 6.3 ~——ar—a — 7.
From Lemma 6.2(a) it follows that ~7 ——(——aar—a). But 7, so using MP we
obtain k—(——aa—-a) and the latter formula is the same as =—a —a. []

Lemma 6.5. b satisfies rule (—2), i.e., X,Bra and X, =S a imply X ~a.

Proof. Suppose X, fra and X, —~Fra; then also X, Br——a and X, =G~ ——a by
Lemma 6.2(d). Hence, X (3 — -, =3 - -« (Lemma 6.3), and so X ~—a ——f
and X r—-a ———-4 by Lemma 6.2(a). Thus, MP yields X, ~ar =3, =0, whence
X,-ahr =7 by (—1), with 7 as in Lemma 6.4. Consequently X ~—a — -7, due to
Lemma 6.3, and therefore X ~7 ———«a by Lemma 6.2(a). Since X ~7 it follows
that X b——a and so eventually X o by Lemma 6.4. [J

Theorem 6.6 (Completeness theorem). ~ = F.

Proof. By soundness, ~ C F. Since p satisfies all basic rules of I, it follows that
FC k. Since F and F coincide (Theorem 4.6), we get also F C ~. []

From this follows in particular ¢ < F ¢. In short, using MP one obtains from
the axiom system A exactly the two-valued tautologies.

Remark 1. It may be something of a surprise that A1-A4 are sufficient to obtain all
propositional tautologies, because these axioms and all formulas derivable from them using
MP are collectively valid in intuitionistic and minimal logic. That A permits the derivation
of all tautologies is based on the fact that — was defined. Had — been considered as
a primitive connective this would no longer have been the case. To see this, alter the
interpretation of — by setting -0 = =1 = 1. While one here indeed obtains the value 1 for
every valuation of the axioms of A and formulas derived from them using MP, one does not
do so for =—p — p, which therefore cannot be derived. Modifying the two-valued matrix
or using many-valued logical matrices is a widely applied method to obtain independence
results for logical axioms.
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Thus, there are various calculi to derive tautologies or other semantical properties
of F. Clearly, simple relations like o -8 E (y = a) = (y = ) can be confirmed
without recourse to - or b, for instance with the semantical deduction theorem.

Using Hilbert calculi one can axiomatize other two- and many-valued logics, for
example the functional incomplete fragment in Exercise 3. The fragment in A, v
which, while having no tautologies, contains interesting Hilbert-style rules, is also
axiomatizable through finitely many such rules. The proof is not as easy as might
be expected; at least nine Hilbert rules are required. Exercise 4 treats the somewhat
simpler case of the fragment in v alone. This calculus is based on unary rules only
which simplifies the matter, but the completeness proof is still nontrivial.

Remark 2. Each of the infinitely many fragments of two-valued logic with or without
tautologies is axiomatizable by a Hilbert calculus using finitely many Hilbert-style rules
of its respective language; cf. [HeR]. In some of these calculi the method of enlarging a
consistent set to a maximally consistent one has to be modified, Exercise 2. Besides sequent
and Hilbert-style calculi there are still other types of logical calculi; for example, various
tableau calculi which are above all significant for their generalizations to nonclassical
logical systems. Related to tableau calculi is the resolution calculus dealt with in 4.2.

Exercises

1. Prove the completeness of the Hilbert calculus F in F{—, 1} with MP as the
sole rule of inference, the definition =« := o — 1, and the axioms

Al: a=»f-a, A2 (a—=0-=7)=(a=p0)—a—y, A3 -—a—-a.

2. Let F be a finitary consequence relation and let X ¥ . Use Zorn’s lemma to
prove that there is a w-mazimal Y O X, that is, Y ¥ ¢ but Y, o - ¢ whenever
a ¢Y. Such aY is deductively closed but need not be maximally consistent.

3. Let  denote the calculus in F{—} with the rule of inference MP, the axioms
A1, A2 from Exercise 1, and the Peirce axiom ((ov — ) — a) — «v. Verify that
(a) a w-maximal set X is maximally consistent, (b) b is complete in F{-}.

4. Show the completeness of the calculus F in F{v} with the four unary Hilbert-
style rules below. Since v is the only connective, its writing has been omitted:

(W a/af,  (2)aa/a, (3)af/fa, (4)a(By)/(af)y.
Note that (5) (af8)vy/a(By) is derivable because application of (3) and (4)

yields (af8)y F v(af) b (ya)8 + B(ya) F (B7)a B a(By). Crucial for com-
pleteness is the proof of “monotonicity” (m): a b 8 = ay F B7v. (m) implies
(M): X,a+ 8= X,ayt By, proving first that a calculus F based solely on
unary rules obeys X + 3 = aF (3 for some o € X.



Chapter 2

Predicate Logic

Mathematics and some other disciplines like computer science often consider do-
mains of individuals in which certain relations and operations are singled out. When
we use the language of propositional logic, our ability to talk about the properties
of such relations and operations is very limited. Thus, it is necessary to refine our
linguistic means of expression, in order to procure new possibilities of description.
To this end, one needs not only logical symbols but also variables for the individuals
of the domain being considered, as well as a symbol for equality and symbols for
the relations and operations in question. Predicate logic is the part of logic that
subjects properties of such relations and operations to logical analysis.

Linguistic particles as “for all” and “there exists” (called quantifiers), play a cen-
tral role here whose analysis should be based on a well prepared semantical back-
ground. Hence, we first consider mathematical structures and classes of structures.
Some of these are relevant both to logic (especially to model theory) and to com-
puter science. Neither the newcomer nor the advanced student need to read all of
Section 2.1 with its mathematical flavor at once. The first four pages should suffice.
The reader may continue with 2.2 and later return to what is needed.

Next we home in on the most important class of formal languages, the first-order or
elementary languages. Their main characteristic is a restriction of the quantification
possibilities. We discuss in detail the semantics of these languages and arrive at a
notion of logical consequence from arbitrary premises. In this context, the notion of
a formalized theory is made more precise.

Finally, we treat the introduction of new notions by explicit definitions and other
expansions of a language, for instance by Skolem functions. Not until Chapter 3 do
we talk about methods of formal logical deduction. While a lot of technical details
have to be considered in this chapter, nothing is especially profound. Anyway, most
of it is important for the undertakings of the subsequent chapters.

33
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2.1 Mathematical Structures

By a structure A we understand a nonempty set A together with certain distin-
guished relations and operations of A, as well as certain constants distinguished
therein. The set A is also termed the domain of A, or universe. The distinguished
relations, operations, and constants are called the (basic) relations, operations, and
constants of A. A finite structure is one with a finite domain. An easy example is
({0,1}, A, v, —). Here A, v, — have their usual meanings on the domain {0, 1}, and
no distinguished relations or constants occur. An infinite structure has an infinite
domain. A = (N, <,+,-,0,1) is an example with the domain N; here <, +, -, 0, 1
have again their ordinary meaning.

Without having to say so every time, for a structure A the corresponding letter
A will always denote the domain of A; similarly B denotes the domain of B, etc. If
A contains no operations or constants, then A is also called a relational structure.
If A has no relations it is termed an algebraic structure, or simply an algebra. For
example, (Z, <) is a relational structure, whereas (Z, +, 0) is an algebraic structure,
the additive group 7 (it is customary using here the symbol Z as well). Also the set
of propositional formulas from 1.1 can be understood as an algebra, equipped with
the operations (o, 3) — (anrf), (a,8) — (a v (), and @ — —a. Thus, one may
speak of the formula algebra F whenever wanted.

Despite our interest in specific structures, whole classes of structures are also
often considered. For instance, the class of all groups, of rings, fields, vector spaces,
Boolean algebras, and so on. Even when initially just a single structure is viewed,
call it the paradigm structure, one often needs to talk about similar structures in the
same breath, in one language, so to speak. This can be achieved by setting aside the
concrete meaning of the relation and operation symbols in the paradigm structure
and considering the symbols in themselves, creating thereby a formal language that
enables one to talk at once about all structures relevant to a topic. Thus, one
distinguishes in this context clearly between denotation and what is denoted. To
emphasize this distinction, for instance for a structure A = (A, +, <,0), one better
writes A = (A4, +4,<4,04), where +4, <4 and 04 mean the relation, operation,
and constant denoted by +, <,0 in A. Still more precise is writing 44, <4, 04 for
+4, <4 and 04, respectively. In this way we are free to talk on the one hand about
the structure A and on the other hand about the symbols +, <, 0.

A finite or infinite set L resulting in this way, consisting of relation, operation and
constant symbols of given arity, is called an extralogical signature. For the class
of all groups (see page 38), L = {o, e} exemplifies a favored signature; that is, one
often considers groups as structures of the form (G, o, e), where o denotes the group
operation and e the unit element. But one can also define groups as structures of
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the signature {0}, because e is definable in terms of o as we shall see later. Of course,
instead of o, the operation symbol could be chosen as -, %, or + (mainly used in
connection with commutative groups and semigroups, page 38). In this sense, the
actual appearance of a symbol is less important; what matters is its arity.

r € L always means that r is a relation symbol, and f € L that f is an operation
symbol, each time of some arity n > 0, which of course depends on the symbols r
and f, respectively.! An L-structure is a pair A = (A, L), where LA contains for
every 7 € L a relation r* on A of the same arity as r, for every f € L an operation
f4 on A of the arity of f, and for every ¢ € L a constant ¢* € A. We may omit the
superscripts, provided it is clear from the context which operation or relation on A
is meant. We occasionally abbreviate also the notation of certain structures. For
instance, we sometimes speak of the ring Z or the field R.

Every structure is an L-structure for a certain signature, namely that consisting of
the symbols for its relations, functions, and constants. But this does not make the
name L-structure superfluous. Basic concepts, such as isomorphism, substructure,
etc. each refer to structures of the same signature. From 2.2 on, once the elementary
language £ belonging to L has been defined, L-structures will mostly be called £-
structures. We then also often say that r, f, or ¢ belongs to £ instead of L.

If A C B and f is an n-ary operation on B then A is closed under f, briefly
f-closed, if fd € A for alld € A". If n =0, i.e., if f is a constant ¢, this simply
means ¢ € A. The intersection of any nonempty family of f-closed subsets of B
is itself f-closed. Accordingly, we can talk of the smallest (the intersection) of all
f-closed subsets of B that contain a given subset £ C B. All of this extends in a
natural way if f is here replaced by an arbitrary family of operations of B.

Example. For a given positive m, the set mZ := {m-n|n € Z} of integers divisible
by m is closed in Z under +, —, and -, and is in fact the smallest such subset of Z
containing m.

The restriction of an n-ary relation r® C B™ to a subset A C B is 74 = rB 0 A™.
For instance, the restriction of the standard order of R to N is the standard order of
N. Only because of this fact can the same symbol be used to denote these relations.
The restriction f4 of an operation fZ on B to a set A C B is defined analogously
whenever A is f-closed. Simply let f4@ = fPa for @ € A™. For instance, addition
in N is the restriction of addition in Z to N, or addition in Z is an extension of
this operation in N. Again, only this state of affairs allows us to denote the two
operations by the same symbol.

! Here r and f represent the general case and look differently in a concrete situation. They are
sometimes also called predicate and function symbols respectively, in particular in the unary case.
In special contexts, we also admit n = 0, regarding constants as 0-ary operations.
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Let B be an L-structure and A C B be nonempty and closed under all operations
of B; this will be taken to include c¢® € A for constant symbols ¢ € L. To such a
subset A corresponds in a natural way an L-structure A = (A, L*), where r* and
fAfor v, f € L are the restrictions of r? respectively fB to A. Finally, let ¢* = 8
for ¢ € L. The structure A so defined is then called a substructure of B, and B
is called an extension of A, symbolically A C B. This notation is some abuse of
the set-theoretical symbol C but it does not cause confusion since the arguments
indicate what is meant. A C B implies A C B but not conversely, in general.

For example, A = (N, <,+,0) is a substructure of B = (Z, <,+,0) since N is
closed under addition in Z and 0 has the same meaning in A and B. Similarly, if
further relations or operations are considered. Note that we omitted the superscripts
for <, +, and 0 since there is no risk of misunderstanding.

A nonempty subset G of the domain B of an L-structure 5 defines a smallest
substructure A of B containing GG, whose domain A is the smallest subset of B that
contains G and is closed under all operations of B. A is called the substructure
generated from G in B. For instance, 3N (= {3n | n € N}) is the domain of the
substructure generated from G = {3} in (N, +,0), since 3N contains 0 and 3, is
closed under +, and is clearly the smallest such subset of N. A structure A is called
finitely generated if for some finite G C A the substructure generated from G in A
coincides with A. For instance, (Z,+, —,0) is finitely generated by G = {1}.

If A is an L-structure and Ly C L then the Ly-structure Ay with domain A and
where (40 = ¢4 for all symbols ¢ € Ly is termed the Ly-reduct of A, and A is called
an L-ezpansion of Ay. For instance, the group (Z,+,0) is the {+, 0}-reduct of the
ordered ring (Z,<,+,+,0). The notions reduct and substructure must clearly be
distinguished. A reduct of A has always the same domain as A.

We now list some frequently cited properties of a binary relation R in a set A.
It is convenient to write ¢ < b and a 4 b instead of (a,b) € R and (a,b) ¢ R,
respectively. Also, a <1 b <1 ¢ stands for a <1 b & b < ¢, just as a < b < ¢ is usually
written in place of a < b & b < ¢. In the listing, “for all ” and “there exists an a”
more precisely mean “for all @ € A” and “there exists an a € A,” where A is a given
set. Thus, everything below refers to a given A. The relation <1 C A? is called

reflexive if a < a forall a,

irreflexive if a < a for all a,

symmetric if a<ab = b<a, forall a,b,
antisymmetric if a <<b<ta = a=b, for all a,b,
transitive if a<db<c = a<ec, foralla,b,c,
conner if a=bora<borb<<a,forall a,b.

Reflexive, transitive, and symmetric relations are called equivalence relations. These
are often denoted by ~, =, =, ~, or similar symbols.
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The following properties of a binary operation o on a given set A will often be
referred to. The operation o is
commutative if aob=boa for all a,b,
associative  if ao(boc) = (acb)oc for all a,b,c,
idempotent  if aoa = a for all a,
invertible if for all a,b there are x,y € A with aex = b and yoa = 0.

We now present an overview of classes of structures that we will later refer back
to, mainly in Chapter 5. Hence, for the time being, the beginner may skip to 2.2.

1. Graphs, partial orders, and orders. A relational structure (A, <1) with some
binary relation <0 on A is often termed a (directed) graph. If < is irreflexive and
transitive we usually write < for < and speak of a partially ordered set or a strict
(= idrreflexive) partial order. 1f we define < by z < y :& x < y or z = y, then
< is reflexive, transitive, and antisymmetric, called a reflexive partial order (the
one corresponding to <). Starting with a reflexive partial order on A and defining
r<y:=x<y&x#y, then < is a strict partial order on A as is easily seen.

A connex partial order A = (A, <) is called a total or linear order, mostly termed
an order or ordered set. N, Z, Q, R are examples with respect to their standard
orders. Here we follow the habit of referring to ordered sets by their domains only.

Let U be a nonempty subset of some ordered set A such that for all a,b € A with
a<bandbe U also a € U, called an initial segment of A, and let V := A\U # 0.
If U has no largest and V' no smallest element we say that the pair (U, V) is a gap in
A. It U has a largest element a, and V' a smallest element b, then (U, V) is called a
jump. b is then called the immediate successor of a, and a the immediate predecessor
of b, for there is no element from A between a and b. An infinite ordered set without
gaps and jumps like R is said to be continuously ordered. Such a set is easily seen
to be densely ordered, i.e., between any two elements lies another one.

A totally ordered subset K of a partially ordered set H is called a chain in H.
Such a K is said to be bounded if there is some b € H such that a < bfor alla € K.
Call ¢ € H mazimal in H if no a € H exists with a > ¢. An infinite partial order
need not contain a maximal element, nor need all chains be bounded, as seen by the
example (N, <). With these notions, an important mathematical tool can now be
stated, used already in Theorem 1.4.8.

Zorn’s lemma. If every chain in a nonempty partially ordered set H is bounded
then H has a mazimal element.

An ordered set A is well-ordered if every nonempty subset of A has a smallest
element; equivalently, there are no infinite decreasing sequences ag > a; > --- of
elements from A. Clearly, every finite ordered set is well-ordered. The simplest
example of an infinite well-ordered set is N together with its standard order.
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2. Groupoids, semigroups, and groups. Algebras A = (A4, ) with an operation
o: A2 = A are termed groupoids. If o is associative then A is called a semigroup,
and if o is additionally invertible then A is said to be a group. It is provable that
a group (G, o) in this sense contains exactly one unit element, that is, an element e
such that zoe = eox = x for all z € G, also called a neutral element. A well-known
example is the group of bijections of a set M # (). If o is commutative in addition,
then we speak of a commutative or abelian group, also called a module.

Here are some examples of semigroups that are not groups: (a) the set of strings
on some alphabet A with respect to concatenation, the word-semigroup or free semi-
group generated from A. (b) the set M™ of mappings from M to itself with respect
to composition. (¢) (N,4) and (N, +); these two are commutative semigroups. With
the exception of (M? o), all mentioned examples of semigroups are regular, which
istomean roy =xo0z = y=zand zoz=yoz = x =y, forall z,y,z.

Substructures of semigroups are again semigroups. Substructures of groups are
in general only semigroups, as seen from (N, +) C (Z,+). Not so in the signature
{o,e,7 '}, where e denotes the unit element and x~! the inverse of x. Here all
substructures are subgroups. The reason is that in {o,e, 7'}, the group axioms
can be written as universally quantified equations where, for brevity, we omit the
writing of “for all x,y,2,” namely as xo(yoz) = (zoy)oz, woe=ux, zox ' =c.
These equations certainly retain their validity in the transition to substructures.
We mention that from these three equations, eocx = z and 7!
although o is not supposed to be commutative.

ox = e are derivable,

Ordered semigroups and groups possess along with o some order, with respect to
which o is monotonic in both arguments, like (N, +,0,<). A commutative ordered
semigroup (4, +, 0, <) with zero element 0, which at the same time is the smallest
element in A, and where a < b iff there is some ¢ with a + ¢ = b, is called a domain
of magnitude. Everyday examples are the domains of length, mass, money, etc.

3. Rings and fields. Because these are among the most commonly known struc-
tures, we do not repeat their definition here. The ring axioms are formalized in
+, —,+,0 and include the axiom = + (y — x) = y. For fields, the constant symbol 1 is
adjoined. Removing the last-mentioned axiom from the list of ring axioms and the
minus symbol from the signature leaves us with the notion of a semiring.
Substructures of fields in the signature {0, 1, +, —, -} are integral domains. These
are commutative rings without zero-divisors and with 1. Let K, K’ be fields with
K C K. Wecall a € K'\K algebraic or transcendental on K, depending on whether
a is a zero of a polynomial with coefficients in K or not. If every polynomial of
degree > 1 with coefficients in K breaks down into linear factors, as is the case
for the field of complex numbers, then K is called algebraically closed, in short,
K is a.c. These fields will be more closely inspected in 3.3 and Chapter 5. Each field
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K has a smallest subfield P, called a prime field. One says that IC has characteristic

0 or p (a prime number), depending on whether P is isomorphic to the field Q or

the finite field of p elements. No other prime fields exist. It is not hard to show that

KC has the characteristic p iff the sentence char,: 1+ ---+1 =0 holds in K.
—_——

P

Semirings, rings, and fields can also be ordered, whereby the usual monotonicity
laws are required. For example, (Z, <,+,-,0,1) is the ordered ring of integers and
(N, <,+,-,0,1) the ordered semiring of natural numbers.

4. Semilattices and lattices. A = (A, o) is called a semilattice if o is associative,
commutative, and idempotent. An example is ({0,1}, ). In what follows, we omit
the writing of the operation symbol. If we define a < b < ab = a then < is
a reflexive partial order on A. Reflexivity holds, since aa = a. As can be easily
verified, ab is in fact the infimum of a,b with respect to <, ab = inf{a, b}, that is,
ab < a,b and ¢ < a,b imply ¢ < ab, for all a,b,c € A.

A= (A, n,u)is called a lattice if (A, n) and (A, u) are both semilattices and the
following so-called absorption laws hold: an(aud) = a and au(anbd) = a. These
imply anb=a < aub=1>. Asabove, a < b:< anb = a defines a partial order such
that anb = inf{a, b}. In addition, aub = sup{a, b} (the supremum of a,b), which is
to mean a,b < auband a,b < ¢ = aub< ¢, forall c € A. If A satisfies, moreover,
the distributive laws zn(yuc) = (xny)u(znc) and zu(ync) = (zuy)n(zuc),
then A is termed a distributive lattice. For instance, the power set ‘BM with the
operations N and U for n and u respectively, is a distributive lattice, as is every
nonempty family of subsets of M closed under N and U, a so-called lattice of sets.
Another important example is (N, ged, lem). Here ged(a, b) and lem(a, b) denote the
greatest common divisor and the least common multiple of a,b € N.

5. Boolean algebras. An algebra A= (4, n, u, ) where (A, n, u) is a distribu-
tive lattice and in which at least the equations
——r =z, -(xny)=-TUu-y, TnoT=yn-y

are valid is called a Boolean algebra. A paradigm structure is the two-element
Boolean algebra 2 := ({0,1}, A, v ,—), with n, u interpreted as a, v, respectively.
In the general case, one defines 0 := an—a for any a € A and 1 := —=0. There
are many ways to characterize Boolean algebras A, for instance, by saying that A
satisfies all equations valid in 2. The signature can also be variously selected. For
example, the signature A, v ,— is well suited to deal algebraically with two-valued
propositional logic. Terms of this signature are, up to the denotation of variables,
precisely the Boolean formulas from 1.1, and a logical equivalence o = 3 corresponds
to the equation o = 3, valid in all Boolean algebras. Further examples are the
Boolean algebras of sets A = (A,N,U, ). Here A consists of a nonempty system of
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subsets of a set I, closed under N,U and —, where — denotes complementation in
I. These are the most general examples; a famous theorem, Stone’s representation
theorem, says that each Boolean algebra is isomorphic to an algebra of sets.

6. Logical L-matrices. These are structures A = (A, LA, D*), where L contains
just operation symbols (the “logical” symbols) and D denotes a unary predicate,
the set of distinguished values of A. Best known is the two-valued Boolean matriz
B = (2,D") with DB = {1}. The consequence relation F4 in the propositional
language F with signature L is defined as in the two-valued case: Let X C F and
a € F. Then X F4 a if wa € DA for every w: PV — A with wX C DA, In words,
if the values of all ¢ € X are distinguished, then so too is the value of a.

Homomorphisms and isomorphisms. The following notions are important for
both mathematical and logical investigations, mainly in Chapter 5.

Definition. Let A, B be L-structures and h: A — B (strictly speaking h: A — B)
a mapping such that for all f,c¢,r € L and @ € A™ (n > 0 is the arity of f or r),

(x) hfAd= fBhda, hct=cB, rtd=rBhd (hEi = (hay, ..., han)).

Then h is called a homomorphism. If the third condition in (%) is replaced by the
stronger condition (3b€ A™)(hd=hb & r4b) < rBhad? then h is said to be a strong
homomorphism (for algebras, the word “strong” is dispensable). An injective strong
homomorphism h: A — B is called an embedding of A into B. If, in addition, A is
bijective then h is called an isomorphism, and in case A = B, an automorphism.

An embedding or isomorphism h: A — B satisfies r@ < rBhd as is easily seen.
A, B are said to be isomorphic, in symbols A ~ B, if there is an isomorphism from
A to B. Tt is readily verified that ~ is reflexive, symmetric, and transitive.

Examples. (a) A valuation w considered in 1.1 can be regarded as a homomorphism
of the propositional formula algebra J onto the two-element Boolean algebra 2.
(b) Let A = (A, *) be a word semigroup with the concatenation operation * and B
the additive semigroup of natural numbers. These are L-structures for L = {o} with
oA =% and of = +. Let Ih(w) denote the length of a word w € A. Then w ~ 1h(w)
is a homomorphism since lh(w * w') = lh(w) + lh(w’), for all w,w’ € A. If Ais
generated from just one letter, 1h is evidently bijective, hence an isomorphism.

(¢) The mapping a — (a,0) from R to C (= set of complex numbers, understood as
ordered pairs of real numbers) is a paradigm of an embedding, here of the field R
into the field C. Nonetheless, in this and similar cases, we are used to saying that
R is a subfield of C, and that R is a subset of C.

2 (3be A™) (hd=hb & rAb) abbreviates ‘there is some b € A™ with h@ = b and 745, If h: A — B is
onto (and only this case will occur in our examples and applications) then the stronger condition
is equivalent to the more suggestive condition 8 = {hd | ra}.
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(d) Let A= (R, +, <) be the ordered additive group of reals and B = (R, -, <) the
multiplicative group of positive reals. Then for any b € R, \{1} there is precisely
one isomorphism 7: A — B such that nl = b, namely n:x — b, the exponential
function exp, to the base b. Indeed, n runs through every value in R, exactly
once, and n(x + y) = nx - ny holds for all z,y € R. One could even define exp,
as this isomorphism, by first proving that—up to isomorphism—there is only one
continuously ordered abelian group (probably first noticed in [Tad]).

(e) The algebras A = ({0,1},+) and B = ({0,1}, +») are only apparently different,
but are in fact isomorphic, as shown by the isomorphism ¢ where 60 = 1, 1 = 0.
Thus, since A is a group, B is a group as well, which is perhaps not so obvious (see
the proof in 2.3). By adjoining the unary predicate D = {1}, A and B become
(nonisomorphic) logical matrices. These actually define the two “dual” fragmentary
two-valued logics for the connectives ... if and only if ... and either... or...

Congruences. A congruence relation (or simply a congruence) in a structure A of
signature L is an equivalence relation =~ in A such that for all f € L of arity n,
(%) a~b= fAi~ fAb, (5,56 A G~ b means a; ~ b; for i = 1,...,n).

Let A’ be the set of equivalence classes a/~ = {x € A|a = z} for a € A, also
called the congruence classes of ~, and set d/~ = (a1/=,...,an/=) for @ € A™.
Define f4'(@/~) := (fAd@)/~ and let r*'d@/~ < (3b~a)rb. These definitions are
sound, that is, independent of the choice of the n-tuple a@ of representatives. Then
A’ becomes an L-structure A’, the factor structure of A modulo =, also denoted by
A/=. Interesting, in particular for Chapter 5, is the following general

Homomorphism theorem. Let A and B be L-structures and = a congruence in
A. Then k:a — a/~ is a strong homomorphism from A onto A/=, the canonical
homomorphism. Conversely, if h: A — B is a strong homomorphism onto B then
~ C A2, defined by a ~ b < ha = hb, is a congruence in A, called the kernel of h;
moreover, ©: a/~ v+ ha is an isomorphism from A/~ to B, and h =10k.

Proof. We omit here the superscripts for f and r for the sake of faster legibility.
Clearly, kfd = (fa)/~ = f(@/~) = fka (:f(lcal7 ..., ka,)), and by our definitions,
(e A™) (kd = kb & rb) < (3b~a@)rb < r @/~ < r kd. Hence k is what we claimed.
The definition of 2 is sound. ¢ is obviously bijective. Furthermore, the isomorphism
conditions hold: 1f(G@/~) = hfd = fhd = f1(d/~) and r@d/~ < rhd < rd/=).
Finally, A is the composition 20 k according to the definitions of 2 and k. []

For algebras A, BB, this theorem is the usual homomorphism theorem of universal
algebra. It covers groups, rings, etc. In groups, the kernel of a homomorphism is
already determined by the congruence class of the unit element, called a normal
subgroup, in rings by the congruence class of 0, called an ideal. Hence, in textbooks
on basic algebra the homomorphism theorem may look somewhat differently.
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Direct products. These provide the basis for many constructions of new struc-
tures, especially in 5.7. A well-known example is the n-dimensional vector group
(R™,0,4). This is the n-fold direct product of the group (R, 0,+) with itself. The
addition in R” is defined componentwise, as is also the case in the following

Definition. Let (A;);c; be a nonempty family of L-structures. The direct product
B = [I;c; A is the following structure. Its domain is B = [],; A;, called the direct
product of the sets A;, whose elements a = (a;)se; are functions defined on I with
a; € A; for i € I. Relations and operations are defined componentwise, that is,
rBa < rhid foralli € I, 5@ = (fAa)icr, &= (cA)ie,

where @ = (a',...,a") € B" (here the superscripts count the components of the
n-tuple), a” := (a¥)ics for v=1,...,n, and @ := (a},...,a?) € A®. The sequence
d; (€ Al") is called the ith projection of the n-tuple @. For I = {1,...,m}, the
product [],.; A; is also written as A; x -+ x A,,. Whenever A; = A for all i € I,
then [],.; A; is denoted by A’ and called a direct power of the structure A.

If I ={0,...,n—1} one mostly writes A" for A’. Note that A is embedded in A’
by a + (a)cs, where (a);c; is the I-tuple with the constant value a.

Examples. (a) For I = {1,2} and A; = (4;,<"), a <B b a; <! by & ag <? by,
for all a,b € B = A; x A,. Note that if Ay, Ay are orders then B is only a partial
order. The deeper reason for this observation will become clear in Chapter 5.

(b) Let B = 27 be a direct power of the two-element Boolean algebra 2. The
elements a € B are I-tuples of zeros and ones that uniquely correspond to the
subsets of I via the mapping v:a +— I, ;== {i € I | a; = 1}. As a matter of fact, ¢ is
an isomorphism from B to (B1,N,U, —) as can readily be verified.

Exercises

1. Show that there are (up to isomorphism) exactly five two-element proper
groupoids. Here a groupoid (H,-) is termed proper if + is essentially binary.

2. ~ (C A?) is termed Buclideanif a ~ b & a~c = b= ¢, for all a,b,c € A.
Show that =~ is an equivalence relation in A iff & is reflexive and Euclidean.

3. Prove that an equivalence relation &~ on an algebraic L-structure A is already
a congruence, if for all f € L of arity n and all ¢ = 1,...,n holds

arad = f(a17"'7ai—17a7ai+17'"7an)%f(ah'~~7ai—17al7ai+17"'7a’n)'

4. Show that h: [[,.; A — A; with ha = a; is a homomorphism for each j € I.

icl
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2.2 Syntax of Elementary Languages

Standard mathematical language enables us to talk precisely about structures, like
the field of real numbers. However, for logical (and metamathematical) issues it
is important to delimit the theoretical framework to be considered; this is achieved
most simply by means of a formalization. In this way one obtains an object language;
that is, the formalized elements of the language, like the components of a structure,
are objects of our consideration. To formalize interesting properties of a structure
in this language, one requires at least variables for the elements of its domain, also
called individual variables. Further, a sufficient number of logical symbols, along
with symbols for the relations, functions, and constants of the structure, which
together constitute the extralogical signature L of the language to be defined.

In this manner one arrives at the first-order languages, also termed elementary
languages. Nothing is lost in terms of generality if the set of variables is the same
for all elementary languages; we denote this set by Var and take it to consist of
the countably many symbols vy, v1,... Two such languages therefore differ only in
the choice of their extralogical symbols. Variables for subsets of the domain are
consciously excluded, since languages containing variables both for individuals and
sets of these individuals—second-order languages, discussed in 3.7—have different
semantic properties than those investigated here.

We first determine the alphabet, the set of basic symbols of a first-order language
determined by a signature L. It includes, of course, the variables vg, vy, ... In what
follows, the latter will mostly be denoted by z, ¥, z, u, v, though in some cases other
letters with or without indices may serve the same purpose. The boldface printed
variables are useful in writing down a formula in the variables v;,, ..., v;,, for these
can then be denoted, for instance, by vy, ..., v,, or by x1,..., x,.

Further, the logical symbols A (and), = (not), V (for all), the equality sign =,
and last but not least, all symbols of the extralogical signature L should belong to
the alphabet.? Note that here the boldface symbol = is taken as a basic symbol;
simply taking = could lead to unintended mix-ups with the metamathematical use
of the equality symbol =. Finally, the parentheses (, ) are included in the alphabet.
Additional logical symbols will be introduced later, including the symbols 3 (there
exists) and 3! (there exists exactly one).

From the set of all strings of these basic symbols we pick out the meaningful ones
according to certain rules, beginning with terms. A term, under an interpretation
of the language, will always denote an element of a domain, provided an assignment,
is given of the occurring variables to elements of that domain. In order to keep the
syntax simple, terms will be parenthesis-free strings.

3 Sometimes identity-free languages without = will be considered, for instance in Chapter 4.
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Terms in L:
(T1) Variables and constants are terms, called prime terms.
(T2) If f € L is n-ary and ¢y, ...,t, are terms, then ft;---¢, is a term.

This is an inductive definition in the set of strings on the alphabet of £, that is, any
string that is not generated by (T1) and (T2) is not a term in this context (cf. the
related definition of F in 1.1). Parenthesis-free term notation simplifies the syntax,
but for binary operations we proceed in practice otherwise. We write, for example,
the term -+zyz as (¢ + y) + z because high density of information in the notation
complicates reading. Our brain does not process information sequentially like a
computer. Officially, terms are parenthesis-free, and the parenthesized notation is
just an alternative way of rewriting terms. Similarly to the unique reconstruction
property in 1.1, here the unique term reconstruction holds (Exercise 2):

fti--tn = fs1-- s, implies s; =t; fori=1,....,n  (&;,s; terms).

Let 7 (= Tr) denote the set of all terms of a given signature L. Variable-free
terms, which can exist only with the availability of constant symbols, are called
constant terms or ground terms, mainly in logic programming. With the operations
given in T by f7 (t1,...,t,) = ft1---t,, T forms an algebra, the term algebra. From
the definition of terms immediately arises the following useful

Principle of proof by term induction. If £ is a property of strings such that
Et for all prime terms, and for each n > 0 and each n-ary function symbol f
Ety, ..., Ety, implies E fty---t,, then all terms have the property £.

Indeed, T is by definition the smallest set of strings satisfying the conditions of
this principle. Hence, T is a subset of the set of all strings with the property £.
It seems to be obvious that a compound term t is a function term in the sense
that ¢t = ft;---t, for some n-ary function symbol f and some terms ti,...,t,. But
the critical reader may feel more comfortable after verifying this by term induction,
considering the property &: ‘t is either prime or a function term’.

We also have at our disposal a definition principle by term induction which, rather
than defining it generally, we demonstrate through examples. The set vart of vari-
ables occurring in a term t is inductively defined by

varc =10 ; varx = {x} ; varfty---t, = vart; U---Uvart,.
Clearly, this definition makes sense only in view of the unique term reconstruction.
vart (and even var for any string &) can also easily be explicitly defined using
concatenation, namely as vart := {x € Var| there are strings &y, &; with ¢ = {ox&; }.

The notion of a subterm of a term can also inductively be defined. Again, we can
do it more briefly using concatenation. We now define inductively those strings of
the alphabet £ to be denoted as formulas, also called (predicate logic) expressions
or well-formed formulas. Certain formulas will later be called sentences.
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Formulas in L:

(F1) If s, ¢t are terms, then the string s=t is a formula.
(F2) If t4,...,t, are terms and r € L is n-ary, then 1t - - - ¢, is a formula.

(F3) If a, 8 are formulas and x € Var, then (aaf), -, and Vza are formulas.

Any string not generated according to (F1), (F2), (F3) is in this context not a
formula. Other logical symbols serve throughout merely as abbreviations; namely
Jra := —Vz—a, and as in 1.1, a v § = 2(-ar-f), a =0 = =(ar—3), and
ae fi=(a—=0)r(0—a).

Examples. (a) Vzdyx + y=0 (more explicitly, Vz—Vy—z + y=0) is a formula.
Here we assume tacitly that x,y denote distinct original variables. The same is
assumed in all of the following whenever this can be made out from the context.
(b) VaVz z =1y is a formula, since repeated “quantification” of the same variable is
not forbidden. Yz x =y is a formula, although z does not appear in z=1y.

Example (b) indicates that the grammar of our formal language is more liberal as
one might expect. This will spare us a lot of writing. The formula VzVz x =y, as well
as JxVx x =1y, both have the same meaning as Vx x=y. These three formulas are
logically equivalent (in a sense still to be defined), as are Vz x =y and x =y. It would
be to our disadvantage to require any restriction here. In spite of this liberality, the
formula syntax corresponds roughly to the syntax of natural language.

The formulas procured by (F1) and (F2) are called prime formulas (or simply
prime, also called atomic). Similar to unique term reconstruction holds the unique
prime formula reconstruction rty---t, = rsy---8, = t; = s; fori =1,... n.
Prime formulas of the form s=t are called equations. These are the only prime
formulas if L contains no relation symbols, in which case L is called an algebraic
signature. For = s=t we henceforth write s#t.

Prime formulas that are not equations always begin with a relation symbol. In the
binary case the relation symbol tends to separate the two arguments as, for example,
in 2 < y. The official notation is, however, that of clause (F2). As in propositional
logic, prime formulas and their negations will be called literals.

The set of all formulas in L is denoted by £, and if L = {e} then L is also
denoted by Lc. Analogously for similarly simple signatures. The case L = () is also
permitted; it defines the language of pure identity, denoted by L.

Formulas in which V, 3 do not occur are termed quantifier-free or open. These are
precisely the Boolean combinations of prime formulas. The Boolean combinations
of the formulas from X C £ are those that can be generated by A and — from the
formulas in X. The strings Vz and 3z (read “for all 7 respectively “there is an 2”)
are called prefires and may occasionally occur also in the metalanguage.
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Instead of terms, formulas, and structures of the signature L, we will talk of £-
terms, L-formulas, and L-structures respectively. We also omit the prefix £- if £
has been given earlier. In writing down formulas, we use the same conventions of
parenthesis economy as in 1.1. We will also allow ourselves other informal aids in
order to increase readability. For instance, variously shaped parentheses may be
used as in VzIyVz[zey > Ju(zeunruex)]. Even verbal descriptions (partial or
total) are permitted, as long as the intended formula is uniquely recognizable.

X,Y, Z always denote sets of formulas, «,3,v,d, 7, ¢,... denote formulas, and
s,t terms, while @, U are reserved to denote finite sequences of formulas and formal
proofs. Substitutions (to be defined below) will be denoted by o, 7,w, p, and «.

Principles of proof by formula induction and of definition by formula induction
also exist for first-order (and other formal) languages. After the explanation of
inductive proofs and definitions on formulas in Chapter 1, we do without a general
formulation, preferring instead to use examples, adhering to the maxim verba docent,
exempla trahunt. For example, define rk ¢, the rank of the formula ¢, by rkm = 0
for prime formulas 7w and

tk(anf) = max{rka,tk 8} +1, rk-a =rkVza =rka+ 1.

Useful for some purposes is the quantifier rank, qre. It represents a measure of

nested quantifiers in a formula. For prime formulas 7 let qrm = 0 and
qgroa=qra, qr(arf) =max{qra,qrf}, qrveza =qra+ 1.

Note that qrdzy = qr—-Va—p = qrVae. A subformula of a formula is defined
analogously to the definition in 1.1. Hence, we need say no more on this. We write
x € bndy (or z occurs bound in ¢) if ¢ contains the prefix Vz. In subformulas of ¢
of the form Vza, the formula « is also called the scope of V. The same prefix can
occur repeatedly and with nested scopes in a formula, as in Vz(Vz 2=0 » z<y). In
practice we avoid this writing, though for a computer this would pose no problem.

Intuitively, the formulas (a) Vz3yz + y=0 and (b) Jyx + y=0 are different in
that the former is in every context with a given meaning for + and 0 either true or
false, whereas in (b) the variable x is waiting to be assigned a value. One also says
that all the variables occurring in (a) are bound. (b) contains the “free” variable .
The syntactic predicate ‘x occurs free in ¢’, or ‘z € freey’ is defined inductively:
Let free«w = var« for prime formulas « (var« was defined on page 44), and

free(anB) = freea U free 3, free—a = free, freeVra = freea\{z}.
For example, free (Vz3zz + y=0) = 0, and free(z < y A VzTyz + y=0) = {x,y}.
As the last formula shows, x can occur both free and bound in a formula. This too
will be avoided in practice whenever possible. In some proof-theoretically oriented
presentations, even different symbols are chosen for free and bound variables. Each
of these approaches has its advantages and its disadvantages.
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Formulas without free variables are called sentences, or closed formulas. 1+1=0
and Vz3y x+y=0 (= Vz—Vy—-z+y=0) are examples. Throughout take L° to denote
the set of all sentences of £. More generally, let £* be the set of all formulas ¢ such
that freep C Vary, := {vo,...,v4_1}. Clearly, L2 C L' C --- and L = [J,oy £".

At this point we meet an important and for the remainder of the book valid
Convention. As long as not otherwise stated, the notation ¢ = ¢(z) means that
the formula ¢ contains at most x as a free variable; more generally, ¢ = o(x1,. .., )
or ¢ = (&) is to mean freep C {z1,...,x,}, where z1,...,x, stand for arbitrary
but distinct variables. Not all of these variables need actually occur in ¢. Further,
t = ¢(&) for terms ¢ is to be read completely analogously.

The term ft; - - - ¢, is often denoted by f#, the prime formula rt; - - - t,, by rt. Note
that ¢ denotes here the concatenation #; - - - £, of terms. ¢ behaves like a sequence
as was pointed out already, and has the unique readability property.
Substitutions. We begin with the substitution £ of some term # for a single variable
x. Put intuitively, ¢ £ (read “y t for x,” also denoted by a,(t)), is the formula that
results from replacing all free occurrences of the variable x in ¢ by the term t¢. This
intuitive characterization is made precise inductively, first for terms by

where, for brevity, #; denotes the term ¢;£ , and next for formulas as follows:

(t1=t2)% =t =t} (T{)% =rth -1, (Vya) . {Vya in case v = v,
¢ T

(@nB)s =az Az, (ma)z =-(az),

Then also (o = 3) £ = a L — 3%, and likewise for v and 3, as can easily be checked.

Vy(a L) otherwise.

Along with these simple substitutions £, also simultaneous substitutions

oAt (21, ...z, distinct)

are useful. This will briefly be written cp;; or @z(t) or just p(t), provided there is
no danger of misunderstanding. Here the variables x; are simultaneously replaced
by the terms ¢;. Simple and simultaneous substitutions are special cases of what is
called a global substitution ¢. Such a o assigns to every variable x a term z% € T.
It is extended to the whole of 7 by the clauses ¢’ = ¢ and (ft )7 = ft7---7,
subsequently to the formula set £, so that o is defined for the whole of T U L:
(h=t) = =13, (rf)7 =rif 17, (anf) =a7nfl?, (~a)” =-a,
and (Vxyp)? = Vg™, where the global substitution 7 is defined by 2™ = x and
y" = y° for y # x. The identical substitution, always denoted by ¢, is defined by
xt =z for all z, hence t* =t and ¢* = ¢ for all terms ¢ and formulas .

and

A simultaneous substitution ;; can be understood as the global substitution ¢ with
xf =t;for i =1,...,n and 2° = z otherwise. This can also be stated as follows:
simultaneous substitutions are those global substitutions ¢ such that x = z for
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almost all variables x, i.e., with the exception of finitely many. This way of putting
things makes it immediately clear that the composition o109 of two simultaneous
substitutions—let 2712 = (27!)?2—is again a simultaneous substitution. It is hence

obvious that these constitute a semigroup with the neutral element ¢.

It always holds that 222 = 2L whereas the compositions £ 2 and 2 L are
tity

distinct, in general. Let us elaborate by explaining the difference between ¢ 712

and ¢ f}l ;22 (: (p 5—11) % ) For example, if one wants to swap x1,xy at their free
T2X1 T2 1.

occurrences in ¢ then this is ¢ m,w but not, in general, ¢ 32 2%; choose ¢ 1= z1 <2,

x2xy 2 T1

for instance. Rather, o 3251 = ¢ £ 22 2L for any y ¢ vary distinet from xq, x5 as is

shown by induction on ¢. In the same way we readily obtain
ctnl tn

(1) <P~*<Pzin e (y ¢ varp U var® U vart, n > 2).

Thus, a simultaneous and even a global substitution therefore yields locally, that
is, with respect to individual formulas, just the same as a suitable composition of
simple substitutions. In some cases (1) can be simplified. Useful, for example, is

the following equation, which holds in particular when all terms ¢; are variable-free:
tn

(2) @;; =ph. .l (provided z; ¢ vart; for i # j).

In Chapter 4 we intensively operate with substitutions. Getting on correctly with
substitutions is not altogether simple; it requires practice, because our ability to
regard complex strings is not especially trustworthy. A computer is not only much
faster but more reliable in this respect.

Exercises

1. Show by term induction that a terminal segment of a term ¢ is a concatenation
81+ Sy, of terms s; for some m > 1. Thus, a symbol in ¢ is at each position
of its occurrence in ¢ the initial symbol of a subterm s of ¢ which is unique by
Exercise 2(c). The same then holds for a concatenation ¢; - - - t,, of terms.

2. Prove (a) no term is a concatenation of two or more terms, (b) no proper initial
segment of a term ¢ is a term, (c) the subterm s of ¢ in Exercise 1 is unique,
(d) the unique term concatenation: ty---t, =t ---t,, = m=n& t; =t
for i = 1,...,n. The latter obviously implies the unique term reconstruction
and the unique prime formula reconstruction property.

3. Prove o+ =@ for x ¢ freep, and ¢ 4 £ = p % for y ¢ vary. Show by means
of examples that these restrictions are indispensable provided ¢ # x.

4. Let & n be strings over the alphabet of £. Verify (a) =6 € L = & € L,
(b)yérmelL=¢&nel, (c)s—-nelL=EneL.

5. Let qro = n > 0. Show that ¢ is a Boolean combination of formulas a with
qra < n and at least one formulas Vz( with qr 6 =n — 1.
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2.3 Semantics of Elementary Languages

Intuitively it is clear that the formula 3y y + y =2z can be allocated a truth value in
the domain (N, +) only if to the free variable x there corresponds a value in N. Thus,
along with an interpretation of the extralogical symbols, a truth value allocation for a
formula ¢ requires a valuation of at least the variables occurring free in . However,
it is technically more convenient to work with a global assignment of values to all
variables, even if in a concrete case only the values of finitely many variables are
needed. We therefore begin with the following

Definition. A model M is a pair (A, w) consisting of an L-structure A and a val-
uation w: Var — A, w:x — 2. We denote r4, f4, ¢, and ¥ also by rM, fM, M,
and 2™, respectively. The domain of A is also called the domain of M.

Models are also called interpretations, or L-models if the connection to L is to be
highlighted. Some authors identify models with structures from the outset. This
also happens in 2.5, where we talk about models of theories. The notion of a model
is to be maintained flexible in logic, and adapted according to requirements.

A model M allocates in a natural way to every term ¢ a value in A, denoted by
tMor +4% or just by t¥. For prime terms the value is already given by M. This
evaluation extends to compound terms by term induction as follows:

(fOM = fMEM,
where £ abbreviates the sequence of values (t}1, ... tM). If the context allows we
neglect the superscripts and retain just an imaginary distinction between symbols
and their interpretation. For instance, if A = (N, +,-,0,1) and 2* = 2, say, we write
(0-2+1)4" =0-2+1 = 1. The value of ¢ under M depends only on the meaning
of the symbols that effectively occur in t; using induction on ¢ the following slightly
more general claim is obtained: if vart CV C Var and M, M’ are models with the
same domain such that 2™ = 2™’ for all z € V and ¢M = (™' for all remaining
symbols ¢ occurring in ¢, then tM = tM'. Clearly, t** may simply be denoted by

t4 provided the term ¢ contains no variables.

We also consider models that differ from a given M = (A, w) only in the values
of one or more variables. Let x1,...,z, be distinct and w’ := wg be defined by
¥ =a;fori=1,...,n and 2 = z*, for any variable z distinct from z,, ..., ,.
Then put M2 := (A, w2). In particular, M? denotes (A, w?). This model differs
from M only in the value of the fixed variable x.

We now define a satisfiability relation F between models M = (A, w) and formulas
©, using induction on ¢ as in 1.3. We read M F ¢ as M satisfies ¢, or M is a
model for ¢. Sometimes A E ¢[w] is written for M E ¢. A similar notation,
just as frequently encountered, is introduced later. Each of these notations has its
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advantages, depending on the context. If M F ¢ for all p € X we write M F X
and call M a model for X. For the formulation of the satisfaction clauses below
(taken from [Tal]) we consider for given M = (A, w), € Var, and a € A also the
model M. Tt differs from M only in that z receives the value a instead of z™.

MEs=t o sM=tM

MErt & MM

MEanf & MEaand ME S,

ME-a & MFEa,

MEVza & MiFaforalacA

Example 1. Let M’ := M:". We claim that M’ E 2=t if 2 ¢ vart. In this case
namely t™" = tM. Since also 2™ = tM we get M = M| Thus M’ E 2 =t.
Remark 1. The last satisfaction clause can be stated differently if a name for each a € A,
let’s say a, is available in the signature: M F Vza <& M E a g for all a € A. This
assumption permits the definition of the satisfaction relation for sentences using induction
on sentences while bypassing arbitrary formulas. If not every a € A has a name in L, one
could “fill up” L in advance by adjoining to L a name a for each a. But expanding the
language is not always wanted and does not really simplify the matter.

A natural, often-used generalization of the last satisfaction clause is
MEVZp & MLE @ forallde A"

For A, — basically the same satisfaction clauses have been used as in 1.3. Since the
definitions of v , —, and < have not been altered, the following equivalences are
valid in the current approach:

MEavfi3 & MEaor MEB MEa—-0 < if ME athen ME 3,

and analogously for «». Further, 3xp was correctly defined in 2.2, because
M E3Jzp < there exists some a € A such that M2 F ¢.

Indeed, if M E =Vz—¢ then, by definition, M2 E —p does not hold for all a, hence
there is some a € A such that M? ¥ -y, or equivalently, such that M¢ E ¢. And
this chain of reasoning is obviously reversible.

We now introduce several fundamental notions that will be treated systematically
in 2.4 and 2.5, once certain necessary preparations have been completed.

Definition. A formula or set of formulas in £ is termed satisfiable if it has a model.
@ is called generally valid, logically valid, or a tautology, in short, E ¢, if M E ¢ for
every model M. The formulas «, § are called (logically or semantically)equivalent,
symbolically a = 8, if M F a & M E 3, for all L-models M. Further, let AFE ¢
(read in A holds ¢ or A satisfies p) if (A, w) E ¢ for all w: Var — A. One writes
AE X in case AE ¢ for all ¢ € X. Finally, let X E ¢ (from X follows ¢ or ¢ is a
consequence of X) if every model of X also satisfies the formula ¢.
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As in Chapter 1, F denotes both the satisfaction and the consequence relation.
Here, as there, we also write ¢1,...,pn E ¢ for {¢1,...,0n} E ¢ ete. In addition, F
denotes the validity relation in structures which is illustrated by the following

Example 2. We show that A F Vz3dy x5y where the domain of 4 contains at least
two elements. Indeed, let M = (A, w) and a € A be arbitrarily given. Then there
is some b € A with a # b. Hence, (Mi)z = Mi; Far#yand so M¢E Jyx#y.
Since a was arbitrary, M F Vz3dy xzs#y. Clearly the actual values of w are irrelevant
in this argument. Hence (A, w) E Vo3y xs#y for all w, that is, A F VaTdyx#y.

Here some care is needed. While M E ¢ or M E —p for all formulas, A F ¢
or A F =y (the law of the excluded middle for validity in structures) is in general
correct only for sentences ¢, as Theorem 3.1 will show. If A4 contains more than
one element, then, for example, neither A F x=y nor A F z#y. Indeed, x=y is
falsified by any w such that z* # 3™, and x#y by any w with ¥ = y*. This is one
of the reasons why models were not simply identified with structures.

For ¢ € L let ©® be the sentence Vz; - - - Va,,,0, where x1, . . ., x,, is an enumeration
of freey according to index size, say. ¢¢ is called the generalized of ¢, also called
its universal closure. For ¢ € L° clearly ¢® = ¢. From this definition results

(1) AEp & AE @6
and more generally AF X & AE X© (= {p%]| ¢ € X}). (1) explains why ¢ and
¢ are often notionally identified and the information that formally runs € is often
shortened to . It must always be clear from the context whether our eye is on
validity in a structure or in a model with its fixed valuation. Only in the first case
can a generalization (or globalization) of the free variables be thought of as carried
out. However, independent of this discussion, F ¢ < F p® always holds.

Even after just these incomplete considerations it is already clear that numerous
properties of structures and whole systems of axioms can adequately be described by
first-order formulas and sentences. Thus, for example, the axiom system mentioned

in 2.1 for groups in {o, e, "1} can be formulated as follows:

VaVyVz zo(yoz)=(woy)oz; Vomoe=z; Vwzox l=e.

Precisely the sentences following from these three axioms are the theorems of the
elementary group theory in o e, 1, denoted by T5 . In the sense elaborated in 2.6,
an equivalent formulation of the theory of groups in o, e, denoted by Tg, is obtained
if the last T, -axiom is replaced by Vax3yzoy=e.

An axiom system for ordered sets can also easily be provided, in that one formalizes
the properties of irreflexivity, transitivity, and connexivity. Here and elsewhere
Yz - - xpp stands for Vg - - -V, e

Vex £ x; Vayz(r <ysy<z-ozxz<z), Veylr#y-—-z<yvy<).
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In writing down these and other axioms (e.g. those for groups as done above) the
outer V-prefixes are occasionally omitted so as to save on writing, and we think
implicitly of the generalization of variables as having been carried out. This is also
the case for the formulation of (1) above, which strictly speaking runs

forall A,p: AE @ & AFE ¢°.

For sentences « of a given language it is intuitively clear that the values of the
variables of w for the relation (A, w) F « are irrelevant. The precise proof is ex-
tracted from the following theorem for V' = (. Thus, either (A, w) F « for all w
and hence A E , or else (A, w) E « for no w, i.e., (A, w) E -« for all w, and hence
A E —a. Sentences therefore obey the already-cited tertium non datur.

Theorem 3.1 (Coincidence theorem). Let V C Var, freep CV and M, M’ be
models on the same domain A such that 2™ = 2™ for allz € V, and (M = ¢M
for all extralogical symbols ¢ occurring in . Then ME ¢ < M E p.

Proof by induction on ¢. Let ¢ be the prime formula r#. As was mentioned earlier,
the value of a term t depends only on the meaning of the symbols occurring in .
But in view of the suppositions regarding ¢, . .., t,, these symbols are just the same
in M and M’. Thus, tM =M (ie, tM =tM fori=1,...,n), and therefore
ME rt & PMEM o pPMEM o M E ¢t For equations t; =t, one reasons
analogously. Further, the induction hypothesis for a, 8 yields
MEarge MEa, e MEa, e MEans.

In the same way one obtains M F -a & M’ E —«a. By the induction step on V
it becomes clear that the induction hypothesis needs to be skillfully formulated. It
must be given with respect to any pair of models and any V. Therefore let a € A
and M2 E . Since for V' := VU{a} certainly freep C V' and the models M2, M'?
coincide for all y € V' (although in general ™ # ™), by the induction hypothesis
we have M? E ¢ & M'? E . This clearly implies

MEVzp & M2E @ for all a & M’ E ¢ for all a & M’ E V. d

It follows from this theorem that an £-model M = (A, w) of ¢ for the case that
w € L C L' can be completely arbitrarily expanded to an £-model M’ = (A", w)
of ¢, i.e., arbitrarily fixing (4’ for ¢ € L'\L gives M E ¢ < M’ E ¢ by the above
theorem with V' = Var. This readily implies that the consequence relation . with
respect to L' is a conservative extension of F, in that X E, ¢ & X Ep ¢, for
all sets X C L and all ¢ € L. Hence, there is no need here for using indices. In
particular, the satisfiability or general validity of ¢ depends only on the symbols
effectively occurring in .

Another application of Theorem 3.1 is the following fact, which justifies the already
mentioned “omission of superfluous quantifiers.”

(2) Vap =@ = Jzp, supposing that x ¢ freep.
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Indeed, = ¢ freep implies M F ¢ < M2 E ¢ (here a € A is arbitrary) according
to Theorem 3.1; choose M’ = M% and V = free p. Therefore,

MEVzp & MLE @ forall a & ME p < M2E ¢ for some a < M E Jzo.
Very important for the next theorem and elsewhere is

(3) IfACB, M= (Aw), M = (B,w) and w: Var — A then t" = M.
This is clear for prime terms, and the induction hypothesis tM = tM fori =1,...,n
implies (f£)M = fM@EM, .00 = M) = (FO)M.

By Theorem 3.1 the satisfaction of ¢ in (A, w) depends only on the values of the
x € freep under w. Let ¢ = ¢(¥)* and @ = (a4, ...,a,) € A". Then the statement

(A, w) E ¢ for a valuation w with 2 = ay,..., 2" =

a”L
can more suggestively be expressed by writing

(A,d)Ep or AEpla,...,a,] or AE ¢]d]
without mentioning w as a global valuation. Such notation also makes sense if w is
restricted to a valuation on {z1,...,2,}. One may accordingly extend the concept
of a model and call a pair (A, @) a model for a formula (&) whenever (A, @) F ¢(Z),
in particular if ¢ € £*. We return to this extended concept in 4.1. Until then we
use it only for n = 0. That is, besides M = (A, w) also the structure A itself is
occasionally called a model for a set S C L° of sentences provided A F S.

Corresponding to the above let #49, or more suggestively ¢*(a@), denote the value
of ¢t = t(Z). Then (3) can somewhat more simply be written as

(4) AC B andt=t(Z) imply t'(a) = t3(@) (a € A).

Thus, along with the basic functions also the so-called term functions @ s t*(a@) are
the restrictions to their counterparts in . Clearly, if n = 0 or ¢ is variable-free, one
may write t* for +(@). Note that in these cases t** = t5 provided A C B, by (4).

As above let ¢ = (). Then ¢* = {@ € A" | AF p]d]} is called the predicate
defined by the formula ¢ in the structure A. For instance, the <-predicate in (N, +)
is defined by ¢(z,y) = 3z z + x =y, but also by several other formulas.

More generally, P C A" is termed (elementarily or first order) definable in A if
there is some ¢ = ¢(¥) with P = p*. Analogously, f: A" — A is called definable
in A if p* = graph f for some ¢(%,y). We also talk in all these cases of explicit
definability in A, to distinguish this from recursive definability. Much information
on a structure can be gained from the knowledge which predicates, or at least which
sets, are definable. For instance, the sets definable in (N, 0,1,+4) are the eventually
periodic ones (periodic from some number upwards). Thus, - cannot explicitly be
defined by +, 0,1 because the set of square numbers is not eventually periodic.

4 Since this is to mean free C {z1,...,7,}, ¥ is not uniquely determined by . Hence, the phrase
“Let ¢ = (&) ...” implicitly includes along with a given ¢ also a tuple Z given in advance. The
notation ¢ = ¢(Z) does not even state that ¢ contains free variables at all.
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A C B and ¢ = ¢(F) do not imply o = ©® N A" in general. For instance, let
A= (N,+), B=(Z,+), and p = 322 + r=y. Then p* = <A, while ©® contains
all pairs (a,b) € Z2. As the next theorem will show, ¢ = ©® N A™ holds in general
only for open formulas ¢, and is even characteristic for A C B provided A C B.
Clearly, A C B is much weaker a condition than A C B:

Theorem 3.2 (Substructure theorem). For structures A,B such that A C B
the following conditions are equivalent:

(i) ACB,

(i) AEglal & BE ¢ld], for all open ¢ = ¢(Z) and all d € A™,

(i) AFld & BE ¢ld], for all prime formulas ¢(Z) and all @ € A™.
Proof. (i)=-(ii): It suffices to prove that M E ¢ & M’ E ¢, with M = (A, w)
and M’ = (B,w) where w: Var — A. In view of (3) the claim is obvious for prime
formulas, and the induction steps for A, are carried out just as in Theorem 3.1.
(ii)=(iii): Trivial. (iii)=(i): By (iii), '@ & A F rZ[d] & B F r¥[d] < rPa.
Analogously fAd=b < AF fi=yld, b & BF fi=yla,b] < fBd=0b, for all
a € A" and b € A. These conclusions state precisely that A C B. [J

Let a be of the form VZ3 with open 3, where VZ may also be the empty prefix.
Then « is a wuniversal or V-formula (spoken “A-formula”), and for « € L° also a
universal or V-sentence. A simple example is VaVy =y, which holds in A iff A
contains precisely one element. Dually, 373 (§ open) is termed an 3-formula, and
an J-sentence whenever 370 € L°. Examples are the “how-many sentences”

Ji = wgvg=wy; I, :=Tvg...Iv,_1 /\Z.<j<n v;Fv; (n>1).
3, states ‘there exist at least n elements’, =3, 1 thus that ‘there exist at most n
elements’, and 3_,, := 3, A—3,,41 says ‘there exist exactly n elements’. Since J; is a
tautology, it is convenient to set T := 31, and dy := L := —T.

Corollary 3.3. Let A C B. Then every V-sentence VZa valid in B is also satisfied
in A. Dually, every 3-sentence T3 valid in A is also valid in B.

Proof. Let BEVZS and @ € A". Then B E 3 [d]; hence A E 3[d] by Theorem 3.2.
@ was arbitrary, so A F VZ(3. Now let A F 3Z3. Then A E §[d] for some @ € A",
hence B E @] by Theorem 3.2, and consequently B F 3Z5. [J

We formulate a generalization of certain individual often-used arguments, namely

Theorem 3.4 (Invariance theorem). Let A, B be isomorphic L-structures and
let v: A — B be an isomorphism. Then for all p = p(Z) and all @ € A",

AEld & BEghd (@@= (wa,...,a,)).
In particular AE o & BE «, for all sentences a of L.
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Proof. It is convenient to reformulate the claim as

MEp & MEyp (M= (A w), M =(B,w), w:z—wua).
It is easy to confirm this inductively on ¢ after one has first proved that o(t") = tM’
inductively on ¢t. The particular case for sentences results from the case n = 0. [J

Thus, for example, it is once and for all clear that the isomorphic image of a group
is a group even if we know at first only that it is a groupoid. Simply let « in the
theorem run through all axioms of group theory. Here is another application. Let &
be an isomorphism of the group A = (A4, o) onto the group A’ = (A’ o) and let e and
€’ denote their unit elements, not named in the signature. We claim that nonetheless
1e = ¢/, using the easily provable fact that the unit element of a group is the only
solution of the equation o x =2 (Example 2, page 65). Thus, since AF ece=e, we
get A" E 1ecre=1e by Theorem 3.4, hence 1e = ¢’. Theorem 3.4, incidentally, holds
for formulas of higher order as well; see 3.7. For instance, that a set is continuously
ordered is likewise invariant under isomorphism.

L-structures A, B are termed elementary equivalent if A F o < B E «, for all
a € L° One then writes A = B. We consider this important notion in 3.3 and
more closely in 5.1. Theorem 3.4 states in particular that 4 ~ B = A = B.
The question immediately arises whether the converse of this also holds. For infinite
structures the answer is negative (see 3.3), for finite structures affirmative; a finite
structure of a finite signature can, up to isomorphism, even be described by a single
sentence. For example, the 2-element group ({0,1},+) is up to isomorphism well
determined by the following sentence, which tells us precisely how + operates:

FvpFvi[voFEviaVe(z=vg v T =01) A Vg+Vo=v1+V] =V A VgV =V1+Vp=v1].

We now investigate the behavior of the satisfaction relation under substitution.
The definition of ¢ £ in 2.2 pays no attention to collision of variables, which is
taken to mean that certain variables of the substitution term ¢ after application
of the substitution fall into the scope of quantifiers. In this case M E Vxy does
not necessarily imply M F ¢ £, although this might have been expected. In other
words, Vo F ¢ L is not unrestrictedly correct. For instance, if ¢ = Jyx #y then
certainly M E Vzp (= VaIyzx # y), provided M has at least two elements, but
ME p¥ (= Jyy+#vy) is certainly false. Analogously ¢ £ F Jzp is not correct, in
general. Choose, for example, Vy x =1y for ¢ and y for t.

One could forcibly obtain Vayp E ¢ £ without any limitation by renaming bound
variables by a suitable modification of the inductive definition of ¢ £ in the quantifier
step. However, such measures are rather unwieldy for the arithmetization of proof
method in 6.2. It is therefore preferable to put up with minor restrictions when we
are formulating rules of deduction later. The restrictions we will use are somewhat
stronger than they need to be but can easier be handled; they look as follows:
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@, L are called collision-free if y ¢ bndyp for all y € vart\{z}. We need not to
require x ¢ bnd ¢ because t is substituted only at free occurrences of z, that is, even
if x € vart, x cannot fall after substitution within the scope of a prefix Vz. For
collision-free ¢, £ we will then get Vzp F ¢ £ by Corollary 3.6 below.

If o is a global substitution (see 2.2) then ¢, o are termed collision-free if o, &

are collision-free for every x € Var. In the special case 0 = %, this condition clearly

need be checked only for the pairs ¢, :—U (i=1,...,n).
For M = (A,w) put M° := (A, w”) where z*° := (2°)™ for all x € Var. This
equation reproduces itself inductively to t™” =t for all t. Indeed, it is correct

for prime terms. Now let " = t¢™ for 4 = 1,...,n by the induction hypothesis.
Then the claim for ¢t = ft; ---t, follows from
M = P ET) = MM ) = M

8l

Note that M7 coincides with M;:M for the case 0 =

Theorem 3.5 (Substitution theorem). Suppose M is a model and o a global
substitution. Then for all formulas ¢ such that ¢, o are collision-free,

ME? & M7 E .

In particular, M E 4,9%: & MgM E ¢, provided @,g are collision-free.

Proof by induction on . In view of t*M = tM” we obtain

ME (t1=ty)° & M =t3M & " =t} & M Eti=t,.
Prime formulas of the form rt are treated analogously. The induction steps for ,—
are harmless. Only the V-step ¢ = Vza is interesting, and is achieved as follows:
MEVza)’ e MEVza” (where 27 = z and y™ = y° otherwise)

S MEEa foralla  (definition)

& (MY E afor all ¢ (induction hypothesiS' a, T collision-free)

& (M)2E aforalla (since (M%) = (M?)2, see below)

& M E Vza.
We show (M2)™ = (M?)%. Since Vza, o (hence Vaa, % for every y) are collision-

free, we have x ¢ vary” provided y # z, and since y™ = y we get in this case
(M) — yTMg — y”Mg = yJM = yMa = y(Mo)g

But also in the case y = & we have tM2)" = g7Me = oM — ¢ = ;M%) [

are collision-free, the following hold:

8yl

such that o,

8l

Corollary 3.6. For all ¢ and

(a) VZp E ¢ g, in particular Voo E oL, (b) go%: E 3%,

(c) pi,s=tEpL if o, 2 L are collision-free.
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Proof. Let M k= V7, so that MG F ¢ for all @ € A". In particular, MEY E o so
that M E ¢ £ by the theorem. (b) is equivalent to =3%Zp E —p L. This holds by (a),

for =37 = VZ—¢ and (¢ 1:) = () g (c): Let M F @2, s=t, so that s™ = tM

x

and M2 E ¢ by the theorem, hence also M:" & ¢, Thus M E oL, [

Remark 2. Since the identical substitution ¢ is obviously collision-free with every formula;
Vo E o (= ¢*) is always the case. Moreover, Vap E ¢ £ is correct without any restriction
provided ¢ contains at most the variable x, since ¢, £ are then collision-free. Theorem 3.5
and Corollary 3.6 are easily strengthened. Define inductively a ternary predicate ‘t is free
for x in ¢’, which intuitively is to mean that no free occurrence in ¢ of the variable z lies
within the scope of a prefix Vy whenever y € vart. Theorem 3.5 holds then for o = % as
well, so that nothing needs to be changed in the proofs based on this theorem if one works
with ‘t is free for  in ¢’ or simply reads “p, £ are collision-free” as “z is free for ¢ in ¢.”
Though collision-freeness is somewhat cruder, it is for all that more wieldy, which will pay
off, for example, in 6.2 where proofs will be gddelized. Once one has become accustomed
to the required caution, it is allowable not always to state explicitly the restrictions caused
by collisions of variables, but rather to assume them tacitly.

Theorem 3.5 also shows that the quantifier “there exists exactly one,” denoted
by 3!, is correctly defined by Jlxy = Iz A VaVy(prp 4 —x=y) with y ¢ varep.
Indeed, M E VaVy(orp ¥ —x=y) means just M2 = o & Ml E @ = a=b, or
equivalently, M$ E ¢ for at most one a. Anyone who would like to verify this to
the utmost precision should observe that Mg Ey & ME ¢ whenever y ¢ varop.
Putting together, M E Jlzy iff there is precisely one a € A such that Mg E .
A particularly simple example is M F Jlz x =y, for arbitrary M. In other words,
dlx x =1y is a tautology. These will be discussed in more detail in 2.4.

There are various equivalent definitions of 3lzy. For example, a short and catchy
formula is xVy(p 4 <> z=1y), where y ¢ vare.

Exercises
1. Prove 3xdy(prp ¥ rx#y) EVaIy(p 4 axsy) provided y ¢ varp.
2. Verify JaVy(p 4 > z=y) E 3lzp (y & varop).

3. Suppose A’ results from A by adjoining a constant symbol a for some a € A.
Prove t(z)** = t(a)* and AF afd] & A F aa) (= a2) for a = a(z).
This is easily generalized to the case of more than one variable.

4. Show that (a) a conjunction of the 3; and their negations is equivalent to
3,,, =3, or 3, A3, for suitable n,m, (b) a Boolean combination of the 3;
is equivalent to \/ugn deg, v I, where 0 < kg < --- < k,, n < m, and the
disjunction term 3, may actually be absent.
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2.4 General Validity and Logical Equivalence

From the perspective of predicate logic a v = (o € L) is a trivial example of a
tautology, because it results by inserting « for p from the propositional tautology
p v —p. Every propositional tautology provides generally valid £-formulas by the
insertion of L-formulas for the propositional variables. But there are also tautologies
not arising in this way, for example Vz(z < x v & £ x). This tautology is the result
of generalizing x < x v £ x. However, the tautologies 3z x=2x and Jxrx =t for
x ¢ vart are not generated in this way. The former arises from the convention that
structures are always nonempty, the latter from that all basic operations are totally
defined. A particularly interesting tautology is presented by the following

Example 1 (Russell’s antinomy). We will show that F ~JuVz(xecu <> x¢x),
the nonexistence of the “Russellean set” wu, consisting of all sets not containing
themselves as a member (see also 3.4). Remarkably, the proof does not assume
that € means membership. By Corollary 3.6(a), Va(zeu <> z¢x) F ueu < ug¢u.
Since ueu <> u¢u is obviously unsatisfiable, the same holds for Vz(zeu < z¢x),
hence also for JuVz(reu <> x¢x). Thus, ~FuVzr(zeu <> x¢x) is a tautology. This
inference need not at all be related to set theory! The antinomy arises here from
that the (unsatisfiable) JuVz(zeu + x¢x) should hold in set theory if Cantor’s
definition of a set as an arbitrary collection of objects is taken literally.

The satisfaction clause for o — 3 easily yields « E 8 < E a — 3, a special case
of X,aF 8 <& X E a— (. This can be useful in checking whether formulas given
in implicative form are tautologies, as was mentioned already in 1.3. Thus, from
Vra F ol one immediately obtains E Voa —a L for collision-free o, L.

As in propositional logic, @ = 3 is again equivalent to F « <+ 3. By inserting £-
formulas for the variables of a propositional equivalence one automatically procures
one of predicate logic. Thus, for instance, « -3 = —a v (3, because certainly
p—q = —p v q. Since every L-formula results from the insertion of propositionally
irreducible L£-formulas in a formula of propositional logic, one also sees that every
L-formula can equivalently be converted into a conjunctive normal form. But there
are also numerous other equivalences, for example

—Vza = Jz—-a and -Jra = Ve—a.

The first of these means just “Vza = —Vz—-—a (= Jz—a), obtained by replac-
ing o on the left by the equivalent formula ——a. This is a simple application of
Theorem 4.1 below with = for ~. As in propositional logic, semantical equivalence
is an equivalence relation in £ and, moreover, a congruence in L. Speaking more
generally, an equivalence relation ~ in £ that satisfies the congruence property

CP: axd, =B = anffx=drfF, ~a=-d, Vea = Vro

is termed a congruence in L. Its most important property is expressed by
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Theorem 4.1 (Replacement theorem). Let &~ be a congruence in L and o = o'
If ' results from @ by replacing the formula o at one or more of its occurrences in
@ by the formula o, then ¢ =~ ¢'.

Proof by induction on ¢. Suppose ¢ is a prime formula. Both for ¢ = a and ¢ # «,
¢ ~ ¢ clearly holds. Now let ¢ = p1aps. In case ¢ = a holds trivially ¢ ~ ¢'.
Otherwise ¢’ = ¢! A h, where ¢, ¢} result from @y, ¢ by possible replacements. By
the induction hypothesis @1 ~ ¢} and ps = 5. Hence, ¢ = p1aps = @iaph = ¢
according to CP. The induction steps for —, V follow analogously. [

This theorem will constantly be used, mainly with = for =, without actually
specifically being cited, just as in the arithmetical rearrangement of terms, where
the laws of arithmetic used are hardly ever named explicitly. The theorem readily
implies that CP is provable for all defined connectives like — and 3. For example,
a~ o = Jra =~ Jzd, because a ~ o = Jra = ~Vr—a ~ —Vr—a' = Iz,

Predicate logical languages have a finer structure than those of propositional logic.
There are consequently further interesting congruences in £. Thus, formulas «, 3 are
equivalent in an L-structure A, symbolized « =4 8, if AF a[w] & AE G[w], for
all w. For instance, in A = (N, <, 4+, 0) the formulas z < y and 3z (2#0 A z+2=1y)
are equivalent. The proof of the congruence property CP for =4 is very simple,
hence is left to the reader.

Clearly, o =4 3 is equivalent to A F « < (5. Because of = C =4, properties such
as -Vrxa = dr-a carry over from = to =4. But there are often new interesting
equivalences in certain structures. For instance, there are structures in which every
formula is equivalent to an open one, as we will see in 5.6.

A very important fact with an almost trivial proof is that the intersection of a
family of congruences is itself a congruence. Consequently, for any class K # @ of
L-structures, =g := (J{=4| A € K} is always a congruence. For the class K of
all L-structures, =g is identical to the logical equivalence =, which in this section
we deal with exclusively. In the following we list its most important features; they
should be committed to memory, since they will continually be applied.

(1) Va(anpf) =VearVzg, (2) Fz(avP) =Jza v Izf,
(3) VaVya = VyVza, (4) FzIya = FyIza.
If  does not occur free in the formula 3, then also
(5) Vz(avp)=Veavj, (6) FJz(anf) = Jzanp,
(7) Vzp=p, (8) =4,
(9) Vz(a—p)=3Iza -5, (10) Fz(a— ) = Vza — 6.
The simple proofs are left to the reader. (7) and (8) were stated in (2) in 2.3.
Only (9) and (10) look at first sight surprising. But in practice these equivalences
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are very frequently used. Consider for a fixed set of formulas X the evidently true
metalogical assertion ‘for all a: if X F a, —a then X F Vzx#2’. The latter clearly
states the same as ‘If there is an « such that X F o, ~«a then X EVzz#a'.

Remark. In everyday speech variables tend to remain unquantified, partly because in
some cases the same meaning results from quantifying with “there exists a” or “for all.”
For instance, consider the following three sentences, which obviously tell us the same thing,
and of which the last two correspond to the logical equivalence (9):

e If a lawyer finds a loophole in the law it must be changed.

e If there is a lawyer who finds a loophole in the law it must be changed.

e For all lawyers: if one of them finds a loophole in the law it must be changed.

Often, the type of quantification in linguistic bits of information can be made out only

from the context, and this leads not all too seldom to unintentional (or intentional) mis-
understandings. “Logical relations in language are almost always just alluded to, left to
guesswork, and not actually expressed” (G. Frege).

Let z,y be distinct variables and o € L. One of the most important logical
equivalences is renaming of bound variables (in short, bound renaming), stated in
(11) (a) Vea=Vy(ad), (b) Ixa=3ITy(al) (y¢ vara).
(b) follows from (a) by rearranging equivalently. Note that y ¢ vara is equivalent
to y ¢ freec and o, ¥ collision-free. Writing MY for MY (a) derives as follows:
MEVza & MliE for all @ (definition)
& (Mj)sFa foralla Theorem 3 1)
& (Mp)yFEa foralla ( Ma)s)
& MjFai foralla (Theorem 3 5)
< MEVy(a).

The equivalences (12) and (13) below are also noteworthy. According to (13),
substitutions are completely described up to logical equivalence by so-called free
renamings (substitutions of the form %). (13) also embraces the case z € vart.

(12) Ve(z=t »a) = a% =dx(z=tra) (a, L collision-free, x ¢ vart).

(13) Vy(y=t »a¥)=al =yly=tral) (a,i collision-free, y ¢ vara,t).
Proof of (12): Vax(zr=t —-a) F (v=t—-a)L =t=t—-al F al by Corollary 3.6.
Conversely, let M E ot so that ML" E @ and M E z=t. Then a = t™ and so
M E a, which shows that M? E x=t — « for any a € A, hence M E Va(z=t — ).
This proves the left equivalence in (12). The right equivalence reduces to the left
one because r(r=t r ) = Vr-(r=tra) = Vz(z=t = —a)=—at =at.

Item (13) is proved similarly, using Corollary 3.6 and Exercise 1 in 2.2. Observe
that Vy(y=t »a¥) Failt=af andai LFa¥

With the above equivalences we can now regain an equivalent formula starting
with any formula in which all quantifiers are standing at the beginning. But this
one requires both quantifiers 3 and V, in the following denoted by @, @1, @2, . . .
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A formula of the form o = Q121 -+ - Q,x,3 with an open formula 3 is termed a
prenex formula or a prenex normal form, in short a PNF. The open [ is also called
the kernel of a. We may assume that xi,...,z, are distinct; this can always be
achieved by bound renaming. These normal forms are, for instance, highly important
for classifying definable number-theoretic predicates in 6.3. Obviously, V-formulas
and J-formulas are the simplest examples of prenex normal forms.

Theorem 4.2 (on the prenex normal form). Every formula ¢ is equivalent to
a formula in prenex normal form that can effectively be constructed from .
Proof. Without loss of generality let ¢ contain only the logical symbols =, A, V, 3
(besides =). For each prefix Qx in ¢ consider the number of symbols — or A standing
in front of Qz in ¢. Let s be the sum of these numbers, summed over all prefixes
occurring in . Clearly, ¢ is a PNF if and only if s = 0. Let sp # 0. In view of
—Veza = Jz-a, —Jra =Veoa, FrQra = Qy(fral) for y ¢ vara, 3,
sy can obviously be reduced stepwise by means of equivalent replacements. [}
Example 2. Vzdy(z# 0 -z -y=1) is a PNF for Va(r #0 —3Jyx - y=1). And
for IxoaVyVz(p L rp 2 —y=2z) we get the PNF JaVyVz(pr (94 rp i wy=2)) if
y, z ¢ free p; if not, a bound renaming will help. An equivalent PNF for this formula
with minimal quantifier rank is JxVy(p £ <> z=1y), see page 57.

The first formula Vz(x#0 — 3y z-y=1) from the example may be abbreviated by
(Vx#£0)Jyx - y=1. More generally, we shall write (Vz#t)a for Va(z#t — «) and
(Jr#t)a for Jx(r#t A ) from now on. A similar notation is used for <, <, € and
their negations. For instance, (Vx<t)a and (Jx<t)a are to mean Va(z<t —«) and
Jz (<t A a), respectively. For any binary relation symbol <, the “prefixes” (Vy<iz)
and (Jy<iz) are related to each other as are V and 3; see Exercise 2.

Exercises
1. Suppose o = (3. Prove a%: = ﬁg whenever a,g and ﬁ,g are collision-free.

2. Prove that =(Va<y)a = (Jxr<y)—a and —~(Fz<y)a = (Ve<y)-a. Here <
represents any binary relation symbol.

3. Show that the conjunction or disjunction of V-formulas «a, § is equivalent to a
V-formula. Prove the same for 3-formulas (use bounded renaming if necessary).

4. Let P be a unary predicate symbol. Prove that 3z(Pxz — VyPy) is a tautology.

5. Call o, B € L tautologically equivalent if F o < F B. Confirm that the follow-
ing (in general not logically equivalent) formulas are tautologically equivalent:
«, Vxa, and « £, where the constant symbol ¢ does not occur in a.



62 2 Predicate Logic

2.5 Logical Consequence and Theories

Whenever £’ D L, the language £’ is called an expansion or extension of £ and L
a reduct or restriction of £'. Recall the insensitivity of the consequence relation to
extensions of a language, mentioned in 2.3. Theorem 3.1 yields that establishing
X FE « does not depend on the language to which the set of formulas X and the
formula « belong. For this reason, indices for F, such as ., are dispensable.
Because of the unaltered satisfaction conditions for A and —, all properties of
the propositional consequence gained in 1.3 carry over to predicate logic. These
include general properties such as, for example, the reflexivity and transitivity of E,

and the semantical counterparts of the rules (A1), (12), (=1), (=2) from 1.4, for
XEap

XEan
automatically carry over. But there are also completely new properties among the

instance .> Also, Gentzen-style properties such as the deduction theorem,

following ones. Some of these will be elevated to basic rules of a logical calculus for
first-order languages in 3.1.

Examples of properties of the predicate logical consequence relation

X F Vza R XFaz,s=t (a,%and o, %
ST (o, L collision- A T,
(a) XEal (o, 5 collision-free), (b) XEal collision-free |’
(©) X,BEa (anterior (d) XFa [z¢freeX, poste-
X, V23 F o \generalization/’ X E Vza \rior generalization )’
() X,BFa (x¢freeX,a, anter- ) XFat (a,t collision-free,
X,3z8 F o \ior particularization )’ X E Jza \ posterior particul. /

Since F is transitive, (a) and (b) follow from Vza F at and af,s=t F al.
This was already stated in Corollary 3.6. Analogously (¢) results from Vx5 F 3. To
prove (d), suppose that X F o, M E X, and x ¢ free X. Then M? E X for any
a € A by Theorem 3.1, which just means M F Vza. As regards (e), observe that
X, pEa = X,~aEF - = X -aFE Vg and (d), whence X, -Vz—0 E a.
(e) captures deduction from an existence claim. (f) proves an existence claim and
holds since a £ F Jxa by Corollary 3.6. Both (e) and (f) are permanently applied
in mathematical reasoning and will briefly be discussed in Example 1 on the next
page. All of the above properties have certain variants; for example,

XEal

® ¥Fvea

This results from (d) with a4 for @ and y for z, because Vya 4 = Vza if y ¢ vara.

y ¢ free X U vara).

5 A suggestive way of writing “X F a, 3 implies X E a.a 3,” a notation that was introduced already
in Exercise 3 in 1.3. A corresponding notation will also be used in the examples below.
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From these properties complicated chains of deduction can where necessary be
justified step by step. But in practice this makes sense only in particular circum-
stances, because formalized proofs are readable only at the expense of a lot of time,
just like lengthy computer programs, even with well prepared documentation.

What is most important is that a proof, when written down, can be understood
and reproduced. This is why mathematical deduction tends to proceed informally,
i.e., both claims and their proofs are formulated in a mathematical “everyday”
language with the aid of fragmentary and flexible formalization. To what degree
a proof is to be formalized depends on the situation and need not be determined
in advance. In this way the strict syntactic structure of formal proofs is slackened,
compensating for the imperfection of our brains in regard to processing syntactic
information. Further, certain informal proof methods will often be described by a
more or less clear reference to so-called background knowledge, and not actually
carried out. This method has proven itself to be sufficiently reliable. Indeed, apart
from specific cases it has not yet been bettered by any of the existing automatic
proof machines. Let us present and analyse a very simple example of an informal
proof in a language £ for natural numbers that along with 0,1, 4, contains the
symbol | for divisibility, defined by m|n < 3km - k = n. In addition, let £ contain
a symbol f for some function from N to N; we shall write here f; for f(¢).

Example 1. We want to prove Vn3z(Vi<n)f;|z. That is, for every n, fo, ..., f, have
a common multiple. A careful proof proceeds by induction on n. Here we focus
solely on the induction step X, 3z (Vi<n)f;lz F Jz(Vi<n+1)f;|1z, where X repre-
sents our prior knowledge about familiar properties of divisibility. Informally we
reason as follows: Suppose Jz(Vi<n)f;|x and let z denote any common multiple of
fo,...,f,. Then z - f, 1 is obviously a common multiple of fy, ..., f,;1, whence we
infer 3z(Vi<n+1)f;|z. That’s all. To argue formally like a proof machine, we start
from the obvious (Vi<n)f;lz E (Vi<n+1)f;|(x - f,41). Posterior particularization
of x is applied to get X, (Vi<n)f;|z E Jx(Vi<n+1)f;|z. Thereafter anterior particu-
larization is used to obtain the desired X, 3z (Vi<n)f;|x E Jx(Vi<n+1)f;|z.

Some textbooks deal with a somewhat stricter consequence relation, which we
denote here by E. The reason is that in mathematics one largely considers derivations
in theories. For X C £ and ¢ € £ define X g @ if AE ¢ for all L-structures A such
that A E X. In contrast to the local consequence relation F, £ can be considered
as the global consequence relation since it cares only about A, not about a concrete
valuation w in A, and hence not on pairs (A, w).

Let us collect a few properties of E. Obviously, X F ¢ implies X £ ©, but
the converse does not hold in general. For example, z=y £ Vzy x =1y, however
x=y ¥ Veyzr=y. By (d) from the beginning of this section, X F ¢ = X F ¢
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holds in general only if the free variables of ¢ do not occur free in X, while E has
this property unrestrictedly; indeed, for any X, by definition, X = e X = ©C.
A reduction of F to F is provided by the following equivalence which follows from
MEX® & AE X for each model M = (A, w):

(1) XEp & XSEo.
Because of S® = S for sets of sentences S, we clearly obtain from (1)

(2) S g ¢ < SE¢ (in particular, lggo & Fo).

Thus, a distinction between F and Eis apparent only when premises are involved
that are not sentences. In such a situation the relation £ must be treated with the
utmost care. In particular, neither of the rules

X,aEB|X,~aEp X,aEp

XEp XEa-=g
is unrestrictedly correct; for example x =y = Yoy x =1y, but not o= y->Veyr=y.
Thus, the deduction theorem fails to hold for €. A main reason for our preference of
E over £ is that F extends the propositional consequence relation conservatively, so
that features such as the deduction theorem carry over unrestrictedly, while this is
not the case for £. It should also be said that E reflects only incompletely the actual
procedures of natural deduction in that formulas with free variables are frequently
used also in deductions of sentences from sentences as is seen in Example 1.

G

(case distinction), (deduction theorem)

We now make more precise the notion of a formalized theory in £, where it is
useful to think of the examples in 2.3, such as group theory.

Definition. An elementary theory or first-order theory in L, also termed an L-
theory, is a set of sentences T C L° deductively closed in L%, ie., TEFa & a €T,
for all @ € £°. If @ € T then we say that « is valid or holds in T, or « is a theorem
of T. The extralogical symbols of £ are also called the symbols of 7. If T C 7" then
T is called a subtheory of T', and T" an extension of T. An L-structure A such that
A E T is also termed a model of T, in short a T-model. MdT denotes the class of
all models of 7" in this sense; Md T consist of L-structures only.

For instance, for any set X of sentences, ' = {a € L° | X F a} is a theory, in
view of the transitivity of F. Clearly, o € T if and only if A F « for all A = T.

According to (2), there is no difference between F and £ as long as deduction from
theories is considered. We always have T F ¢ < T F € for an arbitrary ¢ € L.
This fact should be taken in and remembered, since it is constantly used.

Different authors may use different definitions for a theory. For example, it is not
always demanded that theories consist only of sentences. Conventions of this type
each have their advantages and disadvantages. Proofs regarding theories are always
adaptable enough to accommodate small modifications of the definition. Using the
definition given above we set, the following convention.
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Convention. In talking of the theory S where S is a set of sentences, we always
mean the theory determined by S, that is, {a € L | S F a}. A set of formulas X
is called an aziom system for T whenever T = {a € L° | X ¢ F a}. Thus, we tacitly
generalize all possibly open formulas in X. Axioms of a theory are always sentences.
But we conforme to standard practice of writing long axioms as formulas.

We will later consider extensive axiom systems (in particular, for arithmetic and
for set theory) whose axioms are partly written as open formulas just for the reason
of economy. Free variables occurring in axioms have always to be generalized.

There exists a smallest theory in £, namely the set Taut (= Taut,) of all generally
valid sentences in £, also called the “logical” theory. An axiom system for Taut is
the empty set of axioms. There is also a largest theory: the set £° of all sentences,
the inconsistent theory which possesses no models. All remaining theories are called
satisfiable or consistent.® Moreover, the intersection 7' = (Micr Ti of any nonempty
family of theories T; is in turn a theory: if T'F a € L° then clearly T; F « holds as
well, for every i € I. Hence, T F « (equivalently, & € T). In this book T" and 7",
with or without indices, exclusively denote theories.

For T C L" and o € L° let T+ « denote the smallest extension of T' containing «.
Similarly let T+ S for S C L° be the smallest theory O T'U S. If S is finite then
T"=T+4+8 =T+ A\S is called a finite extension of T. Here A S denotes the
conjunction of all sentences in S. A sentence « is termed compatible or consistent
with T, if T'+ « is satisfiable, and refutable in T if T + —« is satisfiable. Thus, the
theory of fields T is compatible with the sentence 14+ 1=0, or 1+ 10 is refutable
in Tg, since the 2-element field satisfies 1 + 1=0.

If both o and —« are compatible with T then the sentence « is termed inde-
pendent of T. The classic example is the independence of the parallel axiom from
the remaining axioms of FEuclidean plane geometry which define absolute geometry.
Much more difficult is the independence proof of the continuum hypothesis from the
axioms for set theory. These axioms are presented and discussed in 3.4.

At this point we introduce another important concept; «, 5 € L are said to be
equivalent in or modulo T, o =7 3, if a =4 § for all A E T. Being an intersection of
congruences, =7 is itself a congruence and hence satisfies the replacement theorem.
This will henceforth be used without further mention, as will the obvious equivalence
ofa=r B, TEa+ B,and TF (a < §)C.

Example 2. In T¢; (page 51) holds zocx =2 =7, t=¢ =r, Vyyox=y. The only
tricky step in the proof is Tg F xox =12 — x=e. Let xox =212 and choose some y
with xoy=-e. This equation implies r=zoce=zoroy=xoy=c in Tg.

6 Consistent mostly refers to a logic calculus, e.g., the calculus in 3.1. However, it will be shown
in 3.2 that consistency and satisfiability coincide, thus justifying the word’s ambiguous use.
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Terms s,t are called equivalent in T, symbolically s ~¢ ¢, if T F s=t, that is,
AE s=tw] for all AET and w: Var — A. For instance, in the theory T := TF of
groups is provable (zoy) l=y toz™! equivalently, (zoy)~! mpy ltoa !

If all axioms of a theory T are V-sentences then T is called a universal or V-theory.
For such a theory, MdT is closed with respect to substructures as follows from
Corollary 3.3, that is, A C BET = AE T. Examples are partial orders, orders,
lattices, Boolean algebras etc. Universal theories are further classified. The most
important V-theories are equational, quasi-equational, and universal Horn theories,
all of which will be considered to some extent in later chapters.

Theories are frequently given by structures or classes of structures. The elementary
theory Th.A and the theory Th K of a class K of structures are defined by

ThA:={ae|AFa}, ThK :={ThA|Ac K},

where we tacitly assume K # (). It is easy to verify that here theories in the precise
sense are being dealt with. Instead of & € Th K one often writes K F «. In general,
Md Th K is larger than K as we shall see.

Remark. The set of formulas breaks up modulo 7' (more precisely, modulo =) into
equivalence classes; their totality is denoted by B,T. Based on these we can define in
a natural manner operations A,v,—. For instance, @an = a3 where @ denotes the
equivalence class to which ¢ belongs. One shows easily that B, T forms a Boolean algebra
with respect to A,v,—. For every n, also the set B, T of all ¢ in B, T such that the free
variables of ¢ belong to Var, (= {vo,...,v,-1}) is a subalgebra of B,T. Note that ByT
is isomorphic to the Boolean algebra of all sentences modulo =7. The significance of the
Boolean algebras B, T is revealed only in the somewhat higher reaches of model theory,
and they are therefore mentioned only incidentally.

Exercises
1. Suppose z ¢ free X and c is not in X, . Prove the equivalence of
(i) X Eq, (i) X E Vza, (i) X Fas.
This holds then in particular if X is a theory or the axiom system of a theory.

2. Let S be a set of sentences, « = a(z) and § formulas, and ¢ be a constant not
occurring in S, a, B. Show that the following statements are equivalent:

i) SFEas =4, (i) S F Jza — 4.
3. Show for all o, € LOthat e T +a & a—-pFeT.

4. Let T C L be a theory, Ly C L, and Ty := T N Ly. Prove that Ty is also a
theory (the so-called reduct theory in the language Ly).
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2.6 Explicit Definitions—Expanding Languages

The deductive development of a theory, be it given by an axiom system or a single
structure or classes of those, nearly always goes hand in hand with expansions of the
language carried out step by step. For example, in developing elementary number
theory in the language £(0,1,+,-), the introduction of the divisibility relation by
means of the (explicit) definition x|y <> 3z - z=y has certainly some advantages.
This and similar examples motivate the following

Definition I. Let r be an n-ary relation symbol not in £. An explicit definition of
r in L is a formula of the following form, with distinct variables in Z:

N T+ 0(F)
with §(F) € £, named the defining formula. For a theory T, T, := T + n¢ is then
called a definitorial expansion (or extension) of 7' by r. This is a theory in L[r], the
language resulting from £ by adjoining the relation symbol r.

T, is a conservative extension of T which, in general, is to mean a theory 77 D T
in £ D L such that 7N L = T. Thus, no new sentences from the language of T
are added to T. In this sense T, is a harmless extension of T'. Our claim constitutes
part of Theorem 6.1. For ¢ € L[r] define the reduced formula ¢™ € L as follows:
Starting from the left, replace every prime formula 7t occurring in ¢ by 0z(f ).

Theorem 6.1 (Elimination theorem). Let T, C L[r] be a definitorial extension
of T C L by the explicit definition r& <> (). Then for all p € L]r]
(x) T,Ep & TEp™
For ¢ € L we have in particular T, E ¢ < T E ¢ (because then ¢™ = ). Hence,
a€eT, & aeT, forall a € L. In short, T, is a conservative extension of T
Proof. Each A E T is expandable to a model A’ E T, with the same domain, setting
rd = AFE §[d (@€ A™). Since rt =g, §(t) for any term sequence £, we have
o =7, ¢ for all p € L[r] (replacement theorem). Thus, (x) follows from
TLEpeosAEpforal AET  (MdT, consist of the A" with AE T')

s A E@forall AET (because p =g, ')

s AE g forall AFT (Theorem 3.1)

& Tk a

Operation symbols and constants can be similarly introduced, though in that case
there are certain conditions to observe. For instance, in the theory of groups Tq
(page 51) the operation ~! can be defined by y=x"! <> zoy=e¢. This definition is
legitimate since Tg F Va3lyzoy=ec. Only this requirement ensures that Tg + n®
is a conservative extension of Ty; Exercise 3. We therefore extend Definition I as
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follows, keeping in mind that to the end of this section constant symbols are to be
counted among the operation symbols.

Definition II. An ezplicit definition of an n-ary operation symbol f not occurring
in £ is a formula of the form

Ny y=fT+ 6(Z,y) (0 € £ and y, x4, ..., x, distinct).
ny is called legitimate in T C L if T F V¥ 3lyd, and Ty := T + n}; is then called
a definitorial extension by f. In the case n = 0 we write ¢ for f and speak of an
explicit definition of the constant symbol c. 1t is of the form y=-c <> 0(y).

Some of the free variables of § are often not explicitly named, and thus downgraded
to parameter variables. More on this will be said in the discussion of the axioms
for set theory in 3.4. The elimination theorem is proved in almost exactly the same
way as above, provided 7, is legitimate in 7. The reduced formula ¢™ is defined
correspondingly. For a constant ¢ (n = 0 in Definition II), let ¢ :=3z(p 2 70 2),
where ¢ Z denotes the result of replacing ¢ in ¢ by z (¢ vary). Now let n > 0. If
f does not appear in ¢, set ™ = ¢. Otherwise, looking at the first occurrence of
f in ¢ from the left, we certainly may write ¢ = ¢q th for appropriate ¢, ¢, and
y ¢ varp. Clearly, ¢ =r, Jy(po A y=ft) =7, 1, With 1 1= Jy(po A 5f(f, y)). If
f still occurs in ¢y then repeat this procedure, which ends in, say, m steps in a
formula ,,, that no longer contains f. Then set ¢™ := ¢,,.

Frequently, operation symbols f are introduced by definitions of the form

() [fZ:=1(2)
where of course f does not occur in the term ¢(Z). This procedure is in fact subsumed
by Definition II, because the former is nothing more than a definitorial extension of T’
with the explicit definition ny: y= fZ <> y=1(Z). This definition is legitimate since
Vi Ay y=1(Z) is a tautology. It can readily be shown that 7§ is logically equivalent
to V¥ fZ=1t(Z). Hence, (x) can indeed be regarded as a kind of an informative
abbreviation of a legitimate explicit definition with the defining formula y=¢(Z).

Remark. Instead of introducing new operation symbols, so-called iota-terms from [HB]
could be used. For any formula ¢ = ¢(Z,y) in a given language, let tye be a term in
which y appears as a variable bound by t. Whenever T' F VZ3!yp then T is extended by the
axiom VZVyly = tyo(Z,y) > ©(Z,y)] so that tyo(Z,y) so to speak stands for the function
term f#, which could have been introduced by an explicit definition. We mention that a
definitorial language expansion is not a necessity. In principle, formulas of the expanded
language can always be understood as abbreviations in the original language. This is
in some presentations the actual procedure, though our imagination prefers additional
notions over long sentences that would arise if we were to stick to the basic notions.

Definitions I and IT can be unified in a more general declaration as follows: T” is a
definitorial extension of T whenever T" = T+ A for some list A of explicit definitions
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of new symbols legitimate in T, given in terms of those of T (here legitimate is meant
to pertain to operation symbols and constants only). A need not be finite, but in
principle it is sufficient to restrict ourselves to this case. If £’ is the language of 1",
a reduced formula ¢™ € £ is stepwise constructed as above, for every ¢ € £. In
this way the somewhat long-winded proof of the following theorem is reduced each
time to the case for extension by a single symbol:

Theorem 6.2 (General elimination theorem). Let T" be a definitorial extension
of T. Thena € T' & o™ €T, and T' is a conservative estension of T.

A relation or operation symbol ¢ occurring in T C L is termed explicitly definable
in T if T' is a definitorial extension of Ty := T'N Ly, where Ly denotes the language of
the extralogical symbols of T without (. For example, in the theory T of groups the
constant e is explicitly defined by x =¢ <> zox =2 (Example 2 page 65). In such a
case each Tp-model can be expanded in only one way to a T-model. If this special
condition is fulfilled then ( is also called implicitly definable in T. This could also
be stated as follows: if 7" is distinct from 7" only in that the symbol ( is everywhere
replaced by a new symbol ¢’ then T UT" E VZ((Z <> ('Z) or TUT' EVZ((Z=({'T),
depending on whether (, (" are relation or operation symbols. It is noteworthy that
the latter is already sufficient for the explicit definability of ¢ in T'. But we will go
without the proof, preferring instead to quote the following interesting theorem:

Beth’s definability theorem. A relation or operation symbol implicitly definable
in a theory T is also explicitly definable in T.

Definitorial expansions of a language should be conscientiously distinguished from
expansions of languages that arise from the introduction of so-called Skolem func-
tions. These are useful for many purposes and are therefore briefly described.

Skolem normal forms. According to Theorem 4.2, every formula « can be con-
verted into an equivalent PNF, a = Q121 - - - Qpai’, where o is open. Obviously
then -a = Q2 - - - Q,x)—a’, where V = 3 and 3 = V. Because F « if and only if
-« is unsatisfiable, the decision problem for general validity can first of all be re-
duced to the satisfiability problem for formulas in PNF. Using Theorem 6.3 below,
the latter—at the cost of introducing new operation symbols—is then completely
reduced to the satisfiability problem for V-formulas.

Call formulas o and [ satisfiably equivalent if both are satisfiable (not necessarily in
the same model), or both are unsatisfiable. We construct for every formula, which
w.l.o.g. is assumed to be given in prenex form a = Qix1--- Qrxrl, a satisfiably
equivalent V-formula & with additional operation symbols such that free& = free .
The construction of & will be completed after m steps, where m is the number of 3-
quantifiers among the @)1, ..., Q. Take o = g and a; to be already constructed. If
«; is already an V-formula then let & = «;. Otherwise a; has the form Vz; - - - Va,, 3y 5;
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for some n > 0. With an n-ary operation symbol f not yet used let o, 1 = VZ3; %
Thus, after m steps an V-formula & is obtained such that free & = free a; this formula
is called a Skolem normal form (SNF) of a.

Example 1. If « =Vzdyx < y then & = Vo x < fz. For « = JxVy x -y =1y we have
a=Vyc-y=y. f a =VaVydz(x < z Ay < z) then & = VaVy(x < fay ry < fry).

Theorem 6.3. Suppose that & is a Skolem normal form for the formula oc. Then
(a) @F a, (b) a is satisfiably equivalent to é.

Proof. (a): It suffices to show that ;11 F a; for each of the described construction
steps. (3; f{ E Jy0; implies a1 = VZ5; %f EVZ3yl;i = o, by (a) and (d) in 2.5. (b):
If & is satisfiable then by (a) so too is a. Conversely, suppose A £ VZ Iy (Z, y, Z) [€].
For each @ € A™ we choose some b € A such that A E §[d,b,¢] and expand A to
A’ by setting f4'd@ = b for the new operation symbol. Then evidently A’ E a; 1 [¢].
Thus, we finally obtain a model for & that expands the initial model. [_J

Now, for each «, a tautologically equivalent I-formula & (that is, F a < E &) is
gained as well. By the above theorem, we first produce for § = —a a satisfiably
equivalent SNF (3 and put & := —(. Then indeed F o < FE &, because

F a < [ unsatisfiable < Bunsatisﬁable < Fa.

Example 2. Let a := JaVy(ry »rz). Clearly, o = § := VaIy(rysr—rz) and
B = Va(rfza—rz). Thus, & = -3 = Jz(rfx —rz). The last formula is a tautology
(in contrast to z(rz —rfx)). Thus, & and hence « are tautologies as well. This
example shows how useful Skolem normal forms can be for discovering tautologies.

Exercises

1. Suppose T results from T' by adjoining an explicit definition 1 for f and let
o’ be constructed as explained in the text. Show that T} is a conservative
extension of T"if and only if 7 is a legitimate explicit definition.

2. Let S:n + n + 1 denote the successor function in N' = (N, 0,8, +,+). Show
that ThN is a definitorial extension of Th(N,S,+); in other words, 0 and +
are explicitly definable by S and - in ThN.

3. Prove that y=2"! > zoy=c is a legitimate explicit definition in T (which
amounts to showing that Tg F zoy=enrxoz=e —-y=2z). Moreover, prove
that the resulting definitorial extension coincides with T .

4. Prove that the <-relation is not explicitly definable in (Z, 0, +).

5. Construct to each @ € X (C £) a SNF & (indexing the functions properly)
such that X is satisfiably equivalent to X = {&|a € X} and X F X.



Chapter 3

Godel’s Completeness Theorem

Our goal is to characterize the consequence relation in a first-order language by
means of a calculus similar to that of propositional logic. That this goal is attainable
at all was shown for the first time by Gédel in [Gol]. The original version of Godel’s
theorem refers to the axiomatization of tautologies only and does not immediately
imply the compactness theorem of first-order logic; but a more general formulation
of completeness in 3.2 does. The importance of the compactness theorem for math-
ematical applications was first revealed in 1936 by A. Malcev, see [Ma].

The characterizability of logical consequence by means of a calculus (the content
of the completeness theorem) is a crucial result in mathematical logic with far-
reaching applications. In spite of its metalogical origin, the completeness theorem
is essentially a mathematical theorem. It satisfactorily explains the phenomenon
of the well-definedness of logical deductive methods in mathematics. To seek any
additional, possibly unknown methods or rules of inference would be like looking for
perpetual motion in physics. Of course, this insight does not affect the development
of new ideas in solving open questions. We will say somewhat more regarding the
metamathematical aspect of the theorem and its applications, as well as the use of
the model construction connected with its proof in a partly descriptive manner in
the Sections 3.3, 3.4, and 3.5.

Without beating around the bush, we deal from the outset with the case of an ar-
bitrary, not necessarily countable first-order language. Nonetheless, the proof given,
based on Henkin’s idea of a constant expansion [He], is kept relatively short, mainly
thanks to an astute choice of its logical basis. Although mathematical theories are
countable as a rule, a successful application of methods of mathematical logic in al-
gebra and analysis relies essentially on the unrestricted version of the completeness
theorem. Only with such generality does the proof display the inherent unity that
tends to distinguish the proofs of magnificent mathematical theorems.

71
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3.1 A Calculus of Natural Deduction

As in Chapter 2, let £ be an arbitrary but fixed first-order language in the logical
signature -, A,V, =. We define a calculus F by the system of deductive rules en-
closed in the box below. The calculus operates with sequents as in propositional
logic. It supplements the basic rules of 1.4 with three predicate-logical rules. Note
that the initial rule (IR) is subject to a minor extension.

XFa
- _ / J
(IR) Xra (e XU{t=t}) (MR) X"—()((X_X)
XFaop XFanp
1) ——2 XkEans
(n1) XFans (r2) XFas
XFp,-8 X,BFa | X,~8Fa
—-1) —— =2 = —9
- XhFa (—2) XFa
XFal
(V1) i((%zxg (a, £ collision-free)  (v2) T:x; (y & free X U var«)
_, Xbs=taz -
=) XFal (v any prime formula)

By (IR), X F t=t for arbitrary X and ¢, in particular + t=t. Here as everywhere,
F ¢ stands for ) F . The remaining notation from Chapter 1 is also used here;
thus, @ F 3 abbreviates {a} F 3, etc. (IR) was formulated stronger than necessary

only for convenience. Using (MR) it could be pared down to and .
alFa Ft=t

We call - a calculus of natural deduction because it models logical inference in
mathematics and other deductive sciences sufficiently well.! Our aim is to show
that F is completely characterized by . Here the calculus is developed only inso-
far as the completeness proof requires. While undertaking further derivations can
be instructive (see the examples and exercises), this is not the principal point of
formalizing proofs unless one is after specific proof-theoretical goals. It should also
be said that an acute study of formalized proofs does not really promote a human
being’s ability to draw correct conclusions in practice.

All basic rules are sound in the sense of 1.4. The restrictions to the rules (V1), (V2),
and (=) ensure their soundness as shown in Examples (a), (g), and (b) in 2.5. Rule
(=) could have been strengthened from the outset to allow a to be any formula such
that a, £, £ are collision-free, but we get along with the weak version. (V1) could

T T

1'We deal here with a version of the calculus NK from [Ge] adapted to our purpose; more involved
descriptions of this and related sequent calculi are given in various textbooks on proof theory.



3.1 A Calculus of Natural Deduction 73

still be weakened; it suffices to require just bnda N vart = (). As already stated
in 2.3, we could in fact avoid any kind of restriction by means of a more involved
and somewhat artificial definition for substitution. However, such measures would
not simplify the matter. Weakly formulated logical calculi like the one given here
often alleviate certain induction procedures, for example in proving soundness, or
in verifying these rules in other logical calculi as will be done in 3.6.

Because F can be understood as an extension of the corresponding calculus from
1.4, all the examples of provable rules given there carry over automatically, the cut
rule included. All further sound rules, such as the formal versions of generalization
and particularization in 2.5, are provable thanks to the completeness of the calculus.

)(Xl—i}_vza (z ¢ free X), which is sound by (d) in 2.5,

though it does not result directly from (v2). However, we do not want to spend
too much time on the proofs of other rules; they are irrelevant for the completeness
proof, which can then be used to justify these rules retrospectively.

This is also true of the rule

Just as in the propositional case the following proof procedure will often be applied;
it is legitimate because the proof of the corresponding principle in 1.4 depends
neither on the type of language nor the concrete form of the rules.

Principle of rule induction. Let & be a property of sequents (X, «) such that
(o) &(X,a) provided a € X or « is of the form t=t,
(s) &€(X,a) = &X' a) for (MR), and similarly for (a1) through (=).
Then E(X, a) holds for all X, o such that X F «.
Since the basic rules are clearly sound, the soundness of the calculus, that is to
say, - C F, follows immediately from the principle of rule induction. Similarly one
obtains the following monotonicity property:

(mon) LCL = FpChp.

Here the derivability relation is indexed; note that every elementary language defines
its own derivability relation, and for the time being we are concerned with the
comparison of these relations in various languages. Only with the completeness
theorem will we see that the indices are superfluous, just as for the consequence
relation F. To prove (mon) let £(X, ) be the property ‘X F, o’ for which the
conditions (0) and (s) of rule induction are easily verified. For instance, let X b, a, 3
and suppose X Fz «, 3. Then (a1), applied in £, yields X F anf as well.
As in propositional logic we have here the easily provable

Finiteness theorem. If X F « then Xy F a for some finite Xo C X.

The only difference to the proof from 1.4 is that a few more rules have to be
considered. Remember that L denotes the signature of £, Ly that of Ly, etc. For
the moment we require a somewhat stronger version of the theorem, namely
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(fin) If X b, « then there emists a finite signature Lo C L and a finite subset
Xo € X such that Xo b, a.

Herein the claim X kg, a, of course, includes Xy U {a} C Ly. For the proof,
consider the property ‘there exist a finite Xy C X and Ly C L such that X ., a’.
It suffices to confirm the conditions (o) and (s) of the principle of rule induction.
For o € X U {t=t} we clearly have Xy F, o where Xy = {a} or Xy = 0. Thus, Ly
may be chosen to contain all the extralogical symbols occurring in «, and these are
surely finitely many. This confirms (o). The induction step on (MR) is trivial. For
(A1) suppose X; b, a and X5 Fr, « for some finite X; C X and L; C L, i = 1,2.
Then (mon) gives Xo bz, a; where Xy = X7 UX5 and Ly = Ly U Ly. Applying (A1)
to the language L, we obtain Xy -, o Aae, which is what we want. The induction
steps for all remaining rules proceed similarly and are even somewhat simpler. This
confirms condition (s), which in turn proves (fin).

In the foregoing proof, Ly contains at least the extralogical symbols of Xy and «
but perhaps also some others. Only with the completeness theorem can we know
that the symbols occurring in Xy, o in fact suffice. This insensitivity of derivation
with respect to language extensions can be derived purely proof-theoretically, albeit
with considerable effort, but purely combinatorially and without recourse to the
infinitistic means of semantics. A modest demonstration of such methods is the
constant elimination by Lemmas 2.1 and 2.2 from the next section.

Now for some more examples of provable rules required later.

Xbs=t,s=t (b)XF5=t (C)th=s,s=t’

Xkt=t "~ Xkt=s Xkt=t
To show (a) let = ¢ vart’ and let @ be the formula z=¢". Then the premise of (a)
is written X - s=t,a %. Rule (=) yields X F af. Now, ai equals t=t, since
x ¢ vart’, hence X F ¢t=1t'. (b) is obtained immediately from (a) with ¢ = s because
X F s=s. And with this follows (c), for thanks to (b), the premise of (¢) now yields
X F s=t,s=t"and hence, by (a), the conclusion of (c).

Example 1. (a)

Example 2. In (a)—(d), n is as usual the arity of the symbols f and r. (a) and (c)

are provable for ¢ = 1,...,n. In order to ease the writing, X F t'=1 abbreviates
X Fty=t],...,t,=t] so that, for instance, rule (b) has actually n premisses.
XFt=t Xkt=¢t
(a) = , (b) ==
X ft=fti- -ttty -ty X ft=ft
Xtt;=trt Xrt=trt

d -
@)Xkrm~¢F¢m4~¢; (d) Xt

Proof of (a): Suppose X F s=t with s := ;. Let o be U= fty - tiqatipy -t
where z is not to occur in any of the ¢;. Since X - a% (= ft= f??)7 it follows that
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X + at using (=). This confirms the conclusion of (a). (b) is then obtained by
considering Example 1(c) and the n times iteration of (a), as can best be seen by
first working through the case n = 2. Rule (¢) is just another application of (=)
by taking the formula 7t; - - - ¢;_jxt;11 - - - t,, for @ where again, z is supposed not to
occur in any of the ¢;. Applying (c) n times then yields (d).

Example 3. (a) F Jxt=uz, for all z,¢ with « ¢ vart, (b) F3Jzax==z.

(a) holds because (V1) gives Vo t#x - t#t, for t#t equals (t#z) % (here z ¢ vart
is required). Clearly, Vzt # « F t=t as well. Thus, Vet# 2 F Jxt=x by (—1).
Trivially, also “Vat#« F Jxt=x (= Vet #x). Therefore, by (—=2), - Jzt==x.
Similarly, (b) is verified, starting with Vex # = F = # xz,z=2. Note that the
assumption x ¢ vart is essential in order to derive F Jxt=2x for a compound
term ¢ and hence to gain Jxt=ux as a tautology. For instance, dz fxr=x with a
unary operation symbol f is not a tautology, because this formula is falsified in the
2-element algebra ({0,1}, f), with f0 =1 and f1 = 0.

A set X (C L) is called inconsistent if X F « for all o € £, and otherwise con-
sistent, exactly as in propositional logic. A satisfiable set X is evidently consistent.
By (—1), the inconsistency of X is equivalent to X F a, -« for any «, hence also to
X F 1 since 1 = =7 and certainly X F T (= Jvgvg=wvp) by Example 3.

As in 1.4, I is completely characterized by some inconsistency condition. Indeed,
the proofs given there of the two properties

ct: Xkta <& X,-at 1, C: Xk-a&e X,ak1
from Lemma 1.4.2 remain correct for any meaningful definition of 1. C* and ¢~ will
permanently be used in the sequel without explicitly refering to them.
As in propositional logic, X C L is called mazimally consistent if X is consistent
but each proper extension of X in L is inconsistent. There are various characteri-

zations of maximal consistency. For instance, the one given in Exercise 4 is easily
confirmed by using one of the properties C* or C™.

Exercises

XFkat
X+ Jza
2. Prove Vza F Vya 4 and Vya 4 F Vza for y ¢ vara.
XFWYyal
XFVeaz

1. Derive the rule (a, £ collision-free).

3. Using Exercise 2 and the cut rule prove (y, 2 ¢ vara).

4. Show that a formula set X is maximally consistent if and only if for each ¢ € £
either X F ¢ or X F —¢.
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3.2 The Completeness Proof

Let £ be a language and ¢ a constant (more precisely, a constant symbol). Lc is the
result of adjoining ¢ to £. We have Lc = L if and only if ¢ is already in £. Similarly
LC denotes the language resulting from £ by adjoining a set C' of constants, a
constant expansion of L. We shall also come across such expansions in Chapter 5.
Let a2 (read “a z for ¢”) denote the formula arising from a by replacing ¢ with
the variable z, and put X Z := {a %2 | a € X}. ¢ then no longer occurs in X 2. We
actually require the following assertion only for a single variable z, but as is often
the case, induction proves only a stronger version unproblematically.

Lemma 2.1 (on constant elimination). Suppose X br. a. Then X 2+, a % for
almost all variables z.

Proof by rule induction in k... If @ € X then a2 € X £ is clear; if « is of the form
t=t,sotoois a Z. Thus, X £ -, «a £ in either case, even for all z. Only the induction
steps on (V1), (V2) and (=) are not immediately apparent. We restrict ourselves
to (V1), because the steps for (V2) and (=) proceed analogously. Let X .. Vza
so that X £ i, (Vxa) £ for almost all z by the induction hypothesis. Suppose «, £
are collision-free, and z ¢ var{Vza,t}. A separate induction on « readily confirms
atZz=ot with o = a2 and t' := tZ. Clearly o, % are collision-free as well.
Because by the induction hypothesis X £ -, (Vzx ) £ = Vzd/, rule (V1) then yields
X2k, ot =alz and this holds still for almost all variables z. [

This lemma leads to the following derivable rule of “constant-quantification” whose
semantical counterpart plays a key rule in model theory:
XkFa$
X FVza
Indeed, suppose X F «a £. Because of the finiteness theorem we may assume that X

(V3) (¢ not in X, ).

is finite. By Lemma 2.1, where in the case at hand Lc = £, some y not occurring
in X, can be found such that X 2 - o £ % = o % (the latter holds because ¢ does
not occur in «). Since X 4 = X, we thus obtain X F « %. Hence X + Vza by (v2),
which confirms (V3). A likewise useful consequence of constant elimination is

Lemma 2.2. Let C be any set of constants and L' = LC. Then X b a < X b a,
for all X C L and o € L. Thus, - is a conservative expansion of b r.

Proof. (mon) states that X F, @ = X Fz «a. Suppose conversely X ko a. To
prove X F; a we may assume, thanks to (fin) and (MR), that C' is finite. Since the
adjunction of finitely many constants can be undertaken stepwise, we may suppose
for the purpose of the proof that £ = Lc for a single constant ¢ not occurring in
L. Lemma 2.1 then yields X £ i, a £ for at least one variable z. X Z -, a £ means
the same as X F, « because ¢ occurs neither in X nor in . [}
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In the following, we denote the derivability relation in £ and in every constant
expansion £’ of £ with the same symbol . By Lemma 2.2 no misunderstandings
can arise from this notation. Since the consistency of X is equivalent to X F 1,
there is also no need to distinguish between the consistency of X C £ with respect
to £ or £'. This is highly significant for the proofs of the next two Lemmas.

The proof of the completeness theorem essentially proceeds with a model con-
struction from the syntactic material of a certain constant expansion of £. We first
choose for each variable 2 and each « € £ a constant ¢, , not occurring in £; more
precisely, we choose exactly one such constant for each pair z, . Define

(x) o :=-Vea r as (c:=cuq).
Here it is insignificant how many free variables o contains, and whether x occurs at
all in . We mention that the formula —a” is logically equivalent to Jz—a — -« 5.
This formula states that under the hypothesis dz—a, the constant ¢ represents a
counterexample for the validity of «, that is, an example for the validity of —a.

Lemma 2.3. Let 'y := {-ao” | o € L,z € Var} where o is defined as in (x), and
let X C L be consistent. Then X UT', is consistent as well.

Proof. Assume that X UT'; F 1. Since X ¥ 1, there is some n > 0 and formulas
-0, ..., mafn € T such that (a): XU{—a;"|i < n}F L. Choose n to be minimal
so that (b): X' := X U{—a]"|i <n} ¥ 1, and set © := 2, @ := @, and ¢ := ¢z 4.
By (a), X' U{=a”} 1. Hence, X' I o, and so X' - —Vza,a &, by (A2). But
X'+ af yields X' F Vza using (V3), since ¢ does not occur in X’ and a. Thus,
X'+ Vaa, ~Vaa, whence X’ F 1, contradicting (b) and hence our assumption. [}

Call X C L a Henkin set if X satisfies the following two conditions:
(Hl) XF-a < XFa, (equivalently, X Fa & X ¥ -a),
(H2) XFVza < Xt ag forall constants c in L.
(H1) and (H2) produce yet another useful property of a Henkin set X, namely
(H3) For each term ¢ there exists a constant ¢ such that X Ft=c.

Indeed, X + Jzt=1z (= =Vt # z) for © ¢ vart by Example 3 in 3.1. Hence,
X ¥ Vxtz#x by (H1). Thus X ¥ t#c for some ¢ by (H2), and so X + t=c by (H1).

As regards the following lemma, we mention that in the framework of the original
language L, consistent sets are not generally embeddable in Henkin sets.

Lemma 2.4. Let X C L be consistent. Then there exists a Henkin set Y D X in a
suitable constant expansion LC of L.

Proof. Put £y := L, Xy := X and assume L,, X,, have been given. Let L, 1 result
from £,, by adopting new constants c; ., for all z € Var, a € L,; more precisely
Ly+1 = L,Cy, with the set C, of constants c;o,. Further let X, 11 = X, UT,, .
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Here I'z, is defined as in Lemma 2.3, so that X,, 11 C £,4+1. Using Lemma 2.3 we
have X, ¥ 1 for each n. Let X' := |J, oy Xy, hence X' C L' := {J, oy Ln = LC,
where C':= | J,,cy Cn. Then X' ¥ 1 since X', as the union of a chain of consistent
sets, is surely consistent (in £). Let o € L', z € Var, and, say, « € L" with
minimal n, and let a® be the formula defined as in (x) but with respect to £". Then
—a”® belongs to X,,11. Hence ~a® € X’. Now let (H, C) be the partial order of all
consistent extensions of X’ in £'. Every chain K C H has the upper bound | J K in
H, because if all members of K are consistent so is | J K. Also H # ; for instance
X' € H. By Zorn’s lemma, H therefore contains a maximal element Y. In short, Y
is a maximally consistent set containing X’. Further, what is significant here, Y is
at the same time a Henkin set. Here is the proof:

(H1) =: Y F —a implies Y ¥ « due to the consistency of Y. <: If Y ¥ a then
surely a € Y. As a result, Y,a F 1, for Y is maximally consistent. Thus Y F —a.
(H2) =: Clear by (V1). <: Let Y Fagforallcin £/, soalso Y F a & for ¢ := ¢z an,
where n is minimal with « € £,,. Assume that Y ¥ Vza. Then Y F —Vza by (H1).
But YV F —Vza,a & implies Y F —Vzara s = o” using (11). Now, since Y is
consistent, Y F o® contradicts Y F —a®. The latter is certainly the case because
—a® € X' CY. Thus, our assumption was wrong and indeed Y + Vza. [

Lemma 2.5. Every Henkin set Y C L possesses a model.

Proof. The model constructed in the following is called a term model. Let t ~ '
whenever Y F t=1t'. The relation ~ is a congruence in the term algebra 7 of L.
This means (repeating the definitions on page 41),

(a) a2 is an equivalence relation,

(b) ti~t,.. . ta~t, = ft ~ ft, for operation symbols f in L.
The claim (a) follows immediately from Y F t=¢ and Example 1 in 3.1; (b) is just
another way of formulating Example 2(b). Let A := {t|t € T}. Here ¢ denotes the
equivalence class of & to which the term ¢ belongs, so that

(c) t=5 & txs & YViit=s.
This set A is the domain of the sought model M = (A, w) for Y. The factorization
of 7 will ensure that = means identity in the model. Let C be the set of constants
in £. By (H3) there is for each term ¢ in 7 some ¢ € C such that ¢ ~ t. Therefore
even A = {¢|c € C}. Now, let 2™ := 7 and ¢™ := ¢ for variables and constants in
L. An operation symbol f occurring in £ of arity n is interpreted by f* where

M@, L) = b

This definition is sound because = is a congruence in the term algebra 7. Finally,
define 7™ for an m-ary relation symbol r by
M

M, & YR
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This definition is also sound, since Y Frt = Y + r¥ whenever t, ~ [P AR
Here we use Example 2(d) in 3.1. Induction then yields

(d) M=% () MEFa & Ya,

of which (e) may be regarded as the goal of the constructions. (d) is evident for
prime terms, and the induction hypothesis tZM =t fori=1,...,n leads to

(FEYM = fMEM, M) = FM(E, LT = fE

(e) follows by induction on rk a. We begin with formulas of rank 0 (prime formulas).
Induction proceeds under consideration of rk o < rk—a, rka,tk 3 < rk(aa3) and
rka £ < rkVza, analogously to formula induction:

MEt=s & tM=M & t=3 (by (d))
< Yht=s (by (¢)).
MErt & MMM e My & Y kot
MEang & MEaf < Yhapg (induction hypothesis)
< Yhanf  (using (n1),(n2)).
ME-a & MEa & Y Fa (induction hypothesis)

& YE-a (using (H1)).
MEVea & MEkEaforallceC because A = {¢|ce C})

e MM EaforalceC

(
(because cM = ¢)

& MEagforallce C  (substitution theorem)
(
(

& Yhatforallce O
& Y EVea using (H2)).

Because of Y I « for all @ € Y, (e) immediately implies M EY. []

induction hypothesis)

Just as for propositional logic, the equivalence of consistency and satisfiability,
and the completeness of -, result from the above. These results, stated in the next
two theorems, are what we aimed at in this section. Information about the size of
the model constructed in the next theorem will be given in Theorem 4.1.

Theorem 2.6 (Model existence theorem). Let X C L be consistent. Then X
has a model.

Proof. Let Y O X be a Henkin extension of X, i.e., a Henkin set in a suitable
constant expansion L£C applying Lemma 2.4. According to Lemma 2.5, Y and
hence also X has a model M’ in LC'. Let M denote the L-reduct of M’. In other
words, “forget” the interpretation of the constants not occurring in £. Then, by
Theorem 2.3.1, M F X holds as well. []
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Theorem 2.7 (Completeness theorem). Let £ be any first-order language. Then
forall X CLand o € L holds X Fa & X F a.

Proof. The soundness of F states that X - a = X F a. The converse follows
indirectly. Let X ¥ «, so that X, -« is consistent. Theorem 2.6 then provides
model for X U {—a}, whence X ¥ a. []

Thus, F and F can henceforth be freely interchanged. We will often verify X F «

by proving that X F «. In particular, for theories T', T F « is equivalent to T F «,
for which in the following we mostly write 7 a. Clearly, -7 o means the same as
«a € T for sentences or. More generally, let X Fp o stand for X UT F a and a1 G
for {a} Fr 5. We will also occasionally abbreviate a b7 8 & S br ytoabr S 7.
In subsequent chapters, equivalences such as a b7 < Fr a -0 < Fro, G, and
Fr a < Fp af, will be used without further mentioning and should be committed
to memory. Some more useful equivalences are listed in Exercise 5.
Remark. The methods in this section easily provide also completeness of a logical calculus
for identity-free (or =-free) languages in which the symbol = does not appear. Simply
discard from the calculus in 3.1 everything that refers to =, including rule (=). Almost
everything runs as before. The factorization in Lemma 2.5 is now dispensable and the
domain A is the set of all terms of LC. The last induction step in Lemma 2.5 has to be
modified. We will not go into details since we will need in Chapter 4 only Exercise 2. The
restriction to V-formulas therein is not really essential, because by Exercise 5 in 2.6 any X
can be replaced by a satisfiably equivalent set of V-formulas after expanding the language
by suitable Skolem functions.

Exercises

1. Show that a set X C L is maximally consistent iff there is a model M such
that X Fa < ME «q, for all « € L.

2. Let X C L be a consistent set of identity-free V-formulas. Construct a model
T E X on the domain 7 of all £-terms by setting ¥ = M, T = ¢,
¥ = ft, and =¥ = z. Show in addition that if X C £° and £ contains at
least one constant, then X has a model on the domain of all ground terms.

3. Let K # ) be a chain of theoriesin £, i.e., TC T or T C T, forall T,T' € K.
Show that |J K is a theory that is consistent iff all T € K are consistent.

4. Suppose T is consistent and Y C L. Prove the equivalence of

(1) YFr 1, (i) b7 —a for some conjunction « of formulas in Y.

5. Let z ¢ vart and «, % collision-free. Verify the equivalence of

(i) Frat, (i)z=ttra, (i) FrVe@z=t-a), (iv) br Iz(z=tra).
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3.3 First Applications—Nonstandard Models

In this section we draw important conclusions from the completeness theorem and
the corresponding model-construction procedure. Since the finiteness theorem holds
for the provability relation -, Theorem 2.7 immediately yields

Theorem 3.1 (Finiteness theorem for the consequence relation). X F «
implies Xo E « for some finite subset Xy C X.

Let us consider a first application. The elementary theory of fields of characteristic
0 is obviously axiomatized by the set X consisting of the axioms for fields and the
formulas —char, (page 39). We claim

(1) A sentence a wvalid in all fields of characteristic 0 is also valid in all fields of
sufficiently high prime characteristic p which, of course, depends on «.

Indeed, since X F «, for some finite subset Xy C X we have Xg F . If pis a
prime number larger than all prime numbers ¢ such that —char, € Xy, then a holds
in all fields of characteristic p, since these satisfy Xo. Thus (1) holds. From (1)
we obtain, for instance, the information, easily formalized in £{0, 1, +, -}, that two
given polynomials that are coprime over all fields of characteristic 0 are also coprime
over fields of sufficiently high prime characteristic.

A noteworthy consequence of Theorem 3.1 is also the nonfinite axiomatizability
of many elementary theories. Before presenting examples, we clarify finite axioma-
tizability in a somewhat broader context.

A set Z of strings of a given alphabet A is called decidable if there is an algorithm (a
mechanical decision procedure) that after finitely many calculation steps provides
us with an answer to the question whether a string ¢ of symbols of A belongs
to Z; otherwise Z is called undecidable. Thus it is certainly decidable whether &
is a formula. While this is all intuitively plausible, it nonetheless requires more
precision (undertaken in 6.2). A theory 7' is called recursively aziomatizable, or
just aziomatizable, if it possesses a decidable axiom system. This is the case, for
instance, if T is finitely axiomatizable, i.e., if it has a finite axiom system.

From (1) it follows straight away that the theory of fields of characteristic 0 is not
finitely axiomatizable. For were F a finite set of axioms, their conjunction « = A F
would, by (1), also have a field of finite characteristic as a model.

Now for another instructive example. An abelian group G is called n-divisible if
G E ¥, with 9,, := Vady x =ny where ny is the n-fold sum y + --- + y, and G is
called divisible if G E 4, for all n > 1. Thus, the theory of divisible abelian groups,
DAG, is axiomatized by the set X consisting of the axioms for abelian groups plus
all sentences v,,. Also DAG is not finitely axiomatizable. This follows as above from
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(2) Ewery sentence a € L{+,0} walid in all divisible abelian groups is also valid
i at least one nondivisible abelian group.

To prove (2), let a € DAG, or equivalently X E «. According to Theorem 3.1 we
have X, F o for some finite Xo C X. Let Z, be the cyclic group of order p, where
p is a prime number > n for all n with ¥,, € X,. The mapping z — nx from Z,
to itself is surjective for 0 < n < p, otherwise {na | a € Z,} would be a nontrivial
subgroup of Z,. Hence, Z, E ¥, for all n < p. Thus, Z, F X, and so Z, F a. On
the other hand, Z, is not p-divisible because px = 0 for all x € Z,. In exactly the
same way, we can show that the theory of torsion-free abelian groups is not finitely
axiomatizable. In these groups is na # 0 for all n # 0 and a # 0.

In a similar manner, it is possible to prove for many theories that they are not
finitely axiomatizable. However, this may often demand more involved methods
than the above ones. For instance, consider the theory of a.c. fields (see page 38),
denoted by ACF, which results from adjoining to the theory of fields the schema of
all sentences Va 3x p(d@, ) =0, where p(@, z) denotes the term

" a4+ agT + ag (n=0,1,...),
called a monic polynomial of degree n + 1. Here let ay,...,a,,r denote distinct
variables. Thus, every monic polynomial has a zero, and so every polynomial of
positive degree. Nonfinite axiomatizability of ACF follows from the by no means
trivial existence proof of fields in which all polynomials up to a certain degree do
factorize but irreducible polynomials of higher degree still exist. The same holds for
the theory ACF, of a.c. fields of fixed characteristic p (p = 0 or a prime number).

As in propositional logic, the finiteness theorem for the consequence relation leads
immediately to the corresponding compactness result:

Theorem 3.2 (Compactness theorem). Any set X of first-order formulas is
satisfiable provided every finite subset of X is satisfiable.

Because of the greater power of expression of first-order languages, this theorem is
somewhat more amenable to certain applications than its propositional counterpart.
It can be proved in various ways, even quite independent of a logical calculus; for
instance, by means of ultraproducts as will be carried out in 5.7. It can also be
reduced to the propositional compactness theorem, for X is satisfiably equivalent to
a set, of propositional formulas; see Remark 1 in 4.1. For applications of Theorem 3.2
we concentrate on the construction of nonstandard models; to this end we introduce
some more important concepts.

A theory T (C L£°) is called complete if it is consistent and has no consistent proper
extension in the same language. It is easily seen that this property is equivalent to
either k7 a or Fr —a but not both, for each a € L° (for other equivalences, see
Theorem 5.2.1). Hence, for an arbitrary A, the theory Th.A is always complete.
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We will frequently come across the theory ThA where N' = (N, 0, S, +, +) with the
successor function S:n +— n+ 1. The choice of signature is a matter of convenience;
for instance, one could replace S by the constant 1. Of the relations and functions
definable in A/, we name just <, defined by z < y <+ 3z z+x =1y, and the predecessor
function PA:N — N, defined by y= Pdx <> y=0v =38y, so that Pd0=0.

Certain axiomatic subtheories of ThA are even more frequently dealt with, in
particular Peano arithmetic PA in the arithmetical language L, := £{0,8,+,-}.
This theory is important for many investigations in mathematical foundations and
theoretical computer science (see e.g. [Kr]). The axioms of PA run as follows:

VS0, Ver+ 0=z, Vez.0=0,
VaVy(Sx=Sy —x=y), VaVyz+Sy=S(z+vy), VaVyz-Sy=z-y+x,
IS: @I aVa(p =9 5) = Vap.

IS is called the induction schema and should not be mixed up with the induction
axiom TA discussed on the next page. In IS, ¢ is any formula in £, with x € free p.
IS reads more precisely [p 2 AVa(p — ¢ 32) - Vap]¢, see our convention in 2.5.
Thus, to prove Fpa Yz, one has to confirm Fpa ¢ 2 (induction initiation), and
Fpa Vo (o — 0 32) or equivalently, ¢ Fpa ¢ 32 (induction step, the derivation of the
induction claim o 52 from the induction hypothesis ).

Example. Let ¢ = ¢(x) := 2#0 - JvSv=x. We want to prove Fpa Vzyp(z). In
words, each x # 0 has a predecessor, not something seen at once from the axioms.
Trivially, Fpa ¢ 2. Since Su=2x Fpa SSv=_S8z, we get JvSv=2 Fpa JvSv=3Sx by
particularization. Therefore x #0 — JvSv=12 Fpp %0 — FvSv= Sz (cf. Exercise 2
in 1.3), that is, ¢ Fpa ¢ 32 (the induction step), and so Fpa Vag by IS. This proof
is easily supplemented by an inductive proof of Fpa Va Sx#x.

Remark 1. Only few arithmetical facts (like x < y + Sz < Sy) are derivable in PA
without IS. Already the derivation of z < z needs IS when = < y is defined as above by
dzz + x=y. More in the exercises; these are exclusively devoted to PA, in order to get
familiar in time with this important theory. In 7.1 it will then become clear that PA fully
embraces elementary number theory and practically the whole of discrete mathematics. It
is not of any import that subtraction is only partially defined in models of PA. A theory
of integers formulated similarly to PA may be more convenient for number theory, but is

actually not stronger than PA; it is interpretable in PA in the sense of 6.6. We mention
that PA is not finitely axiomatizable, shown for the first time in [Ry].

We will now prove that not only PA but also the complete theory ThA has along-
side the standard model A/ other models not isomorphic to N, called nonstandard
models. In these models, exactly the same theorems hold as in . The existence
proof of a nonstandard model N of ThN is strikingly simple. Let z € Var and
X := ThRN' U{n < z | n € N}. Here and elsewhere we use n to denote the term
S"0 :=8---830. Thus 1 = 80, 2 = S1,... Instead of 0 (= $°0) one writes just 0.

n
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n < x is the formula n < zAan#x. One may x replace here by a constant symbol c,
thus expanding the language. But both approaches lead to the same result.

Every finite subset Xy C X possesses a model. Indeed, there is evidently some
m such that Xy C X := ThAN U{n < 2 |n < m}, and X; certainly has a model:
one need only appoint to z in A the number m. Thus, by Theorem 3.2, X has a
model (N’ ¢) with the domain N’ where ¢ € N’ denotes the interpretation of x.
Because N satisfies all sentences valid in A, including in particular the sentences
Sn=8n, n+ m=n+m and n - m=n-m, it is easily seen that n — nN’ constitutes
an embedding from A into A/ whose image can be thought of as coinciding with A2
Thus, it is legitimate to presume that n" = n and hence N' C N”.

Because N/ £ X, on the one hand N is elementarily equivalent to A/, and on
the other n < a for all n and any a € N'\N, since in N and hence in N holds
(Vo<n) Ve, v=1. In short, N is a (proper) initial segment of N, or N is an end
extension of N'. The elements of N'\N are called nonstandard numbers. Alongside c,
other examples are c+ ¢ and ¢+ n for n € N. Clearly, ¢ has both an immediate suc-
cessor and an immediate predecessor in the order, because N’ F (Vo #0)Jy z=Sy.
The figur gives a rough picture of a nonstandard model A/

N
/ —N——
NI ® © 0 00cs. 22000 O O O 0 00cc- 20000 0 O O 0 00
01 c cte

N has the same number-theoretical features as N, at least all those that can be
formulated in £,,.. These include nearly all the interesting ones, as will turn out to
be the case in 7.1. For example, Vz3y(x =2y v x=2y + 1) holds in every model of
ThN, that is, every nonstandard number is either even or odd. Clearly, N’ contains
gaps in the sense of 2.1, (N, N'\N) being an example.

Remark 2. Theorem 4.1 will show that ThA has countable nonstandard models. The
order of such a model N” is easy to make intuitive: it arises from the half-open interval
[0,1) of rational numbers by replacing 0 with N and every other r € [0,1) by a specimen
from Z. On the other hand, neither +V" nor V' is effectively describable; see e.g. [HP].

Replacing IS in the axiom system for PA by the so-called induction axiom
IA: VP(POAVz(Px — PSz) —»VaPzr) (P a predicate variable)

results in a categorical axiom system that, up to isomorphism, has just a single
model (see e.g. [Ra2]). How is it possible that A is uniquely determined up to
isomorphism by a few axioms, but at the same time nonstandard models exist for
ThN? The answer: TA cannot be adequately formulated in L£,.. That is, TA is
not an axiom or perhaps an axiom scheme of the first-order language of N. It

2Whenever A is embeddable into B there is a structure B’ isomorphic to B such that A C B’. The
domain B’ arises from B by interchanging the images of the elements of A with their originals.
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is a sentence of a second-order language, about which we shall say more in 3.7.
However, this intimated limitation regarding the possibilities of formulation in first-
order languages is merely an apparent one, as the undertakings of the rest of the
book will show, especially those concerning axiomatic set theory in 3.4.

In no nonstandard model N is the initial segment N definable, indeed not even
parameter definable, i.e., there exist no o = a(x, %) and no by, ..., b, € N such that
N={aeN|N Eala,b]}. Otherwise we would have N’ E o % A Va(a —a 52)[b].
This statement yields N7 E Vza [5] by IS, in contradiction to N'\N # ). The same
reasoning shows that no proper initial segment A C N’ without a largest element
is definable in | because such an A would clearly define a gap in the order of N'.
The situation can also be described as gaps in N’ are not recognizable from within.

Introductory courses in real analysis tend to give the impression that a meaningful
study of the subject requires the axiom of continuity: Every nonempty bounded set
of real numbers has a supremum. On this basis, Cauchy and Weierstrass reformed
analysis, thus banishing from mathematics the somewhat mysterious infinitesimal
arguments of Leibniz, Newton, and Euler. But mathematical logic has developed
methods that, to a large extent, justify the original arguments. This is undertaken in
the framework of nonstandard analysis, developed above all by A. Robinson around
1950. In the following, we provide an indication of its basic idea.

The same construction as for N also provides a nonstandard model for the theory
of R =(R,+,:,<,{a]|a € R}), where for each real number a, a name a was added
to the signature. Consider X = ThR U {a < x| a € R}. Every finite subset of X
has a model on the domain R. Thus, X is consistent and as above, a model of X
represents a proper extension R* of R, a so-called nonstandard model of analysis.
In each such model the same theorems hold as in R. For instance, in R* every
polynomial of positive degree can be decomposed into linear and quadratic factors.
In Chapter 5 it will be shown that the nonstandard models of Th’R are precisely
the real closed extensions of R. All these are elementarily equivalent to R.

For analysis, it is now decisive that the language can be enriched from the very
beginning, say by the adoption of the symbols exp, In, sin, cos for the exponential,
logarithmic and trigonometric functions, and further symbols for further functions.
We denote a thus expanded standard model once again by R and a corresponding
nonstandard model by R*. The mentioned real functions available in R carry over
to R* and maintain all properties that can be elementarily formulated. That means
in fact almost all properties with interesting applications, for example

Vayexp(z +y)=expr-expy, (Vo>0)explnz=x, Vzsin’z+cos?z=1,

as well as the addition theorems for the trigonometric functions and so on. All these
functions remain continuous and repeatedly differentiable. However, the Bolzano—
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Weierstrass theorem and other topological properties cannot be salvaged in full
generality. They are replaced by the aforementioned infinitesimal arguments.

In a nonstandard model R* of Th R with R C R* there not only exist infinitely
large numbers ¢ (i.e., r < ¢ for all r € R), but also infinitely many small positive

numbers. Let ¢ be infinite. Then 2 < ¢ & L < r, ie., L is smaller than each

positive real r, and vyet is positive. That is, % is fairly precisely what Leibniz once
named an infinitesimal. Taking a somewhat closer look reveals the following picture:
every real number a is sitting in a nest of nonstandard numbers a* € R* that are
only infinitesimally distinct from a. In other words, |¢* — a| is an infinitesimal.
Hence, quantities such as dz, dy exist in mathematical reality, and may once again
be considered as infinitesimals in the sense of their inventor Leibniz. These quantities
are precisely the elements of R* infinitesimally distinct from 0.

From the existence of nonstandard models for Th'R, it can be concluded that the
continuity axiom, just like TA, cannot be elementarily formulated. For by adjoining
this axiom to those for ordered fields, R is characterized, up to isomorphism, as the
only continuously ordered field; see e.g. [Ta4]. Hence, the order of a nonstandard
model R* of Th'R possesses gaps. Here, too, the gaps are “not recognizable from
within,” since every nonempty, bounded parameter-definable subset of R* has a
supremum in R*. That is the case because in R and thus also in R*, the following
continuity schema holds, which ensures the existence of a supremum for those sets;
here ¢ = ¢(x,§) runs over all formulas such that y, z ¢ free p:

CS: FrpordyVe(p —x<y) - Ve[ w2 <2) AVy((p w2 <y) = 2<y)].

Analogous remarks can be made with respect to the complex numbers. R* has
an algebraically closed field extension R*[¢] in which familiar facts such as Euler’s
formula €* = cosx + i - sin x continue to hold, in particular ™= — 1.

Exercises

1. Prove in PA the associativity and commutativity of +, -, along with the law of
distributivity. Before proving that + is commutative derive Sz +y=x + Sy in
PA by induction on y. The basic arithmetical laws, including the ones about
< and <, are collected in the axiom system N on page 182.

2. Define < in PA as in the text. Reflexivity and transitivity of < are obvious.
Derive in PA the important < y <> Sz < y (or equivalently, y < Sz +> y < x).
Use this to prove Fpa 2 < y V y < x inductively on x.

3. Verify (a) Fpa Vo ((Vy<z)a 4 —a) — Voo, the schema of <-induction,
(b) Fpa Jz6 - Fz(B A (Vy<z)—F %), the well-ordering (or minimum) schema,
(c) Fpa (Vz<v)3yy —» Fz(Vr<v)(Ty<z)y, the schema of bounds.
Here a, 3,7 are any formulas in £, with y ¢ var{«a, 8} and z ¢ var~y.
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3.4 ZFC and Skolem’s Paradox

Before turning to further consequences of the results from 3.2, we collect a few basic
facts about countable sets. The proofs are simple and can be found in any textbook
on basic set theory. A set M is called countable if M = ) or there is a surjective
mapping f:N — M (ie, M = {a, | n € N} provided fn = a,), and otherwise
uncountable. Every subset of a countable set is itself countable. If f: M — N
is surjective and M is countable then clearly so too is N. Sets M, N are termed
equipotent, briefly M ~ N, if a bijection from M to N exists. If M ~ N, then M
is said to be countably infinite. A countable set can only be countably infinite or
finite, which is to mean equipotent to {1,...,n} for some n € N.

The best-known uncountable set is R, which is equipotent to *BN. The uncount-
ability of BN is a particular case of an important theorem from Cantor: The power
set BM of any set M has a higher cardinality than M, i.e., no injection from M to
B M is surjective. The cardinality of sets will be explained to some extend in 5.1.
Here it suffices to know that two sets M, N are of the same cardinality iff M ~ N,
and that there are countable and uncountable infinite sets.

If M, N are countable so too are M U N and M X N, as is easy to see. More-
over, a countable union U = UieN M; of countable sets M; is again countable.
A familiar proof consists in writing down U as an in-
finite matrix where the nth line is an enumeration of
M, = {ay;, | m € N}. Then enumerate the matrix in / / /
the zigzag manner indicated by the figure on the right, G0 G111
beginning with agq. Accordingly, for countable M, in l / ‘.
particular | J, .y M", the set of all finite sequences of a9
elements in M is again countable, because every M"
is countable. Hence, every elementary language with a countable signature is itself
countable, more precisely countably infinite.

app— o1 ap2—>0a03

By a countable theory we always mean a theory formalized in a countable language
L. We now formulate a theorem significant for many reasons.

Theorem 4.1 (Lowenheim—Skolem). A countable consistent theory T always has
a countable model.

Proof. By Theorem 2.6, T (C £) has a model M with domain A, consisting of the
equivalence classes ¢ for ¢ € C'in the set of all terms of £ = L, where C' = |,y Cn
is a set of new constants. By construction, Cy is equipotent to Var x £ and thus
countable. The same holds for every C,, and so C' is also countable. The map
¢ — ¢from C to A is trivially surjective, so that M has a countable (possibly finite)
domain, and this was the very claim. []
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In 5.1 we will significantly generalize the theorem, but even in the above formu-
lation it leads to noteworthy consequences. For example, there exist also countable
ordered fields R = (R,0,1,4, <, -, exp, sin, ... ) as nonstandard models of ThR in
which the usual theorems about real functions retain their validity. Thus, one need
not really overstep the countable to obtain a rich theory of analysis.

Especially surprising is the existence, ensured by Theorem 4.1, of countable models
of formalized set theory. Although set theory can be regarded as the basis for
the whole of presently existing mathematics, it embraces only a few set-building
principles. The most important system of formalized set theory is ZFC.

Remark. Z stands for E. Zermelo, F for A. Fraenkel, and C for AC, the axiom of choice.
ZF denotes the theory resulting from the removal of AC. ZFC sets out from the principle
that every element of a set is again a set, so that a distinction between sets and families of
sets vanishes. Thus, ZFC speaks exclusively about sets, unlike B. Russell’s type-theoretical
system, in which, along with sets, so-called urelements (objects that are members of sets
but are themselves not sets) are considered. Set theory without urelements is fully suffi-
cient as a foundation of mathematics and for nearly all practical purposes. Even from the
epistemological point of view there is no evidence that urelements occur in reality: each
object can be identified with the set of all properties that distinguish it from other ob-
jects. Nonetheless, urelements are still in use as a technical tool in certain set-theoretical
investigations. We mention in passing that neither ZF nor ZFC are finitely axiomatizable.
This seems plausible if looking at the axioms given below, but the proof is not easy.

To make clear that ZFC is a countable first-order theory and hence belongs to
the scope of applications of Theorem 4.1, we present in the following its axioms.
Each of the axioms will be briefly discussed. This will be at the same time an
excellent exercise in advanced formalization technics. The set-theoretical language
already denoted in 2.2 by L. is one of the most conceivably simple languages and is
certainly countable. Alongside = it contains only the membership symbol €. This
symbol should be distinguished from the somewhat larger € that is used throughout
in our metatheory. The variables are now called set variables. These will as a
rule be denoted by lowercase letters as in other elementary languages. In order to
make the axioms more legible, we use the abbreviations (Vyex)y = Vy(yez — ¢),
(Fyex)p := Jy(yexnryp). In addition, we introduce the relation of inclusion by
the explicit definition zcy <> Vz(zex —zey). Note also that all free variables
occurring in the axioms below have to be thought of as being generalized according
to our convention in 2.5. The axioms of the theory ZFC are then the following:

AE: Vz(zex ¢ zey) o=y (axiom of extensionality).
AS: FyVz(zey <+ pnrzex) (schema of separation).

Here ¢ runs over all Lc.-formulas with y ¢ freep. Let ¢ = ¢(z, z,@). From AS and AE
is derivable VY 3lyVz(zey <> ¢ A zex). Indeed, observe the obvious derivability of
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(zey &> przex)n(zey + przex) = (zey < zey') (y,y ¢ freep). This implies
Vz(zey <> orzex)aVz(zey + przex) -y=y and hence the claim. Therefore,

y={zex|p} o Vz(zey < przex)

is a legitimate definition in the sense of 2.6. {zex | ¢} is called a set term and
is just a suggestive writing of a function term fzx. This term still depends on the
“parameters” as,...,a,, which are the variables from freep\{z, z}.

The empty set can explicitly be defined by y=0 <+ Vz z¢y. Indeed, thanks to AS,
YVz(zey <> z¢xrzex)is provable. This formula is clearly equivalent to JyVz z ¢ y.
Now, using AE, Vzz¢y AVzz¢y — y=1 is provable, hence also 3'yVz z ¢ y, which
legitimates the explicit definition y=0 <> Vz z¢y. The next axiom is

AU : VzIyVz(zey <> (Juex)zeu) (axiom of union).
Here again, because of AE, Jy can be replaced by Jly. As in 2.6, we may therefore
define an operator on the universe,® denoted by = + (Jz. AU is equivalent to
VeIyVz((Juex)zeu — zey), because | Jz can be separated from such a set y by
means of AS. The following axiom could be analogously weakened.

AP : Vz3yVz(zey <> zcx) (power set axiom).
Let Bz denote the y that in view of AE is uniquely determined by z in AP. What
first can be proved is Vz(z e Bl <> z=10) and Vr(ze BB < x=0 v x="P0). Thus,
PP contains exactly two members. This is decisive for defining the pair set below.

The next axiom (again a schema) was added to those of Zermelo by Fraenkel.

AR : Vz3lyp »VuIoVy(yev « (zeu) )  (axiom of replacement).
Here ¢ = ¢(z,y,a@) and u,v ¢ freep. If Va3lyp is provable, then we know from 2.6
that an operator x — Fz can be introduced. By AR, the image of a set v under
F is again a set v, as a rule denoted by {Fz | z € u}. F may depend on further
parameters aq, ..., a,, SO we better write F; for F'. AR is very strong; it can even
be shown that AS is derivable from it. An instructive example of an application of
AR, for which Vx3lyyp is certainly provable, is provided by the formula

o(z,y,a,b) = z=0ry=avrFhry=0.

For the operator F' = F,, defined by ¢, clearly holds Fl=a and Faz=b if = # 0.
Accordingly, the image of the 2-clement set BP0 under F, , contains precisely the two
members a,b. We therefore define {a, b} := {F,,(z) | BP0} and call this the pair
set of a,b. We then put aub := (J{a,b} (while anb := {zea | zeb} already exists
from AS). Further, let {a} := {a,a} and {a1,...,an41} = {a1,...,a,} v{a,11} for
n > 2. Now we can write and moreover prove that B0= {0}, BL0O={0,{0}},...
The ordered pair of a,b is defined after Kuratowski as (a, b) := {{a}, {a,b}}.

3 A frequently used synonym for the domain of a ZFC-model. The word “function” is avoided here
because functions are specific objects of a universe, namely sets of ordered pairs.
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We now have at our disposal the implements necessary to develop elementary
set theory. Beginning with sets of ordered pairs it is possible to model relations
and functions and all concepts building upon them, even though the existence of an
infinite set remains unprovable. Mathematical requirements demand their existence,
though then the borders of our experience with finite sets are transgressed. The
easiest way to get infinite sets is using the set operator x +— Sz, where Sz := zu{z}.

Al: Fu[leuaVz(zeu — Sxeu)] (axiom of infinity).
Such a set u contains @, SO = Qu{0} = {0}, SSO = {0,{0}},... and is therefore
infinite in the naive sense. This holds in particular for the smallest set u of this
type, denoted by w. In formalized set theory w plays the role of the set of natural
numbers. w contains 0 := 0, 1 := S0 = {0}, 2 := 81 = {0, {0}}, etc. Generally,
n+1:=8Sn = nu{n} which easily computes to n +1 = {0,...,n}. Thus, natural
numbers are represented by certain variable-free set terms, called w-terms.

In everyday mathematics the following axiom is basically dispensable:

AF : (Vx#0)(3yer)(Vzex) z¢y  (axiom of foundation or regularity).
Put intuitively: Every z # () contains an e-minimal element y. AF precludes the
possibility of “e-circularity” zge --- € x, € xg. In particular, there are no sets x with
zex. Other consequences of AF will not be discussed here.

From the theory denoted by ZF with the axioms so far, ZFC results by adjoining
the aziom of choice, which has various equivalent formulations.

AC: Vulbgur (Veeu)(Vyeu)(z#y - xny=0) » I2(Veeu)Ily(yex ryez)].
It states that for every set (or family thereof) u of disjunct nonempty sets z there
exist a set z, a choice set, that picks up precisely one element from each x in wu.

The above expositions clearly show that ZFC can be understood as a first-order
theory. In some sense, ZFC is even the purest such theory, because all sophisticated
proof methods that occur in mathematics, for instance transfinite induction and
recursion and every other type of induction and recursion, can be made explit and
derived purely predicate logically in ZFC without particular difficulty.

Whereas mathematicians regularly transgress the framework of a theory, even
one that is unambiguously defined by first-order axioms, in that they make use of
combinatorial, number- or set-theoretical tools wherever it suits them, set theory,
as it stands now, imposes upon itself an upper limit. Within ZFC, all sophisticated
proof and definition techniques gain an elementary character, so to speak.

As a matter of fact, there are no pertinent arguments against the claim that the
whole of mathematics can be treated within the frame of ZFC as a single first-order
theory, a claim based on general mathematical experience that is highly interesting
for the philosophy of mathematics. However, one should not make a religion out of
this insight, because for mathematical practice it is of limited significance.
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If ZFC is consistent—and no one really doubts this assumption although there is
no way of proving it—then by Theorem 4.1, ZFC also has a countable model. The
existence of such a ZFC-model V = (V, €V) is at first glance paradoxical because
the existence of uncountable sets is easily provable within ZFC. An example is Bw.
On the other hand, because (Bw)Y C V, it must be true (from outside) that (Bw)”
contains only countably many elements. Thus, the notion countable has a different
meaning “inside and outside the world V,” which comes completely unexpectedly.
This is the so-called paradoz of Skolem.

The explanation of Skolem’s paradox is that the countable model V, to put it
figuratively, is “thinned out” and contains fewer sets and functions than expected.
Indeed, roughly put, it contains just enough to satisfy the axioms, yet not, for
instance, some bijection from wY to (Bw)Y, which, seen from the outside, certainly
exists. Therefore, the countable set (Bw)Y is uncountable from the perspective of
the world V. In other words, uncountability is not an absolute concept.

Moreover, the universe V' of a ZFC-model is by definition a set, whereas it is easy
to prove Fzpc mFuVz z€w, i.e., there is no “universal set.” Thus, seen from within,
V' is too big to be a set. =FvVz zev is verified as follows: the hypothesis FvVz zev
entails with AE and AS the existence of the “Russellian set” u = {zev | z¢x}.
That is, FvVz zev Fzrc FJuVa(reu < x¢2). On the other hand, by Example 1 on
page 58, Fzrc —JuVa(zeu < x¢x), whence Fzpc ~JFoVzzewv. Accordingly, even
the notion of a set depends on the model. There is no absolute definition of a set.

None of the above has anything to do with ZFC’s being incomplete.* Mathematics
has no problem with the fact that its basic theory is incomplete and, in principle,
cannot be rendered complete. More of a problem is the lack of undisputed criteria
for extending ZFC in a way coinciding with truth or at least with our intuition.

Exercises

1. Let T be an elementary theory with arbitrarily large finite models. Prove
using the compactness theorem that 7" also has an infinite model.

2. Suppose A = (A, <) is an infinite, well-ordered set (see 2.1). Show that there
exists a non-well-ordered set elementarily equivalent to A.

3. Using the ZFC axioms, confirm the well-definedness of w in the text. For this
assertion it suffices to prove Fzpc Ju[deunVa(reu -z u{z}eu)].

4. Let V E ZFC. Show that there exists a model V' E ZFC such that V' 2O V and
a U € V' with ae”'U for all a € V. Then necessarily V' D V.

4In 6.5 the incompleteness of ZFC and all its axiomatic extensions is proved. The most prominent
example of a sentence independent of ZFC is the continuum hypothesis stated on page 135.
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3.5 Enumerability and Decidability

Of all the far-reaching consequences of the completeness theorem, perhaps the most
significant is the effective enumerability of all tautologies of a countable first-order
language. Once Gddel had proved this theorem, the hope grew that the decidability
problem for tautologies might soon be resolved. Indeed, the wait was not long, and
a few years after Godel’s result Church proved the problem to be unsolvable for
sufficiently expressive languages. This section is intended to provide only a brief
glimpse of enumeration and decision problems as they appear in logic. We consider
them more rigorously in the Chapters 5 and 6.

The term effectively enumerable will be made more precise in 6.1 by the notion
of recursive enumerability. At this stage, our explanation of this notion must be
somewhat superficial, though like that for a decidable set it is highly visualizable.
Put roughly, a set M of natural numbers, say, or syntactic objects, finite structures,
or similar objects is called effectively (or recursively) enumerable if there exist an
algorithm that delivers stepwise the elements of M. Thus, in the case of an infinite
set M, the algorithm does not stop its execution by itself.

The calculus of natural deduction enables first of all an effective enumeration of
all provable finite sequences of a first-order language with at most countably many
logical symbols, i.e., all pairs (X, «) such that X F o and X is finite, at least in
principle. First of all, we imagine all initial sequents as enumerated in an ongoing,
explicitly producible sequence Sy, Sy, ... Then it is systematically checked whether
one of the sequent rules is applicable; the resulting sequents are then enumerated in a
second sequence and so on. Leaving aside problems concerning the storage capacity
of such a deduction machine, as well as the difficulties involved in evaluating the
flood of information that would pour from it, it is simply a question of organization
to create a program that enumerates all provable finite sequents.

Moreover, it can be seen without difficulty that the tautologies of a countable
language L are effectively enumerable; one need only pick out from an enumera-
tion procedure of provable sequents (X, a) those such that X = (). In short, the
aforementioned deduction machine delivers stepwise a sequence ag, aq, ... (without
repetitions if so desired) that consists of exactly the tautologies of £. This would be
somewhat easier with the calculus in 3.6. However, we cannot in this way obtain
a decision procedure as to whether or not any given formula a € £ is a tautology,
for we do not know whether o ever appears in the produced sequence. We prove
rigorously in 6.5 that in fact such an algorithm does not exist provided £ contains at
least a binary predicate or operation symbol. Decision procedures exist only for £
(cf. 5.2) or when the signature contains only unary predicate and constant symbols,
and at most one unary operation symbol; see also [BGG].
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The deduction machine can also be applied to enumerate the theorems of a given
axiomatizable theory T, in that parallel to the enumeration process for all provable
sequents of the language, a process is also set going that enumerates all axioms of
T. Tt must then continually be checked for the enumerated sequents whether all
their premises occur as already-enumerated assertions; if so, then the conclusion of
the sequent in question is provable in 7. The preceding considerations constitute
an informal proof of the following theorem. A rigorous proof free of merely intuitive
arguments is provided by Theorem 6.2.4.

Theorem 5.1. The theorems of an axiomatizable theory are effectively enumerable.

Almost all theories considered in mathematics are axiomatizable, including for-
malized set theory ZFC and Peano arithmetic PA. While the axiom systems of these
two theories are infinite and cannot be replaced by finite ones, these sets of axioms
are evidently decidable. Our experience hitherto shows us that all those theorems
of mathematics held to be proved are also provable in ZFC, and therefore, according
to Theorem 5.1, all mathematical theorems can in principle be stepwise generated
by a computer. This fact is theoretically important, even if it has little far-reaching
practical significance at present.

Recall the notion of a complete theory. Among the most important examples is the
theory of the real closed fields (Theorem 5.5.5). A noteworthy feature of complete
and axiomatizable theories is their decidability. We call a theory decidable if the set
of its theorems is a decidable set of formulas, and otherwise undecidable. We prove
the next theorem intuitively; it is generalized by Exercise 3. A strict proof, based on
the rigorous definition of decidability in 6.1, will later be provided by Theorem 6.4.4
on page 191.

Theorem 5.2. A complete axiomatizable theory T is decidable.

Proof. By Theorem 5.1 let ag, a1, ... be an effective enumeration of all sentences
provable in T'. A decision procedure consists simply in comparing for given o € L°
the sentences o and —« in the nth construction step of ag, aq, ... with a,,. If @ = a,
then 7 a; if & = —ay, then 1+ «. This process certainly terminates, because due
to the completeness of T, either o or =« will appear in the enumeration sequence
g, aq, ... of the theorems of T'. [

Conversely, a complete decidable theory is trivially axiomatizable (by T itself).
Thus, for complete theories, “decidable” and “axiomatizable” mean one and the
same thing. A consistent theory has a model and hence at least one completion,
i.e., a complete extension in the same language. The only completion of a complete
theory T is T itself. An incomplete theory has at least two distinct completions.
A decidable incomplete theory even possesses a decidable completion (Exercise 4).
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Hence, a theory all completions of which are undecidable is itself undecidable. We
will meet such theories, even finitely axiomatizable ones, in 6.5. On the other hand,
if T has finitely many completions only, Ty, ..., T, all of which are decidable, then
so is T.? Indeed, according to Exercise 2, « € T < a € T; for all i < n.

In the early stages in the development of fast computing machines, high hopes
were held concerning the practical carrying out of mechanized decision procedures.
For various reasons, this optimism has since been muted, though skillfully employed
computers can be helpful not only in verifying proofs but also in finding them. This
area of applied logic is called automated theorem proving (ATP). Convincing exam-
ples include computer-supported proofs of the four-colour conjecture, the Robbins
problem about a particular axiomatization of Boolean algebras, and Bieberbach’s
conjecture in function theory. ATP is used today both in hardware and software
verification, for instance, in integrated circuit (chip) design and verification. A quick
source of information about automated theorem proving is the Internet.

Despite of these applications, even a highly developed artificial-intelligence system
has presently no chance of simulating the heuristic approach in mathematics, where
a precise proof from certain hypotheses is frequently only the culmination of a series
of considerations flowing from the imagination. However, that is not to say that
such a system may not be creative in a new way, for it is not necessarily the case
that the human procedural method, influenced by all kinds of pictorial thoughts, is
the sole means to gaining mathematical knowledge.

Exercises

1. Let 7" = T4+ a (a € L°) be a finite extension of T'. Show that if T" is decidable
so too is 7" (cf. Lemma 6.5.3).

2. Prove that a consistent theory T coincides with the intersection of all its
completions, in short T = ({T" 2 T | T’ complete}.

3. Show that the following are equivalent for a consistent theory 7":
(i) T has finitely many extensions, (ii) 7" has finitely many completions.
Moreover, show that a consistent theory T with n completions has 2™ — 1

consistent extensions, 7" included (n = 1 iff T itself is complete).

4. Using the Lindenbaum construction of 1.4, show that an incomplete decidable
and countable theory T has a decidable completion ([TMR, p. 15]).

5 The elementary absolute (plane) geometry T has precisely two completions, Euclidean and non-
Euclidean (or hyperbolic) geometry. Both are axiomatizable, hence decidable. Completeness
follows in both cases from that of the elementary theory of real numbers, Theorem 5.5.5. Thus,
absolute geometry is decidable as well. Further applications can be found in 5.2.
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3.6 Complete Hilbert Calculi

The sequent calculus of 3.1 models natural deduction sufficiently well. But it is
nonetheless advantageous to use a Hilbert calculus for some purposes, for instance
the arithmetization of formal proofs. Such calculi are based on logical axioms and
rules of inference like modus ponens MP: a, o — 3/, also called Hilbert-style rules.
These rules can be understood as premiseless sequent rules. In a Hilbert calculus,
deductions are drawn from a fixed set of formulas X, for instance, the axioms a
theory, with the inclusion of the logical axioms, as in 1.6. In the case X = () one
deduces from the logical axioms alone, and only tautologies are established.

In the following we prove the completeness of a Hilbert calculus in the logical
symbols =, A,V, =. It will be denoted here by ~. MP is its only rule of inference.
The calculus refers to an arbitrary elementary language £ and is essentially an
extension of the corresponding propositional Hilbert calculus treated in 1.6. Once
again, implication, defined by a — 3 := =(ar—03), will play a useful part.

The logical axiom system A of our calculus is taken to consist of all formulas
V- Vo,p, where ¢ is a formula of the form A1-A10 below, and n > 0. For
example, due to A9, x=z, Veax=z,Vyr=x, VaVyr=2x are logical axioms, even
though Vy is meaningless in the last two formulas. One may also say that A is
the set of all formulas that can be derived from A1-A10 by means of the rule MQ:
a/Vza. However, MQ is not a rule of inference of the calculus, nor is it provable.
We will later take a closer look at this rule.

Al (a=0B-7) = (a—=0)=a—7y, A2: a = —sanp,

A3: anf—=a, anf—p, AM: (o ——f0) = 8 = —a,

A5: Vza s at (o, collision-free), A6: o =Vra (z ¢ freea)

AT: Vr(a = §) = Vea =V, A8: Vyad »Vaea (y & vara),
A9: t=t, Al0: z=y—»>a—»ai (o prime).

It is easy to recognize A1-A10 as tautologies. For A1-A4 this is clear by 1.6. For
A5-A8 the reasoning proceeds straightforwardly by accounting for the corollary on
page 56 and the logical equivalences in 2.4. For A9 and A10 this is obvious.

Axiom A5 corresponds to the rule (V1) of the calculus in 3.1, while A6 serves to
deal with superfluous prefixes. The role of A7 will become clear in the completeness
proof for ~, and A8 is part of bound renaming. A9 and A10 control the treatment
of identity. If ¢ is a tautology then, for any prefix block VZ, so too is VZp. Thus,
A consists solely of tautologies. The same holds for all formulas derivable from A
using MP, for F a, @ — 3 obviously implies F (.

Let X ~a if there exists a proof ® = (¢o,...,¢n) of a from X, that is, o = oy,
and for all k& < n either p € X U A or there exists some ¢ such that ¢ and ¢ — ¢y
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appear as members of @ before . This definition and its consequences are the
same as in 1.6. As is the case there, it holds that X ba,a — 3 = X~ 3. Moreover,
the induction theorem 1.6.1 also carries over unaltered, and its application will
often be announced by the heading “proof by induction on X ~«.” For instance,
the soundness of ~ is proved by induction on X «, where soundness is defined as
usual, that is to mean X ba = X E «, for all X and «. In short, ~ C F.

The completeness of ~ can now be relatively easily be traced back to that of the
rule calculus F of 3.1. Indeed, much of the work was already undertaken in 1.6,
and we can immediately formulate the completeness of .

Theorem 6.1 (Completeness theorem for ~). b = F.

Proof. ~ C F has already been verified. F C ~ follows from the claim that
satisfies all nine basic rules of . This implies - C r, and since = F we then have
F C k. For the propositional rules (A1) through (—2) the claim holds according to
their proof for the Hilbert calculus in 1.6. The Lemmas 1.6.2 through 1.6.5 carry
over word for word, because we have kept the four axioms on which the proofs are
based and have taken no new rules into account. (V1) follows immediately from A5
using MP, and (IR) is dealt with by A9. Only (V2) and (=) provide us with a little
work which, by the way, will clear up the role of axioms A6, A7, and AS8.

(V2): Suppose = & free X. We first prove X ~a = X ~Vza by induction on X ~a.
Initial step: If a € X then z is not free in a. So Xhra —Vza using A6, and
MP yields X ~Vza. If a € A then also Vxa € A, and hence likewise X ~Vza.
Induction step: Let X ~a, o — 3 and X Vo, Va(a — () according to the induction
hypothesis. This yields X ~Vzo, Vea — Va3 by Axiom A7 and MP and hence the
induction claim X rVzg. Now, to verify (V2), let X~a ¥ and y & free X U vara.
By what we have just proved, we get X ~Vya . This, MP, and X +rVya 2 —Vza
(Axiom A8) yield the conclusion X ~Vza of (V2). Thus, b satifies rule (V2).

(=): Let a be a prime formula and X ~s=t,« £. Further, let y be a variable # x

not appearing in s and a. Then certainly X ~+VaVy(z=y — o —a ¥), because the

latter is a logical axiom in view of A10. By the choice of y, rule (V1) then yields
XrVy(zr=y—-a—ai)s = Vy(s=y—as -al).

Because of y ¢ vara, s and a4 L = oL, a repeated application of (V1) gives
Xh[s=y—sas salll = s=t-saf sall = s=t—ai sat.
Since X bs=t, a3 by assumption, two applications of MP then leads to the desired

conclusion X at. [J

A special case of the completeness theorem 6.1 is the following

Corollary 6.2. For any o € L, the following properties are equivalent:
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(i)  ra, that is, a is derivable from A by means of MP only,
(il)  « is derivable from A1-A10 by means of MP and MQ),
(i) Ea, i.e., ais a tautology.

The equivalence of (i) and (iii) renders especially intuitive the possibility to con-
struct a “deduction machine” that effectively enumerates the set of all tautologies
of L. Here, we are dealing with just one rule of inference, modus ponens, so we need
just the help of a machine to list the logical axioms, a “deducer” to check whether
MP is applicable and, if so, to apply it, and an output unit that emits the results
and feeds them back into the deducer for further processing. However, similar to
the case of a sequent calculus, such a procedure is not actually practicable; the dis-
tinction between significant and insignificant derivations is too difficult to be taken
into account. Who would be interested to find in the listing such a weird looking
tautology as for instance 3z (rz —Vy ry)?

Next we want to show that the global consequence relation £ defined in 2.5 can
also be completely characterized by a Hilbert calculus. It is necessary only to adjoin
the generalization rule MQ to the calculus ~. Thus, the resulting Hilbert calculus,
defined by IE, then has two rules of inference, MP and MQ. Like every Hilbert
calculus, £ s transitive, that is, X FEY&YE a= X a Tosee this, let
XE Y)Y £ o and let @ be a proof of o from Y. By replacing every formula ¢ € YV
appearing in ® by a proof of ¢ from X, the resulting sequence is clearly a proof of
a from X. The completeness of £ follows essentially from that of ~:

Theorem 6.3 (Completeness theorem for ££ ). £ = E.

Proof. Certainly = - lg, since both MP and MQ are sound for £, Now let X £ «Q,
so that X ¢ F a by (1) of 2.5. This yields X ¢~ by Theorem 6.1, and thus a fortiori
X6 o. But since X £ X€, transitivity provides X £ a. [

We now discuss a notion of equal interest for both logic and computer science.
a € L° is called generally valid in the finite if A E « for all finite structures A.
Examples of such sentences « not being tautologies can be constructed in every
signature that contains at least a unary function symbol or a binary relation symbol.
For instance, consider VaVy(fr= fy -ax=y) —»Vy3dzy= fx. This states in (A, f)
that if f4 is injective, it is also surjective, which is true iff A is finite. Thus, Taut is
properly extended by the set of sentences generally valid in the finite, Tautfin.

In each signature, Tautfin is an example of a theory T" with the finite model prop-
erty, i.e., every sentence o compatible with 7" has a finite T-model. More generally,
the theory T' = Th K of any class K of finite L-structures has the finite model
property. Indeed, if 7'+ « is consistent, i.e., ~a ¢ T, then A ¥ -« for some A € K|
hence A F «. This is the case, for example, for the theories FSG and FG of all finite



98 3 Godel’s Completeness Theorem

semigroups and finite groups, respectively, in £{o}. Both theories are undecidable.
As regards FSG, the proof is not particularly difficult; see 6.6.
Unlike Taut, as a rule, Tautfin is not axiomatizable. This is the claim of

Theorem 6.4 (Trachtenbrot). Tautfing, is not (recursively) axiomatizable for any
signature L containing at least one binary operation or relation symbol.

Proof. We restrict ourselves to the first case; for a binary relation symbol, the same
follows easily by means of interpretation (Theorem 6.6.3). If Tautfin; were axioma-
tizable it would also be decidable because of the finite model property, Exercise 2.
This also clearly holds for Tautfin;(oy, and by Exercise 1 in 3.5, so too for FSG,
because FSG is Tautfin;(y extended by a single sentence, the law of associativity.
But as already mentioned, FSG is undecidable. []

The theorem is in fact a corollary of much stronger results that have been estab-
lished in the meantime. For the newer literature on decision problems of this type
consult [Id]. Unlike FG, the theory of finite abelian groups, as well as of all abelian
groups, is decidable ([Sz]). The former is a proper extension of the latter; for in-
stance, VxIyy + y=x - Vz(x + x=0 - 2=0) does not hold in all abelian groups,
though it does in all finite ones. Verifying this is a highly informative exercise.

As early as 1922 Behmann discovered by quantifier elimination that Taut possesses
the finite model property provided the signature contains only unary predicate sym-
bols; one can also prove this without difficulty by the Ehrenfeucht game of 5.3. In
this case then, Tautfin = Taut, because o ¢ Taut implies —«v is satisfiable and there-
fore has a finite model. Thus, « ¢ Tautfin. This proves Tautfin C Taut and hence
Tautfin = Taut. With the Ehrenfeucht game also a quite natural axiomatization of
the theory FO of all finite ordered sets is obtained. This is an exercise in 5.3.

Exercises
1. Show that MQ is unprovable in ~ (X ba = X +Vza does not hold in general).

2. Suppose (i) a theory T has the finite model property, (ii) the finite 7T-models are
effectively enumerable (more precisely, a system of representatives thereof up
to isomorphism). Show that (a) the sentences « refutable in T" are effectively
enumerable, (b) if T is axiomatizable then it is also decidable.

3. Let T be a finitely axiomatizable theory with the finite model property. Show
by working back to Exercise 2 that T is decidable.

4. Show that Vz3yy + y=x - Va(z + t=0—2=0) holds in all finite abelian
groups. Moreover, provide an example of an infinite abelian group for which
the above proposition fails.
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3.7 First-Order Fragments and Extensions

Subsequent to Gddel’s completeness theorem it makes sense to investigate some
fragments and extensions of first-order languages aiming at a formal characterization
of deduction inside the fragment or extension. In this section we shall present some
results in this regard. First-order fragments are formalisms that come along without
the full means of expression in an elementary language, for instance by the omission
of some or all logical connectives, or restricted quantification. These formalisms are
interesting for various reasons, partly because of the growing interest in automatic
information processing with its more or less restricted user interface. The poorer a
linguistic fragment, the more modest the possibilities for the formulation of sound
rules. Therefore, the completeness problem for fragments is in general nontrivial.

A useful example dealt with more closely is the language of equations, whose only
formulas are equations of a fixed algebraic signature. We think tacitly of the vari-
ables in the equations as being generalized and call them identities, though we often
speak of equations. Theories with axiom systems of identities are called equational
theories and their model classes equational-defined classes or varieties.

Let I denote a set of equations defining an equational theory, v a single equation,
and assume I'¢ F 4. By Theorem 2.7 there is a formal proof for v from I'. But
because of the special form of the equations, it can be expected that one need not
the whole formalism to verify I'® £ «. Indeed, Theorem 7.2 states that the Birkhoff
rules (B0)—(B4) below, taken from [Bi], suffice. This result is so pleasing because
operating with (B0)—(B4) remains completely inside the language of equations. The
rules define a Hilbert-style calculus denoted by I and look as follows:

(B0O) /t=t, (Bl) s=t/t=s, (B2) t=s,s=t'/t=t,

(B3) ty=t,, ... ty=t,/fty - tp=ft, 1., (B4) s=t/s"=1°.

Here o is a global substitution, though as explained in 2.2 it would suffice to consider
just simple . (B0) has no premise which means that ¢t=t is derivable from any
set of identities (or ¢ = ¢ is added as an axiom to I'). These rules are formally
stated with respect to unquantified equations. However, we think of all variables as
being generalized in a formal derivation sequence. We are forced to do this by the
soundness requirement of (B4), because (s=1)¢ E s =17 but not s=tF s”=17, in
general. To verify T’ ¥ v = T'¢E v, we need only to show that the property I'® £~
is closed under (B0)—(B4), i.e., A E t=t (which is trivial), AF s=t = AF t=s,
etc. We have already come across the rules of F in 3.1, stated there as Gentzen-style
rules; they ensure that by s = ¢t : < T’ Fs=ta congruence in the term algebra T
is defined, similar as in Lemma 2.5. (B4) states the substitution invariance of =,
which is to mean s &~ t = s° ~ t°. Let F be the factor structure of 7 by ~, and let
t denote the congruence class modulo ~ determined by the term ¢, so that
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(1) H=heTlTFt=t.
Further let w: Var — F, say % = t,, with arbitrarily chosen ¢, € z%. Any such
choice determines a global substitution o,,:x + t,. Induction on t easily yields

(2) tFv =1 (0:=o0,).

Lemma 7.1. F'Et1=t2 = f':t1=t2

Proof. Let T' ¥ t,=t,. By (B4) also [' F¥ t9=15, so that 7 = 7. Therefore,
tT" = 17" using (2). Since w was arbitrary, it follows that F E t;=t,. Now
suppose the latter and let s¢ be the so-called canonical valuation x — T. Here we
choose o,, = ¢ (the identical substitution), hence tf’” =1; by (2). F E t; =t implies

FE tf’”=t2f’”, and since t;-r’” =T, wegetl =1, and so D F t; =1, by (1). 4

Theorem 7.2 (Birkhoff’s completeness theorem). T’ ¢ ti=ty < ['CE t;=t,.

Proof. The direction = is the soundness of . Now let ['¢ E ¢, =t,. According
to Lemma 7.1, certainly F E T, or equivalently F E T'®. Therefore F F t;=t,.
Applying Lemma 7.1 once again then yields I’ Fii=t,. 1

This proof is distinguished on the one hand by its simplicity and on the other by its
highly abstract character. It has manifold variations and is valid in a corresponding
sense, for example, for sentences of the form Vam with arbitrary prime formulas 7 of
any given first-order language. It is rather obvious how to strengthen the Birkhoff
rules to cover this more general case: Keep (BO), (B1), and (B3) and replace the
conclusions of (B3) and (B4) by arbitrary prime formulas of the language.

There is also a special calculus for sentences of the form

(3) VZ(y1A A% =) (n > 0, all v; equations),
called quasi-identities. The classes of models of axioms of the form (3) are called
quasi-varieties. The latter are highly important both in algebra and logic. (B0) is
retained and (B1)—(B3) are replaced by the following premiseless rules:

[r=y—y=z, [r=yry=z-z=z [N_jzi=y > fT=f]
Besides an adaptation of (B4), some rules are required for the formal handling of
the premises 71, ...,7, in (3), for instance their permutability (for details see e.g.,
[Se]). A highly important additional rule is here a variant of the cut rule, namely

and w7y, =0/a—y (o a conjunction of equations).

The most interesting case for automated information processing, where Hilbert
rules remaining inside the fragment still provide completeness, is that of universal
Horn theories. Here, roughly speaking, the equations v; in (3) may be arbitrary
prime formulas. Horn theories are treated in Chapter 4. But for enabling a real
machine implementation, the calculus considered there (the resolution calculus) is
different from a Hilbert- or a Gentzen-style calculus.
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Now we consider a few of the numerous possibilities for extending first-order
languages to increase the power of expression: We say a language £ D L of the
same signature as L is more expressive than L if for at least one sentence o € L/,
Md « is distinct from all Md 3 for 8 € £. In £/, some of the properties of first-
order languages are lost. Indeed, the claim of the next theorem is that first-order
languages are optimal in regard to the richness of their applications.

Lindstréom’s Theorem (see [EFT] or [CK]). There is no language of a given
signature that is more expressive than the first-order language and for which both
the compactness theorem and the Lowenheim—Skolem theorem hold.

Many-sorted languages. In describing geometric facts it is convenient to use
several variables, for points, lines, and, depending on dimension, also for geometrical
objects of higher dimension. For every argument of a predicate or operation symbol
of such a language, it is useful to fix its sort. For instance, the incidence relation
of plane geometry has arguments for points and lines. For function symbols, the
sort of their values must additionally be given. If £ is of sort k and v§,vi,... are
variables of sort s (1 < s < k) then every relation symbol r is assigned a sequence
(s1,...,8,); in languages not containing function symbols, prime formulas beginning
with r have the form rx3' - - -z, where z;* denotes a variable of sort s;.

Many-sorted languages represent only an inessential extension of the concept hith-
erto expounded, provided the sorts are given equal rights. Instead of a language £
with k sorts of variables, we can consider a one-sorted language £ with additional
unary predicate symbols Py, ..., P, and the adoption of certain new axioms: Jz Pz
for i =1,...,k (no sort is empty, otherwise it could be omitted) and —3z(P,z A P;x)
for i # j (sort disjunction). For example, plane geometry could also be described
in a one-sorted language with the additional predicates pt (to be a point) and i (to
be a line). Apart from a few differences in dealing with term insertion, many-sorted
languages behave almost exactly like one-sorted languages.

Second-order languages. Some frequently quoted axioms, e.g., the induction
axiom TA, may be looked upon as second-order sentences. The simplest extension
of an elementary language to one of higher order is the monadic second-order lan-
guage, a two-sorted language that has a special interpretation for the second sort.
Let us consider such a language £ with variables x,y, z, ... for individuals, variables
X, Y, Z, ... for sets of these individuals, along with at least one binary relation sym-
bol € but no function symbols. Prime formulas are t=vy, X=Y, and z¢ X. An
L-structure is generally of the form (A, B, €) where ¢ C A x B. The goal is that
by formulating additional axioms such as VXY [Vz(ze X <> z€Y) - X =Y (which
corresponds to the axiom AE in 3.4), € should be interpretable as the membership
relation €, hence B should consist of the subsets of A. This goal is not fully attain-
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able, but nearly so: axioms can be found such that B can be regarded only as a
subset of PA, with € interpreted as €. This also works by adding sort variables for
members of PBPA, PPB A, etc. This “completeness of the theory of types” plays a
basic role in the higher nonstandard analysis.

A more enveloping second-order language, L7, is won by adopting quantifiable
variables for any relations and operations on the domains of individuals. But even
for L = L_, Ly fails to satisfy both the finiteness theorem and the Lowenheim—
Skolem theorem (Theorem 4.1). The former does not hold because a theorem agy,
can be given in L7 such that A F ag, if and only if A is finite. For it is not difficult
to prove that A is finite iff A can be ordered such that every nonempty subset of
A possesses both a smallest and largest element. This property can effortlessly be
formulated by means of a binary and a unary predicate variable.

The Lowenheim—Skolem theorem is also easily refutable for £;;; one need only
write down in L7 the sentence ‘there exists a continuous order on A without smallest
or largest element’. This sentence has no countable model. For if there were such a
model, it would be isomorphic to the ordered set of rationals according to a theorem
of Cantor (Example 2 in 5.2) and therefore has gaps, contradicting our assumptions.

There is still a more serious problem as regards L;;: The ZFC-axioms, seen as
axioms of the underlying set theory, do not suffice to establish what a tautology in
L1 should actually be. For instance, the continuum hypothesis CH (see page 135)
can be easily formulated as an L;;-sentence, acy. But CH is independent of ZFC.
Thus, if CH is true, acy is an L;; tautology, otherwise not. It does not look as
though mathematical intuition suffices to decide this question unambiguously.

New quantifiers. A simple syntactic extension Ly of a first-order language £
is obtained by taking on a new quantifier denoted by ©, which formally is to be
handled as the V-quantifier. However, in a model M = (A, w), a new interpretation
of © is provided by means of the satisfaction clause

(0) MEOza & {a€ A| M%E a} is infinite.
With this interpretation, we write £ instead of Ly, since yet another interpretation
of © will be discussed. Lg is more expressive than £, as seen by the fact, for example,
that the finiteness theorem for £& no longer holds: Let X be the collection of all
sentences 3, (there exist at least n elements) plus ag, := - Oz x =1 (there exist
only finitely many elements). Every finite subset of X has a model, but X itself
does not. All the same, £8 still satisfies the Lowenheim—Skolem theorem. This
can be proved straightforwardly with the methods of 5.1. Once again, because
of the missing finiteness theorem there cannot be a complete rule calculus for £g8.
Otherwise, just as in 3.1, one could prove the finiteness theorem after all. However,
there are several nontrivial, correct Hilbert-style rules for £3, for instance
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Q1) /=Oz(z=yve=2) (z#£y,2), (Q2) Oza/Oyai (y¢ freeq),
(Q3) Vz(a — 3)/Oza — Ozp, (Q4) Ozrdya, " OyIza/IyOx a.

Intuitively, rule (Q1) (which has no premises) says that the pair {y, z} is finite.
(Q2) is bound renaming. (Q3) says that a set containing an infinite subset is itself
infinite. (Q4) is rendered intuitive for M = (A, w) F Oz3ya, ~OyIza and for
a = a(z,y) as follows: Let 4, = {a € A| AFE a(a,b)}. Then M E Oz3y « states
‘Upea Ap 1s infinite’. M E =OyIz o says ‘there exist only finitely many indices b
such that A, # 0, the conclusion JyOza therefore ‘A, is infinite for at least one
index b’. Hence (Q4) expresses altogether the fact that the union of a finite system
of finite sets is itself finite. Now replace the satisfaction clause (0) by

(1) MEOza & {a€ A|M?E a} is uncountable.

Also with this interpretation, (Q1)—(Q4) are sound for L& (= Lo with the in-
terpretation (1)). Rule (Q4) now evidently expresses that a countable union of
countable sets is again countable. Moreover, the logical calculus F resulting from
the basic rules of 3.1 by adjoining (Q1)—(Q4) is, surprisingly, complete for these
semantics when restricted to countable sets X. Thus, X Fae XE «, for any
countable X C £ ([CK]). This fact implies the following compactness theorem for
Ly If every finite subset of a countable set of formulas X C L& has a model then
so too does X . For uncountable sets of formulas this is false in general.

Programming languages. All languages hitherto discussed are of static character
inasmuch as there are spatially and temporally independent truth values for given
valuations w in a structure A. But one can also connect a first-order language £ in
various ways with a programming language having dynamic character.

We describe here a simple example of such language, PL. The elements of PL
are called programs, denoted by P,Q,... and are defined below. The dynamic
character arises by modifying traditional semantics as follows: A program P starts
with a valuation w: Var — A (the domain of a given L-structure A) and alters
stepwise the values of the variables as a run of the program P proceeds in time. If P
terminates upon feeding in w, i.e., the calculation ends, the result is a new valuation
w”. Otherwise we take w” to be undefined. The description of this in general only
partially defined operation w — w? is called the procedural semantics of PL.

It is possible to meaningfully consider issues of completeness, say, for this type
of semantics, too. The syntax of PL is specified as follows: The logical signature
of L is extended by the symbols WHILE, DO, END, :=, and ; (the semicolon serves
only as a separator for concatenated programs and could be omitted if programs are
arranged 2-dimensionally, which we will not do for the sake of brevity). Programs
on L are defined inductively as strings of symbols in the following manner:

1. For any variable x € Var and term ¢ € T, the string x := t is a program.
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2. If a is an open formula in £ and P, Q are programs, so too are the strings P ; Q
and WHILE o DO P END.

No other strings are programs in this context. P;Q is to mean that first P and
then Q are executed. Let P be the n-times repeated execution of P, more precisely
PO is the empty program (wTO = w) and P! = P";P. The procedural semantics
for PL are made more precise by the following stipulations:

(a) w*=*=wY (i.e., w alters at most the value of the variable ).

(b) If w” and (w”)? are defined, so too is w™2, and w9 = (w”)<.

(c) For Q := WHILE a DO PEND let w® = w”™ with k specified below.

According to our intuition regarding the “WHILE loop,” k is the smallest number
such that A F o [w”] for all i < k and A ¥ a [w”], provided such a k exists and all
w”" for i < k are well defined. Otherwise w? is considered to be undefined. If k = 0,
that is, A ¥ «a[w], then w? = w, which amounts to saying that P is not executed at
all, in accordance with the meaning of WHILE in all programming languages.

Example. Let £ = £{0,S,Pd} and let A = (N, 0, S,Pd), where S and Pd respectively
denote the successor and predecessor functions, and let P be the program
z:=x;v:=y;WHILEv#0DO0 2z := Sz ;v := PdvEND.

If  and y initially have the values % = m and y* = n, the program ends with
" = m+n. In other words, P terminates for every input m, n for z, y and computes
the output m + n in the variable z while x, y keep their initial values.

In PL, the well-known program schema IF a THEN PELSEQEND is definable by
z:= 0;WHILEaAz=0 DO P;z:= S0 END;WHILEz=0D0Q ; z := SOEND, where z is
a variable not appearing in P, Q, and a.

F
Zw

Exercises

1. Show that a variety K is closed with respect to homomorphism, subalgebra,
and direct product.®

2. Show that £ and L;; do not satisfy the Lowenheim—Skolem theorem, and
that £3 violates the finiteness theorem for uncountable sets of formulas.

3. Express the continuum hypothesis as a theorem of L;;.

4. Verify the correctness of the definition of the program IF oo THEN P ELSE Q END
given in the text.

5. Define the loop DO P UNTIL v END by means of the WHILE o DO P END-loop.

STf, conversely, a class K has these three properties and is closed under isomorphisms then K is
a variety. This is Birkhoft’s HSP theorem, a theorem of Universal algebra; see e.g. [Mo].



Chapter 4

The Foundations of

Logic Programming

Logic programming aims not so much at solving numerical problems in science and
technology, rather at treating information processing in general, in particular at
the creation of expert systems of artificial intelligence. A distinction has to be
made between logic programming as theoretical subject matter and the widely used
programming language for practical tasks of this kind, PROLOG. In regards to the
latter, we confine ourselves to a presentation of a somewhat simplified version, FF
nonetheless preserves the typical features.

The notions dealt with in 4.1 are of fairly general nature. Their origin lies in
certain theoretical questions posed by mathematical logic, and they took shape
before the invention of the computer. For certain sets of formulas, in particular for
sets of universal Horn formulas, which are very important for logic programming,
term models are obtained canonically. For a full understanding of 4.1, Chapters 1
and 2 should have been read, and to some extent also Chapter 3. The newcomer
need not understand all details of 4.1 at once, but should learn at least what a Horn
formula is and after a glance at the theorems may then continue with 4.2.

The resolution method and its combination with unification proposed in [Rob]
and applied in PROLOG were directly inspired by mechanical information pro-
cessing. This method is also of significance for tasks of automated theorem proving
which extends beyond logic programming. We treat resolution first in the framework
of propositional logic in 4.2. Its highlight, the resolution theorem, is proved con-
structively, without recourse to the propositional compactness theorem. In 4.3
unification is dealt with in an understandable way. 4.4 presents the combination of
resolution with unification and its application to logic programming. An elementary
introduction to this area is also offered by [Ll], while [Do] is more challenging. For
practical PROLOG programming, [CM] may be a good reference.

105
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4.1 Term Models and Horn Formulas

In the proof of Lemma 3.2.5 as well as in Lemma 3.7.1 we have come across models
whose domains are equivalence classes of terms of a first-order language £. In
general, a term model is to mean an L£-model F whose domain F is the set of
congruence classes t of a congruence ~r on the algebra 7 of all L-terms t. If ~¢
is the identity in 7T, one identifies F' with 7 so that then ¢ = ¢. Function symbols
and constants are interpreted canonically: f7(¢y,...,%,) := ft;---t, and ¢& = ¢.
No particular condition is posed on realizing the relation symbols of £. Further let
k:x +— T (x € Var). This is called the canonical valuation. In the terminology
of 2.3, F = (F, k), where § denotes the underlying L-structure with the domain
F ={t|te€ T} We claim that independent of a specification of the r”,

(1) V=t foralteT,
(2) FEVia & FEalforalli e T" (o open).

(1) is proved by an easy term induction (cf. (d) page 79). (2) follows from left to
right by Corollary 2.3.6. The converse runs as follows: F F a % for all teTn

implies Firln = o for all ¢1,...,t, € T in view of Theorem 2.3.5 and (1). But this

N
means tha‘lu F E VZa, because the t for t € T exhaust the domain of F.

Essential for both theoretical logic and automated theorem proving is the question
for which consistent formula sets X C £ can a term model be constructed inside L.
For certain sets X a positive answer is given by Theorems 1.1 and 1.3 below.

Definition. The term model F = FX associated with a given set of formulas X is
that term model for which ~zx and r** are defined by

st & XFEs=t;, 4t & Xbrt---t,.

By (1), FX E s=t © 5 =1 X F s=t. Similarly FX Frt & X - rf. In
general, FX is not a model for X. What follows from our definition is only

3) FXErm & Xkn (7 prime).
Most of the time X will be the axiom system of some theory T. We then also write
FT for FX and s =~qp ¢ for s ~zx t (s,t are equivalent in T, see page 66). An
example in which FT is indeed a model for T' (a special case of Theorem 1.3) is

Example 1. Let T be the theory of semigroups in £{o}. Every term t is equivalent
in T to a term in left association, denoted by 1 ---z, (o is not written); here
Z1,...,Ty is an enumeration of the variables of ¢ in the order of appearance from
left to right, possibly with repetitions. In other words, ¢t ~p x; - - - z,; for instance,
vo((v1v9)v1) =1 VoV1VeV1. Further, (w1 2n)o(y1 -« Ym) R T1 - TnY1 -+ * Ym, aS
is easily seen inductively on m. Moreover, &y -+ T, X7 Y1 Ym <= m =n & x; = y;.
Therefore, one can identify the term classes modulo ~7 with the words over the
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alphabet Var. More precisely, the algebra § underlying FT is isomorphic to the
word-semigroup over the alphabet Var and is thereby also a model of T'.

As already announced earlier, we slightly extend the concept of a model. Let £*
and Vary, be defined as in 2.2. Pairs (A, w) with domw D Vary, are called L*-models.
Here w need not be defined for vy, vii1, ..., or an allocation to these variables may
have been deliberately “forgotten.” In this sense L-structures are also L£°-models;
simply choose the empty valuation whenever k = 0, hence Var, = (. Note that an
L"-model can be understood as an £*-model whenever k < n.

Let Ty := {t € T | vart C Vary}. To ensure that the set of ground terms 7y is
nonempty, we tacitly assume in the following that £ contains at least one constant
when considering Tg. Clearly 7Ty is a subalgebra of T, for ¢,...,t, € Tx = ff € Tg.
The concept of a term model can equally be related to £* as follows:

Let ~ be a congruence in T and § the factor structure 7;/~ whose domain is
F,={t|t e Te} 3Tx is extended canonically to an L£*-model by the valuation
x +— T for x € Vary. This £*-model is subsequently denoted by Fj. For each k,
the following conditions are verified as with (1), (2), (3). FxX in (3;) is defined
analogously to FX but with respect to sets of formulas X C L.

(1) t'e =t forallt €Ty,

(2x) FrEVIa & FipE a% for all £ € T," (v open),

By) FXEr e Xknx (7 a prim formula from £*).

Let ¢ = VZa with an open formula . Then a% is called an instance of p. And
ift; €Ty fori =1,...,n then a;t:, is called a Tg-instance, for k = 0 also a ground
instance of ¢. Let GI(X) denote the set of ground instances of all ¢ € X. Note
that GI(X) # 0 whenever X # 0 since £ contains constants if k& = 0 is considered.

Theorem 1.1. Let U (C L) be a set of universal formulas and U the set of all
instances of the formulas in U. Then the following are equivalent:

(i) U is consistent, (i) U is consistent, (i) U has a term model in L.
The same holds if U C L£* and U denotes the set of all Tr-instances of the formulas
inU. In particular, a set U C L° of V-sentences is consistent iff GI(U) is consistent,
provided L contains constants.
Proof. (i) = (ii) is clear, because U + U. (ii) = (iii): Let M F U and F := FX
for X :={pe L|MEp} By (3), FET & MET (& X F 7) for prime formulas
7. Induction on A, - yields F E ¢ < M E ¢, for all open ¢. Since M E U we thus
have F E U. But this yields F E U according to (2). (iii) = (i): Trivial. For the
case U C L* the proof runs similarly using (3x), (2x), and F, = FrX. (4

By this theorem, a consistent set U of universal sentences has a term model Fy.
For logic programming the important case is that in which U is =-free. Then U
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has a model on the set of all terms (Exercise 2 in 3.2). By choosing such M in
the proof of Theorem 1.1, we can do without a factorization in the construction of
FoX (X ={a € L] ME a}). Such a model is called a Herbrand model for U. Its
domain 7, consists of all ground terms and is named the Herbrand universe of L.
In general, U has many Herbrand models A on the same domain Ty with the same
constants and functions: ¢* = ¢ and fA(ty,...,t,) = ft for all £ € 7;*. Only the
relations may vary. If U is a universal Horn theory (to be explained below), then U
has a distinguished Herbrand model, the minimal Herbrand model; see page 110.

Example 2. Let U C £{0, 8, <} consist of the two =-free universal sentences
(a) Vex <Sz; (b) VaVyVez(z <yry <z — x < z2).

Here the Herbrand universe 7Ty consists of all ground terms n (= 8"0). Obviously,
N = (N,0,8,<) F U. Hence, we may choose N in the construction of a Herbrand
model Fy for U in the proof of Theorem 1.1. One may even say that A itself is a
Herbrand model for U and indeed the minimal one; see Example 5.

Remark 1. With Theorem 1.1 the problem of satisfiability for X C £ can basically
be reduced to a propositional satisfiability problem. By Exercise 5 in 2.6, X is after
adding new operation symbols satisfiably equivalent to a set U of V-formulas which, by
Theorem 1.1, is in turn satisfiably equivalent to the set of open formulas U. Now replace
the prime formulas 7 occurring in the formulas of U with propositional variables pi,
distinct variables for distinct prime formulas, as in the examples of 1.5. One then obtains
a satisfiably equivalent set of propositional formulas. This works straight on =-free sets
of V-formulas. By dealing with the congruence conditions for = (page 109), this method
can be generalized for sets of V-formulas with identity but is then more involved.

Although we will focus on a certain variant of the next theorem, its basic concern
(the construction of explicit solutions of existential assertions) is the same in logic
programming and other areas of automated information processing. Herbrand’s
theorem was originally a purely proof-theoretic statement.

Theorem 1.2 (Herbrand’s theorem). Let U C L be a set of universal formulas
and ¥« € L for an open formula a. Finally, let U be the set of all T -instances of
formulas in U. Then the following properties are equivalent:

(i) Uk Fza,
(i) Uk \/Kma% for some m and some o, ..., tm € T,
(iii) U F Ve, o for some m and some fo, ... ¢, € T

The same holds if £ is replaced here by L*, T by Ty, and 7" by 7., for each k > 0.
Proof. Because U F U, certainly (iii)=(ii)=(i). It therefore remains to be shown
(i)=(iii): by (i), X = U, Vi-a is inconsistent, hence also U U {-~a L | € 7"} by
Theorem 1.1. With this, (iii) follows already propositionally (Exercise 1 in 1.4). []
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The theorem’s assumption that « is open is essential, as can be seen from the
example - Jza with o = Vy(ry —rz) (Example 2 in 2.6). There are no terms
to, ..., tm (variables in this case) such that =/,

We now define Horn formulas for a given language £ inductively. The definition
covers also the propositional case; omit everything that refers to quantification.

a 'l as is readily confirmed.

Definition. (a) Literals are basic Horn formulas. If « is a prime formula and 3 a
basic Horn formula, then o — 3 is a basic Horn formula. (b) Basic Horn formulas
are Horn formulas. If «, 8 are Horn formulas then so too is a a3, along with Vza
and Jxa. Horn formulas without free variables will be called Horn sentences.

For instance, Vy(ry —rz) and Va(yex —x¢y) are Horn formulas. By definition,
ag = -+ =, =0 (n>0) is the general form of a basic Horn formula of £, where
the a; are prime formulas and [ is a literal. Note that in the propositional case the
«; are propositional variables and 3 is a propositional literal.

We also call any formula « a (basic) Horn formula if it is equivalent to an original
(basic) Horn formula. Thus, since a; = -+ s, =3 = B v =y v -+ v =, and
by writing g for § in case 3 is prime, and 5 = —aqy otherwise, basic Horn formulas
are up to logical equivalence of the type

ILagv—-asv -+ v-a, or I magv-agv -+ v,
for prime formulas «ay, ..., a,. I and II are disjunctions of literals of which at most
one is a prime formula. Basic Horn formulas are often defined in this way; but our
definition above has pleasant advantages in inductive proofs as we shall see. Basic
Horn formulas of type I are called positive and those of type II negative.

Each Horn formula is equivalent to a prenex Horn formula. If its prefix contains
only V-quantifiers, then the formula is called a universal Horn formula. If the kernel
of a Horn formula ¢ in prenex form is a conjunction of positive basic Horn formulas, ¢
is termed a positive Horn formula. A propositional Horn formula, i.e., a conjunction
of propositional basic Horn formulas, can always be conceived of as a CNF whose
disjunctions contain at most one nonnegated element. It is possible to think of an
open Horn formula of £ as resulting from replacing the propositional variables of
some suitable propositional Horn formula by prime formulas of L.

Example 3. (a) Identities and quasi-identities are universal Horn sentences, as
are transitivity (z < yary < 2z - 2 < 2)€, reflexivity (z < )¢, and irreflexivity
(z £ x)°, but not connexity (z < y vy < )¢ The following congruence conditions
for = (where Z=¢ abbreviates \]_, x; =y;) are once again Horn sentences:

4) (z=2)¢ (z=yrx=z-y=2)¢ (T=y->rZ-r))¢ (T=7- fT=[fy)"
(b) Va3y zoy=re is a Horn sentence. Therefore, e.g., the theory of divisible abelian
groups in L{o, e} is a Horn theory, which in the general case is to mean a theory
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possessing an axiom system of Horn sentences. o := Vady(x#0 —x -y=1), on the
other hand, is not a Horn sentence and even not equivalent to a Horn sentence in
the theory of fields, Tr. Otherwise Md Tr would be closed under direct products,
Exercise 1. This is not the case: QxQ has zero divisors, for example (1,0)-(0,1) = 0.
Hence, Q x Q is not a field.

Theorem 1.3. Let U be a consistent set of universal Horn formulas. Then F := FU
is a model for U. In the case U C L*, Fy, := FrU is a model for U as well.

Proof. F E U follows from (x): UF a = F E «, for all Horn formulas «. This
is proved inductively on «. For prime formulas 7, (x) is clear, for then (3) reads as
(I) : Ubkn&s FEx Let Uk =, Then U ¥ «, for U is consistent. Hence F ¥ w
by (I), and so F E —w. This confirms (x) for all literals. Now let o be prime, 5 a
basic Horn formula, U - a — 3, and assume F E a. Then U  «, hence U - 3 and
so F E 3 by the induction hypothesis. This proves F E a — . Induction on A is
clear. Finally suppose U + VZa for sorne open Horn formula «, and let # € 7,,. Since
then certainly U - at =z, we get F F a by the induction hypothesis. # was arbitrary,
hence F E VZa by (2). Thus (x) is proved. The case U C L* runs analogously by
considering (2;), (3x) and taking Fy for F. [J

Incidentally, U’s consistency in the theorem is always secured if U consists of
positive Horn formulas; Exercise 2. Let U in Theorem 1.3 now be the axiom system
of a universal Horn theory T, that is, U consists of universal Horn sentences. The
theorem then yields FU F T. Since clearly U C L* for each k, we likewise get
F U E T. For more information on these particular models see Remark 2 below.

Example 4. The theory T in Example 1 is a particularly simple universal Horn
theory. FT (more precisely, its underlaying algebra § = 7/~r) was shown to be
isomorphic to the word-semigroup on the alphabet Var. The semigroup § is also
called the free semigroup with the free generators vy, vy ... Now § E T follows from
Theorem 1.3 without calculation. Similarly, the free semigroup with a finite number
k > 0 of free generators is constructed by considering F;T'. Its underlaying algebra
is isomorphic to the word-semigroup on a k-element alphabet.

Remark 2. A universal Horn theory T like the one in Example 4 is said to be nontrivial
if ¥p Vezyx=y. The generators vy, v1,... of FU are then distinct and FU is called the
free model of T with the free generators v;. Similarly, FU is the free model of T with
the free generators v; for i < k. The word “free” comes from the fact that to generate a
homomorphism, one can make “free use” of the values of the free generators. Free models
in this sense exist only for nontrivial universal Horn theories.

Let U be as in Theorem 1.3 but =-free and let T' be axiomatized by U. Clearly,
FoU is defined only if £ contains constant symbols; then FyU is a Herbrand model
for T, called the free or minimal Herbrand model for T'. 1t will henceforth be denoted
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by Cy or Cp. The domain of Cy is the set of ground terms. A not too simple an
example for the not always easy task of identifying the minimal Herbrand model for
a set U of =-free universal Horn sentences is the following one:

Example 5. Let U and N be as in Example 2. Both (a) and (b) are universal
Horn sentences. We determine precisely the minimal Herbrand model Cy (whose
domain consists of the terms n) by proving N ~ Cy;, with the isomorphism n +— n.
Since Cy Fm < k & U F m < k by the definition page 106, it suffices to prove
(¥): m < k< UF m < k. The direction = is shown by induction on k, beginning
with & = Sm. The induction initiation is clear since U F m < Sm by (a). Let
m < Sk, so that m < k or m = k and so U - m < k by the induction hypothesis, or
m = k. In both cases, U - m < 8k by (a) and (b). The direction <« is obvious since
N E U. This proves (x). Note that U has many models on its Herbrand universe.
< may be realized by any transitive relation on N that extends <, for instance by
<M. This interpretation is excluded by adding the Horn sentence Vo « z to U,
but the minimal Herbrand model remains the same for this expansion of U.

Most useful for logic programming is the following variant of Herbrand’s theorem.
The main difference is that in case U F 32y we get a single solution ’y;:. Theorem 1.4
does also hold with the same proof if the k is dropped throughout.

Theorem 1.4. Let U C L* (k > 0) be a consistent set of universal Horn formulas,
Y =YoA - AYm where all y; are prime, and 3Ty € L*. Then are equivalent

(i) FU =37y, (i) Uk AL for somet € T, (i) U F 37y.
In particular, for a consistent universal Horn theory T of any = -free language with
constants, Cp F 3T is always equivalent to Fp 377.
Proof. (i)=(ii): Let F,U F 3Zy. Then FU E *y% for some t, because FU F —vyi;
for all ¢ implies FU F Vi—y by (2;), contradicting (i). Thus, F.U F %L; for all
i < m. Therefore U F ~L by (34), and so U b~ (i)=(iii): Trivial. (iii)=(i):
Theorem 1.3 states that F,U E U. Hence (iii) implies F,U E 37y. The particular
case follows from (i)« (iii) when choosing k = 0. Observe that Cr = FoT. [1

Exercises

1. Show that Md T for a Horn theory T is closed under direct products and, if T’

is a universal Horn theory, then also under substructures. The former means
that (Viel)A; ET = B:=][,c; AiF T, thelatter A CAET = AFET.
2. Prove that a set of positive Horn formulas is always consistent.

3. Prove Cy ~ (N, 0,8, <) for the set of =-free universal Horn sentences

U={Vezx <z, Voxr<Sz, VaVyVz(z <yry <z -z < 2)}
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4.2 Propositional Resolution

We recall the problem of quickly deciding the satisfiability of propositional formulas.
This problem is of eminent practical importance, since many nonnumerical (some-
times called “logical”) problems can be reduced to this. The truth table method,
practical for formulas with few variables, grows in terms of calculation effort expo-
nentially with the number of variables; even the most powerful computers of the
forseeable future will not be able to carry out the method for formulas with just 100
variables. Unfortunately, no better procedure is known, unless one is dealing with
formulas of a particular form, for instance with certain normal forms. The general
case represents an unsolved problem of theoretical computer science, not discussed
here, the so-called P=NP problem; see for instance [GJ].

For conjunctive normal forms, the best procedure for contemporary computers
is the resolution procedure introduced in the following. For the sake of a sparing
presentation one switches from a disjunction \; v --- v A, of literals \; to the set
{A1,..., A} In so doing, the order of the disjuncts and their possible repetition,
unessential factors for questions of satisfiability, are eliminated.

A finite, possibly empty set of literals is called a (propositional) clause. By a
clause in p1,...,p, is meant a clause K with var K C {p1,...,p,}. In the following
K,H,G,L, P, N denote clauses, K, H, P, N sets of clauses. K = {\,...,\,} cor-
responds to the formula A; v -+ v A,. The empty clause (i.e., n = 0) is denoted
by 0. It corresponds to the empty disjunction, which is identified with the falsum
1. Form >0, K ={q1,...,9m,71,..., 7%} where ¢;,r; € PV is called a positive
clause, for m = 1 also definite, and for m = 0 a negative clause. These conventions
will also be adopted when the \; later denote literals of a first-order language.

Write w £ K (a propositional valuation w satisfies the clause K) if K contains
some A with w E A. K is termed satisfiable if there is some w with w E K. Note
that the empty clause [, as the definition’s wording suggests, is not satisfiable.

w is a model for a set K of clauses, if w F K for all K € K. If X has a model then
X is called satisfiable. In contrast to the empty clause [, the empty set of clauses
is satisfied by every valuation, again by the definition’s wording.

w satisfies a CNF « iff w satisfies all its conjuncts, and hence all of the clauses cor-
responding to these conjuncts. Since every propositional formula can be transformed
into a CNF, « is satisfiably equivalent to a corresponding finite set of clauses. For
instance, the CNF (pv ¢) A (-pv gvr) a(gv —r)a (=g v s) A —sissatisfiably equiv-
alent to the corresponding set {{p,q}, {-p,q,7},{q, -} {—q,s},{—-s}} of clauses.
It will turn out later that this set is not satisfiable.

We write K F H if every model of K also satisfies the clause H. A set of clauses
X is accordingly unsatisfiable if and only if K F [.
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For A ¢ K we will frequently denote the clause KU {\} by K,X. Moreover, let
A= —pfor A\ =p, A\ =pfor A = —p (so that always A = \), and K = {\| X € K}.

The resolution calculus operates with sets of clauses and individual clauses, and
has a single rule working with these objects, the so-called resolution rule

K AL, A
KUL
The clause KUL is also called a resolvent of the clauses K, A and L, X. The restriction

(A, A ¢ K U L) is actually not important, and can be neglected.

RR: (MAEKUL).

A clause H is called derivable from a set of clauses K, in symbols K FUH, if H can
be obtained from X by the stepwise application of RR; equivalently, if H belongs to
the resolution closure ReX of X, which is the smallest set of clauses H D X closed
with respect to applications of RR. This definition corresponds completely to that
of an MP-closed set of formulas in 1.6.

Example. Let X = {{p, ~¢}, {¢, 7p}}. Application of RR leads to the two resolvents
{p,—p} and {g, ¢}, from which we see that a clause pair in general has several
resolvents. Every subsequent application of RR yields already available clauses, so
that ReX contains only the clauses {p, —q}, {q, —7p}, {p, 0}, {9, ~q}.

Applying RR to {p}, {-p} gives the empty clause . Hence X F* 0, with the
unsatifiable set of clauses X = {{p}, {-p}}. By the resolution theorem below, the
derivability of the empty clause from a set of clauses K is characteristic of the
nonsatisfiability of K. To test this one needs only to check whether X F* 0, or
0 € ReX. This is effectively decidable for finite sets K because ReX is finite.
Indeed, a resolvent that results from applying RR to clauses in py, ..., p, contains
at most these very same variables. Further, it is clear that there exist only finitely
many clauses in pi,...,p,, namely exactly 22*. But that is still an exponential
increase as m increases. And aside from this the mechanical implementation of
the resolution calculus mostly involves potentially infinite sets of predicate-logical
clauses. We consider this problem more closely at the end of 4.4.

The derivation of a clause H from a set of clauses K, especially the derivation of
the empty clause, can best be graphically represented by a so-called resolution tree.
This is a tree which branches “from above” with an endpoint H without edge exits,
also called the root of the tree. Points without entering edges are called leaves. A
point that is not a leaf has two entrances, and the points leading to them are called
their predecessors. The points of a tree bear sets of clauses in the sense that a point
which is not a leaf is a resolvent of the two clauses above it. The following figure
shows one of the many resolution trees for the already-mentioned set of clauses

Ko ={{p,a}, {-p.q. v}, {q,~r}, {—q, s}, {~s}}.
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{(-p.a,r}  {g,-r} The leaves of this tree are all occupied by
clauses in Xgy. It should be clear that an

\ / arbitrary clause H belongs to the resolu-

tion closure of a set of clauses X just when

r,ay {-p,a} {~q s} {=s} there exists a resolution tree with leaves

‘ in X and root H. A resolution tree with

leaves in K and the root [ as in the figure
{a} {~d} on the left for X = K is called a resolution
for K, or more exactly a successful resolu-
tion for X. By the aforementioned, X is
unsatisfiable, and hence so is the conjunc-
tive normal form that corresponds to the

set of clauses Ky, namely (pv g)r(=pv gvr)a(gv —r)a(-gv s)a-s.

Remark 1. If a resolution tree ends with a point # [, to which RR either cannot be
applied or where upon application the points are simply reproduced, then one talks of
an unsuccessful resolution. In this case, most interpreters of the resolution calculus will
“backtrack,” which means the program searches backwards along the tree for the first point
where one of several resolution alternatives was chosen, and picks up another alternative.
Some kind of selection strategy must in any case be implemented, since just as with any
logical calculus, the resolution calculus is nondeterministic, that is, no natural preferences
exist regarding the order of the derivations leading to a successful resolution, even if the
existence of such a resolution is known for other reasons.

We remark that despite the derivability of the empty {p1, 2} {-pi}
clause, for infinite unsatisfiable sets of clauses K there
also exist infinite resolution trees with nonrepeating points \ /

where [I never appears. Such trees do not have a root. For (D2, ps} {=ps}
) P2

example, the set of clauses
g{: {{p1}7{_'p1}a{plv_‘p2}7{p27_‘p3}7"'} \/

is not satisfiable. Here we obtain the infinite resolution tree {-ps}

in the figure on the right, occupied by leaves from X, which

has no root and does not reflect the fact that [ can be

derived just by a single application of RR to the first two clauses of K. In this
example the resolution calculus runs on K with a completely stupid strategy.

This and similar examples indicate that the resolution calculus is incapable in
general of deciding the satisfiability of infinite sets K of clauses. Indeed, this will
be confirmed in 4.4. Nonetheless, by Theorem 2.2 below there does exist—if X is
in actual fact unsatisfiable—a successful resolution for X that can in principle be
found in finitely many steps.

We commence the more detailed study of the resolution calculus with
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Lemma 2.1 (Soundness lemma). X F"H = K E H.

Proof. As in the case of a Hilbert calculus, it suffices to confirm the soundness of
the rule RR, that is, to prove that a model for K, A and L, X is also one for K U L.
Thus let w E K, X and w = L,A\. Case 1: w ¥ X. Then there must be a literal
N € K with wE X. Hence w F K and therefore w F K U L. Case 2: w E A. Then
w ¥ X. Similar to the above we get w E L. Hence w E K UL as well. [

For the case K F" [ the lemma shows X E [, that is, the unsatisfiability of X.
The converse of Lemma 2.1 is in general not valid; for instance {{p}} E {p, ¢}, but
{{p}} ¥ {p,q}. Tt does hold, though, for H = 0. This follows from Theorem 2.2,
also often stated as “X is unsatisfiable iff K " 10.” In its proof we construct a global
valuation w from partial valuations, defined only for py, ..., p,.

Theorem 2.2 (Resolution theorem). X is satisfiable if and only z'ffKJr‘RRD.

Proof. For satisfiable X we have K ¥ [, so X ¥ by Lemma 2.1. Now let X J?‘RR[[,
or equivalently, 0 ¢ H where H := ReK. We will construct a model w for H and
hence for X stepwise, i.e., the values v, = wp, will be defined inductively on n.
Let A™ be the set of all literals in p1, .. ., pn, and let H be the set of all K € H
with K € A such that p, or —p, or both belong to K. Clearly, A® = KO = ¢,
because variable enumeration starts with p;. Note that varH™ C {pi,...,p,} and
H=U,en H™. Let vy, ..., v, already be defined so that w, := (vy,...,v,) F H®
for all ¢ < m. This assumption holds trivially for n = 0 if we agree to say that the
“empty valuation” satisfies H(® = . Now v,41 = wppsq will be defined such that
(*) Wpi1 = (v1,...,0p1) EHOD  (induction claim).
We need to care only about those K € H" containing not both p,;1 and —p,1,
and no literal A € AM™ with w, £ A, called sensitive clauses during this proof, since
all other (insensitive) H € H1) are satisfied by any expansion of w,, to wy1."
Claim: either p,1 € K for all sensitive K—then put v,,; = 1—or else =p,1 € K
for all sensitive K, in which case put v, 1 = 0, so that (%) holds in either case. To
prove the claim assume that there are sensitive K, H with p,+1 € K and —p,4+1 € H
(hence —ppy1 ¢ K, pny1 ¢ H). Then, applying RR to H, K, we obtain either [I
(contradicting [1 ¢ H), or else a clause from H® for some i < n whose literals are
not satisfied by w,, a contradiction to w, E H. This confirms the claim. Thus,
w, EH™ for all n, so that w = (v1,vy,...) is a model for the whole of H. [}

Remark 2. The foregoing proof is constructive, that is, if K ¥ and the H™ in the proof
above are computable, then a valuation satisfying X is computable as well. Moreover, we
incidentally proved the propositional compactness theorem for countable sets of formulas

1 The newcomer should write down all eight candidates for H™") C {{p1}, {-p1}, {p1,~p1}}. Only
{p1} and {—p;} are sensitive to v; = wp;. At most one of these two clauses can belong to H1).
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X once again. Here is the argument: every formula is equivalent to some KNF, and hence
X is satisfiably equivalent to a set of clauses KXx. So if X is not satisfiable, the same
is true of KXx. Consequently, Kx KO by Theorem 2.2. Therefore Ky F* 0 for some
finite subset Ky C Kx, for there must be some successful resolution tree whose leaves are
collected in Ky. Having this it is obvious that just a finite subset of X is not satisfiable,
namely the one that corresponds to the set of clauses Kj.

A clause belonging to a propositional basic Horn formula is called a (propositional)
Horn clause. Tt is called positive or negative if the corresponding Horn formula is
positive or negative. Positive Horn clauses are of the form {—qi, ..., —q,, p} where
n > 0, negative of the form {—qi, ..., gy }. The empty clause (k = 0) is also counted
among the negative ones. The affix propositional is omitted as long as we remain
within propositional logic.

It is important in practice that the resolution calculus can be formulated even
more specifically for Horn clauses. The empty clause, if it can be obtained from a
set of Horn clauses at all, can also be obtained using a restricted resolution rule,
which is applied only to pairs of Horn clauses where one component is positive and
the other negative. This is the rule of Horn resolution

K,p|L,—~
HR : Kop|L,op (K, L negative, p,—p ¢ K UL).
A positive Horn clause is clearly definite. Hence, the resolvent of an application
of HR is uniquely determined and always nega-

I N, tive. An H-Resolution tree is therefore of the sim-
\ / ple form illustrated by the figure on the left. There

j3) N, Py, ..., P, denote positive and Ny, ..., Nyyq negative
Horn clauses. Such a tree is called an H-resolution

\ / for P, N (where P here and everywhere is taken to
_N 2 mean a set of positive Horn clauses and N a negative

clause # [1) if it satisfies the conditions (1) P, € P

1y Ne for all i < ¢, and (2) Ng = N & Nyyy = 0. Tt is

\ / evidently also possible to regard an H-resolution for

Nows P, N as a sequence (P;, N;);<, with the properties

(0) Niy1 = HR(P;, N;) for all @ < £, (1), and (2).

Here HR(P, N) denotes the uniquely determined resolvent resulting from applying
HR to the positive clause P and the negative clause V.

The calculus operating with Horn clauses and rule HR is denoted by F™ . Before
proving its completeness we require a little preparation. Let P be a set of positive
Horn clauses. In order to gain an overview of all models w of P, consider the natural
correspondence w «— V,, := {p € PV | w E p} between valuations w and subsets
of PV. Let w < w' : & V,, C V,y. Clearly, P is always satisfied by the “maximal”
valuation w with V,, = PV (i.e., wp = 1 for all p € PV). It is obvious that w E P if
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and only if V' =V, satisfies the following two conditions:

(a) p € V provided {p} € P,

(b) ¢1,...,q, €V = p €V, whenever n > 0 and {—qi,...,7¢,,p} € P.
Of all subsets V' C PV satisfying (a) and (b) there is obviously a smallest one, namely
Vp := ({Vw |w E P}. The P-model corresponding to Vi is denoted by wy and called
the minimal P-model. We may define Vi also as follows: Let Vo = {p € PV | {p} € P}
and Vi1 = Vi U {p € PV {~q,...,7qn,p} € P for some ¢,...,q, € Vk}. Then
Vp = Upen V- Indeed, V;, €'V, for all k and all w E P. Hence, |J,cy Vi € Vop. Also
Vp € Upen Vi holds, because w = P provided V,, = (U, ey Vi-

The minimal m with p € V,, is termed the P-rank of p, denoted by p,p. Those p
with {p} € P are of P-rank 0. The variables arising from these by applying (b) have
P-rank 1 if not already in Vj, and so on.

Lemma 2.3. Let P be a set of positive Horn clauses and qo,...,q. € Vp. Then
holds P, N F™ [, where N = {=q0,---,—q}

Proof. For variables ro,...,r, € Vp set p,(ro,...,r,) == max{p,ro,..., 7 n}. Let
w(ro, ..., r,) be the number of ¢ < n such that p,r; = p,(ro,...,7,). The claim
is proved inductively on p = p,(qo,--.,qx) and p = p(qo,.-.,qx). First suppose
p =0, 1ie, {q}, ..., {q} € P. Then there certainly exists an H-resolution for
P, N, namely ({¢},{~q...,q})ick- Now take p > 0 and wlo.g. p = p.qo.
Then there exist gxi1,...,q¢m € Vp such that P := {=qxi1,..., " ¢m, 9} € P and
Po (Qet1y -5 qm) < p. Thus, p,(q1, -, @y Qit1s - - - @m) 18 < p, or it is = p so that
(g1, - qm) < p. By the induction hypothesis, in both cases P, N; ' O for
Ny = {=q,...,7qn}. Hence, an H-resolution (P;, N;)1<i<e for P, Ny exists. But
then (P, N;)i<e with Py := P and Ny := N is just an H-resolution for P, N. []

Theorem 2.4 (on Horn resolution). A set X of Horn clauses is satisfiable if and
only if K ¥ 0.

Proof. The condition K ¥ [ is certainly necessary if X is satisfiable. For the
converse assume X is unsatisfiable, X = PUN, all P € P are positive, and all N € N
negative. Since wp F P but wep ¥ PUN there is some N = {—qo, ..., qr} € N such

that wp ¥ N. Consequently, we F qq, ..., qx and so qo, ..., q € Vp. By Lemma 2.3
we then obtain P, N F [, and a fortiori K F . [}

Corollary 2.5. Let X = PUN be a set of Horn clauses, all P € P positive, and all
N € N negative. Then the following conditions are equivalent:

(i) K is unsatisfiable, (ii) P, N is unsatisfiable for some N € N.

Proof. (i) implies X F™ 0 by Theorem 2.4. Hence, there is some N € N and some
H-Resolution for P, N, whence P, N is unsatisfiable. (ii)=-(i) is trivial. []
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Thus, the investigation of sets of Horn clauses as regard satisfiability can com-
pletely be reduced to the case of just a single negative clause.

The hitherto illustrated techniques can without further ado be carried over to
quantifier-free formulas of a first-order language £, in that one thinks of the propo-
sitional variables to be replaced by prime formulas of £. Clauses are then finite sets
of literals in £. By Remark 1 in 4.1 a set of L-formulas is satisfiably equivalent to a
set of quantifier-free formulas, which w.l.o.g. are given in conjunctive normal form.
Splitting into conjuncts provides a satisfiably equivalent set of disjunctions of liter-
als. Converting these disjunctions into clauses, one obtains a set of clauses for which,
by the remark just cited, a consistency condition can be stated propositionally. Now,
because predicate-logical proofs are always reducible to the demonstration of cer-
tain inconsistencies by virtue of the equivalence of X F o with the inconsistency of
X, —a, these proofs can basically also be carried out by resolution.

To sum up, resolution by Theorems 2.2 and 2.4 is not at all restricted to proposi-
tional logic but includes application to sets of literals of first-order languages. The
predicate logic version of of Theorem 2.2, Theorem 5.3, will essentially be reduced
to the former. Moreover, questions concerning predicate logic resolution can often
directly be treated propositionally, as indicated by the exercises below.

Before elaborating on this, we consider an additional aid to automated proof
procedures, namely unification. This will later be combined with resolution, and it
is this combination that makes automated proof procedures fast enough for modern
computers, equipped with efficient interpreters of PROLOG.

Exercises

1. Prove that the satisfiable set of clauses P = {{ps}, {—ps, p1,p2}} does not have
a smallest model (the second clause in P is not a Horn clause).

2. Let ppmnk for m,n, k € N be propositional variables, S the successor function,
and P the set of all clauses belonging to the following Horn formulas:
pm,O,m 5 pm,n,k _)pm,Sn,Sk (m-, n, k S N)2
Let the standard model wg; be defined by wg; F pmni < m+n = k. Show
that the minimal model wyp coincides with wg;.
3. Let P be the set of Horn clauses of Exercise 2. Prove that
(a) Tv Pnmntm }_HR D: (b) :Pv Pn,m.k l_HR U= k=n+m
(a) and (b) together can be stated as (¢) P, “ppmi b 0 < k=n+m.

21n 4.4 these formulas will be interpreted as the ground instances of a logic program for computing
the sum of two natural numbers.
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4.3 Unification

A decisive aid in logic programming is unification. This notion is meaningful for any
set of formulas, but we confine ourself to —-free clauses K # [I of an identity-free
language. K contains only unnegated prime formulas, each starting with a relation
symbol. Such a clause K is called unifiable if a substitution o exists, a so-called
unifier of K, such that K7 := {\? | A € K} contains exactly one element; in other
words, K7 is a singleton. Here o is the easiest be understood as a simultaneous
substitution, that is, o is globally defined and x° = x for almost all variables x.
Simultaneous substitutions form a semigroup with respect to composition, with the
neutral element ¢ (see page 48), a fact we will heavily make use of.

Example 1. Consider K = {rzfzz,rfyzu}, r and f binary. Here w = Lyz [fyzz jq
a unifier: K = {rfyzffyzz}, as is readily confirmed. Clearly, w as a composition
of simple substitutions can also be understood as a global substitution.

Obviously, a clause containing prime formulas that start with distinct relation
symbols is not unifiable. A further obstacle to unification is highlighted by

Example 2. Let K = {rz,rfz} (r, f unary). Assume (rz)° = (rfz)°. This clearly
implies rz? = rfx? and hence x% = fx?, which is impossible, since no term can be
a proper subterm of itself. Hence, K is not unifiable.

If o is a unifier then so too is o7 for any substitution 7. Call w a generic or a
most general unifier of K if any other unifier 7 of K has a representation 7 = wo
for some substitution ¢. By Theorem 3.1 below, each unifiable clause has a generic
unifier. For instance, it will turn out below that w in Example 1 is generic.

A renaming of variables, a renaming for short, is for the sake of simplicity a
substitution p such that p? = (. This definition could be rendered more generally,
but it suffices for our purposes. p is necessarily bijective and maps variables to
variables. If xf = y; (# x;) and hence y/ = z; fori = 1,...,n, and 2” = z otherwise,

that is, if p swaps the variables x; and y;, we shall write p = (Z}Iﬁﬁf;‘).

If w is a generic unifier of K then so too is w’' = wp, for any renaming p. Indeed,
for any given unifier 7 of K there is some o such that 7 = wo. For ¢’ := po then
T = wp’c = (wp)(po) = «'o’. Choosing in Example 1 for instance p := (Zf,), we
obtain the generic unifier ' = wp for K, with K" = {r fuvf fuvv}.

We now consider a procedure in the form of a flow diagram, the unification al-
gorithm, denoted by 4. It checks each nonempty clause K of prime formulas of an
identity-free language for unifiability, and in the positive case it produces a generic
unifier. 4 uses a variable o for substitutions and a variable L for clauses, with initial
values ¢ and K, respectively. Later on, L contains K7 for suitable o, which depends
on the state of the procedure.
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INPUT L:= K. Do all « € K} 119 OUTPUT: “K cannot
have the same startsymbol 7 be unified” ]
yes
- Ic o] 2 ) yes OUTPUT: “K is unifiable
(s L a singleton? with the generic unifier ¢”
no
A
Choose a; # as from L and - no
determine the first distinction —»C Is ¢1 or (o a variable?

letters (; in «; and (5 in as.

yes
Y
=gt no Let w.lo.g. (; =z € Var and \ yes
I — K° | t the subterm of ay begining

with (o. Is © € vart?

The first distinction letters of two strings are the first symbols, read from the left,
that distinguish the strings. The first letter of a € L is a relation symbol. By
Exercise 1 in 2.2, any further symbol ¢ in « determines uniquely at each position
of its occurrence a subterm of o whose initial symbol is (. The diagram has just
one (thick-lined) loop that starts and ends in the test “Is L a singleton?”. It runs
through the operation o := ¢ £, L := K° which first assigns a new value to ¢ and
then to L. This reduces the number of variables in L since x ¢ var L because of
x ¢ vart. Therefore, 4 stops in any case and halts in one of the two OUTPUT
boxes of 4. But we do not yet know whether Ll always ends up in the “right” box,
i.e., whether Y answers correctly. The final value ¢ is printed in the lower OUTPUT
box. Let oy := ¢ and o; for ¢ > 0 the value of ¢ after the ith run through the loop.

Example 3. Let U be executed on K from Example 1. The first distinction letters
of the two members oy, ay € K are (; = x and (; = f at the second position. The
subterm beginning with ¢ in ay is ¢ = fyz. Hence oy = £2, and after the first run
through the loop with o := o1, we have K% = {rfyzf fyzz,r fyzu}. Here the first
distinction letters are f and w. The subterm beginning with f (at position 5) is
t = ffyzz. Since u ¢ var f fyzz, the loop is run through once again and we obtain
09 = oy ¥z = Jvz JJvzz Thig ig a unifier, and 4 comes to a halt with OUTPUT
“K is unifiable with the generic unifier £ LJ%227 according to Theorem 3.1.

Theorem 3.1. The unification algorithm i is sound, i.e., upon input of a negation-
free clause K it always answers correctly.® U unifies with a generic unifier.

Proof. This is obvious if two elements of K are already distinguished by the first
letter. Assume therefore that all & € K begin with the same letter. If 4 stops

3 The proof will be a paradigm for a correctness proof of an algorithm. It almost always has to be
carried out inductively on the number of runs through a loop occurring in the algorithm.
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with the output “K is unifiable...,” K is in fact unifiable, since it must have been
previously verified that L = K7 is a singleton. Converely, it has to be shown that
il also halts with the correct output provided K is unifiable. The latter will be our
assumption till the end of the proof, along with the choice of an arbitrary unifier 7
of K. Let i (=0,...,m) denote the moment after the ¢th run through the loop has
been finished. i = 0 before any run. ¢ = m after the last run is complete, in which
i gets again the question “Is L a singleton?”. We will show inductively on i that
(%) there exists a substitution 7; with oy, =7 (i =0,...,m).

This is trivial for ¢ = 0: choose simply 79 = 7, so that ooy = 7 = 7. Suppose (x)
holds for ¢ < m. Then K?7 = KT is a singleton, but K% still contains two distinct
formulas ay, ay with z at some position in a; and ¢t a term in s starting at the
same position in ap. From o]’ = a3 (note that af’, a3 € K% = K7 and K7 is a
singleton) we get 2™ = t™. Hence, x ¢ vart, for otherwise 2™ would be a proper

subterm of itself. Set ;1 := £ 7;. Then ¢ 7;,1 = 7;. Indeed, for y # 2 we obtain

y%”+1 = yTitl = y%ﬂ = y", but in view of ™ = ™ we have also
x% Tl = T = t% T =1t" (since x ¢ vart)
=a".
! 1 = mand 05, = 0; £ yield the induction claim o, 17511 = 0; £ Tiy1 = 037 = T.
Next we show that L = K™ is a singleton. Assume that this is not the case and
choose oy, 9 € L as in the diagram. Then the upper right test is answered “yes”
since otherwise (1, (; would be distinct function symbols or constants not removable
by any substitution. This contradicts o™ = aj™. However, the lower right question
is answered “no,” because a; starts at the first distinction position with z, hence aj™
with 2™ and ag™ (= of™) with ¢™. Therefore, 2™ = t™ which implies = ¢ vart.
Thus, the loop runs through once again which contradicts the definition of m; hence
o is indeed a unifier, that is, 4 terminates correctly in the unfiable case as well.
Moreover, o, is a generic unifier, because 0,,7,, = 7 by (*), with the arbitrarily
chosen unifier 7. This completes the proof. [

Exercises

1. Show that for prime formulas «, § without shared variables are equivalent
(i) {a, 8} is unifiable, (ii) there are substitutions o, 7 such that o = §7.

2. Show: o = %: is idempotent (which is to mean o2

for all 4,7 with 1 <, < n.

= o) if and only if x; ¢ vart;,

3. For clauses Ky, K; we term p a separator of Ky, Ky if p is a renaming such
that var K Nvar K; = (). Let Ky, K, be negation-free. Show that if Ky U K,
is unifiable then so is K} U K, but not conversely, in general.
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4.4 Logic Programming

A rather general starting point in dealing with systems of artificial intelligence con-
sists in using computers to draw consequences @ from certain data and facts given
in the form of a set of formulas X, that is, proving X F ¢ mechanically. That this is
possible in theory was the subject of 3.5. In practice, however, such a project is in
general realizable only under certain limitations regarding the pattern of the formu-
las in X and . These limitations refer to any first-order language £ adapted to the
needs of the particular problem. For logic programming the following restrictions
are characteristic:

e L[ is identity-free and contains at least one constant symbol,
e cach a € X is a positive universal Horn sentence,

e ¢ is a sentence of the form 3Z(yoA - A7y,) with prime formulas ;.
Note that = is equivalent to VZ(—y v --+ v =) and hence a negative universal
Horn sentence. Because V-quantifiers can be distributed among conjunctions, we
may assume w.l.o.g. that each sentence a € X is of the form

(x) (Bia-ABm—=0B)¢ (8,81,...,0Bm prime formulas, m > 0).

A finite set of sentences of this type is called a logic program and will henceforth
be denoted by the letter P. The availability of a constant symbol just ensures the
existence of a Herbrand model for P. In the programming language PROLOG, (*)
is written without quantifiers in the following way:

B :—=01,...,Bm (orjust §:— in case m = 0).

:— symbolizes converse implication mentioned in 1.1. For m = 0 such program
clauses are called facts, and for m > 0 rules. In the following we make no distinction
between a logic program as a set of formulas and its transcript in PROLOG. The
sentence ¢ = JT(ygA -+ Ay,) in the last item above is also called a query to P.
In PROLOG it is mostly denoted by :—7p,...,v.* 37 may also be empty. The
origin of this notation lies in the equivalence of the kernel =y v --- v =y, of
@ =VE (v -+ v Y) to L < oA -+ Ak, Omitting the writing of L.

Using rules one proceeds from given facts to arrive not only at new facts but also at
answers to queries. The restriction as regards the formulas in P and the abstinence
from = is not really essential. This will become clear in Examples 1 and 4 and in
the considerations of this section. Whenever required, = can be treated as a binary
relation symbol by adjoining the Horn sentences (4) in 4.1.

4Sometimes also ?— 7o, . .., Like many programming languages, PROLOG also has numerous
“dialects.” We shall therefore not consistently stick to a particular syntax. We also disregard
many details, for instance that variables always begin with capital letters and that PROLOG
recognizes certain unchanging predicates like read, ..., to provide a convenient user interface.



4.4 Logic Programming 123

Program clauses and negated queries can equally well be written as Horn clauses:
B =00y, Bm as {=01,...,0n, B}, and :—~o,..., v as {-0,...,}. For a
logic program P, the corresponding set of positive Horn clauses is denoted by P.
Confusing P and P is nearly always harmless, because the two can almost always
be identified. To justify this semantically, let A F K for an L-structure .4 and
K = {Xo, ..., A} simply mean A F \/,, Ai which is equivalent to A F (V,, Ai)¢.
For £-models M, let M F K have its ordinary meaning M F\/,, A

The empty clause corresponds to 1, so that always A ¥ 0. If an A F K exists for
all K € K, then A is called a model for X and X is called satisfiable or consistent,
since this is equivalent to the consistency of the sets of sentences corresponding to
XK. Further let X F H if every model for X also satisfies H. Evidently X F K¢ for
K € X and arbitrary substitutions o, since 4 F K = A F K. The clause K is
also termed an instance of K, in particular a ground instance if var K7 = ().

A logic program P, considered as a set of positive Horn formulas, is always con-
sistent. All facts and rules of P are valid in the minimal Herbrand model Cp, which
should be thought of as the model of a domain of objects about which one wishes
to express properties by means of sentences using P. A logic program P is always
written such that a real situation is modeled as precisely as possible by Cp.

Suppose P F JZv. Then a central goal is obtaining solutiom of the latter, in
particular in Cp which by Theorem 1.4 always exist. Here v % is called a solution of
P + 3y whenever P v L. One also speaks of the solutions £ or 7 := =1.

Logic programming follows the strategy of proving P = ¢ for a query ¢ by estab-
lishing the inconsistency of P, —p. To verify this we know from Theorem 1.1 that
an inconsistency proof of GI(P,—p) suffices. The resolution theorem shows that
for this proof in turn, it suffices to derive the empty clause from the set of clauses
GI(P, N) corresponding to GI(P, —p). Here GI(X) generally denotes the set of all
ground instances of members of a set K of clauses, and N = {—v,...,—v,} is the
negative clause corresponding to the query ¢, the so-called goal clause.

As a matter of fact, we proceed somewhat more artfully and work not only with
ground instances but also with arbitrary instances. Nor does the search for resolu-
tions take place coincidentally or arbitrarily, but rather with the most sparing use of
substitutions possible for the purpose of unification. Before the general formulation
of Theorem 4.2, we exhibit this method of “unified resolution” by means of two easy
examples. In the first of these, sum denotes the graph of addition in N.

Example 1. We consider the following logic program P = P, in £{0,S, sum}:
Vesumaz0z ; VaVyVz(sumzyz — sum 2SySz).
In PROLOG one may write this program slightly shorter as follows:

suma20z :— ; sumaSySz :(— sumazyz.
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The first program clause is a “fact,” the second one is a “rule.” The set of Horn
clauses corresponding to P is P = {{sumz0z}, {=sumzyz, sumzSySz}}. P de-
scribes indeed sum = graph + in N; more precisely, Cp ~ N := (N, 0, S, sum ), that
is, Cp E summnk & N F summnk (& m +n = k). This is deduced similarly
as in Example 5 on page 111, but more directly from Exercise 2 in 4.2. By replac-
ing therein p,,, with summnk, the set of formulas of this exercise corresponds
precisely to the ground instances of P, .

Examples of queries to P are JuJFvsum ulv, Jusumuub, and sumn2n + 2 (here

the 3-prefix is empty). For each of these three queries ¢ clearly holds Cp F . Hence,
P+ ¢ by Theorem 1.4. But how can this be confirmed by a computer?

As an illustration, let ¢ := JuFvsumulv. Clearly, (u,v) := (n,Sn) is a solution of
(¥*) P+ JuJvsumulv.

We will show that P F sumx1Sxz where x occurs free in the last formula, is the
general solution of (x). The inconsistency proof of P,—¢ results by deriving [
from suitable instances of P, N which will be constructed by certain substitutions.
N := {—-sumulv} is the goal clause corresponding to .

The resolution rule is not directly applicable to P, N. But with wy := % § 5¢ i
is applicable to P“0, N“o, with the Horn clause P := {-sumzyz, sumzSySz} € P.
Indeed, one easily confirms P*° = {=sumu0z, sumulSz} and N*° = {-sumulSz}.
The resolvent of the pair of Horn clauses P“°, N*0 is N; := {=sumu0z}. This can
be stated as follows: Application of RR became possible thanks to the unifiability
of the clause {sum zSySz, sumulv}, where —sum zSySz belongs to P and —sumulv
to N. But we have still to continue to try to get the empty clause.

Let P := {sumz0z} € P. Then P, N; can be brought to resolution by unifica-
tion with wy := § £. This is because P,** = {sumz0z} and N;** = {-sumz0z}.
Now, simply apply RR to this pair of

Tsumayz, sum zSySz ~sumulv  (lauses to obtain [. The figure on the

0S ; inti i
w: z 5/72/ left renders this description more intu-

itive. The set braces of the clauses have

sum 0z —sum u0z
wy =L been omitted in the figure. This reso-
u z
\ / lution can certainly be produced by a
i computer; the computer has just to look

for appropriate unifiers!

With the above, (x) is proved by Theorem 4.2(a) below. At the same time, by
Theorem 4.2(b), we got a solution of (x), namely (sumulv)“°“t = sumx1Sxz. The
latter is in our example a most general solution, because by substitution one can
obtain from sum xz1Sx all individual solutions, namely all sentences sumn 1 Sn.
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Example 2. The logic program P = {Vz(huz — mtx), huSocr} formalizes the two
premises of the old classical Aristotelian syllogism All humans are mortal; Socrates
is a human. Hence, Socrates is mortal.
Here Cp is the one-point model {Socr}

—huz, mtx “mtz
because Socr is the only constant and \ /
no functions occur. The figure on the
right shows a resolution of the query huSocr —huz

:— mtax, with the solution x := Socr; \‘:S%/
il

see also Theorem 4.2(b). The predicate

logic argument would run as follows:

Va(huz — mtz) implies hu Socr — mt Socr by specification. Thus, since hu Socr, MP
yields mt Socr. Proofs using MP can therefore also be gained by resolution.

Of course, the above examples are far too simple to display the efficiency of logic
programming. Here we are interested only in illustrating the methods involved.

Following these preliminary considerations we now generalize these and start with
the following definition. Its complicated look is no hindrance for programming.

Definition of the derivation rules UR and UHR of unified resolution and of unified
Horn resolution, respectively. Suppose Ky, K are clauses and w is any substitution.
Define K € U,R(Ky, K1) if there are clauses Hy, H; and —-free clauses Gy, Gy # [J
such that after a possible swapping of the two indices,

(a) K():HoLJGOaHdKl:Han (a:{X|AEG1})/

(b) w is a generic unifier of Go UGy and K = H¥ U H{.
K is called a U-resolvent of Ky, K1 or an application of the rule UR to Ky, K7 if
K € U,R(K}, K) for some w and separator p of Ky, K;.®> The restriction of UR to

Horn clauses Ky, K7 (K positive, K7 negative) is denoted by UHR and U, R(Ky, K1)
by U,HR(Ky, K1). The resolvent K is then termed a UH-resolvent of Ky, Kj.

Note that by (b), G§ = {7} = GY for some prime formula 7; hence K results from
applying RR or HR, respectively. Applying UR or UHR to K, K; always includes
a choice of w and p. In the examples we used UHR. In the first resolution step
of Example 1, =sumu0z € U, HR(P*,N) (with p = ¢). The splitting of K, and
K according (a) above reads Hy = {-sumayz}, Go = {sumzSySz}, and H; = 0,
Gy = {sumulv}. UHR was used again in the second resolution step, as well as in

Example 2, strictly following the above definition instructions.
We write K H H if H is derivable from the set of clauses K using UR. Accordingly
UHR

let X """ H be defined for sets of Horn clauses K, where only UHR is used. Just as
. . . . . . . UR UHR . .
in propositional logic, derivations in =" or = can be visualized by means of trees.

5 Using a separator is more general than demanding just K € U, R(Ky, K1); see Exercise 1.
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A (successful) U-Resolution for X is just a U-resolution tree with leaves in X and
root [, the empty clause.

A UH-resolution is defined similarly; it may as well be regarded as a sequence
(Pf', Nj,w;)ice with Ny € U,, HR(P/*, N;) for i < { and 0 € U,,HR(P}*,Ny). If P
is a set of positive clauses and N a negative clause, and if further P; € P holds for

all i < ¢ and Ny = N, one speaks of

Py Ny a UH-resolution for P,N. In general, P
\wo consists of the clauses of some logic pro-

P N, gram and N is a given goal clause. In
\w / place of UH-resolution one may also speak

; of SLD-resolution (Linear resolution with

.N2 Selection function for Definite clauses).

pre - This name has nothing to do with some

¢ Ne special strategy for searching a successful

\W/ resolution, implemented in PROLOG. For

il details on this matter see for instance [Ll].

The figure on the left illustrates a UH-

resolution (P, N;,w;)ice for P, N. It obviously generalizes the diagrams in the

Examples 1 and 2, which are UH-resolutions as we know.

First of all we prove the soundness of the calculus F . Note that this also covers

the calculus " of unified Horn resolution with its more special clauses.

Lemma 4.1 (Soundness lemma). K V" H implies K = H.

Proof. It suffices to show that Ky, K1 F H if H is a U-resolvent of Ky, K;. Let
H e U,R(K{,K,), Kf = H)UGy, K; = HHUG,, G¥ = {n} = GY, H = H{* UHY,
and A F Ko, Ky, so that 4 F K§ K¢ as well. Further, let w: Var — A, with
M = (Aw) E K§¥ = H*U{r}, M E HY U{-n}. If M F 7 then evidently
M E H§¥. Otherwise M ¥ -, hence M F HY. So M E Hy UHY = H in any
case. This states that A F H, because w was arbitrary. []

With respect to the calculus F ' this lemma serves the proof of (a) in

Theorem 4.2 (Main theorem of logic programming). Let P be a logic program,
3Ty a query, vy = Yo -+ A, and N = {=0,..., 7 }. Then the following hold:

(a) PF3zy iff P,NF"0 (Adequacy),

(b) Let (P, N;,w;)ice be any UH-resolution for P,N and w = wq---wy, then
Pt ~¢  (Solution soundness),

(c) Let P+ ’y’% with t € T,". Then there exists a UH-resolution (K, Ni, w;)i<s
and some T such that x™ = t; fori =1,...,n, wherew := wy---w; (Solution
completeness).
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The proof, based on a substantial number of substitutions, is undertaken in 4.5.
Here are just a few comments. Since —3Zvy = VZ—y it is obvious that

(¥) PF Iy
is equivalent to the inconsistency of P, VZ—y, hence also to that of the corresponding
set of Horn clauses P, N. Theorem 4.2(a) states that this is equivalent to P, N F,
which is not obvious. (b) tells us how to achieve a solution of () by a successful reso-
lution. Since v* in (b) may still contain free variables (like (sumwulv)* = sumz1Sz
for w = wiws in Example 1) and since P + +* = P F 47 for any 7, one often
obtains whole families of solutions of (x) in the Herbrand model Cp by substituting
ground terms. By (c), all solutions in Cp are gained in this way. However, the
theorem makes no claim as to whether and in what circumstances (x) is solvable.

Logic programming is also expedient for purely theoretical purposes. For instance,
it can be used to make the notion of computable functions on N more precise. The
definition below provides just one of many similarly styled, intuitively illuminating
possibilities. We will construct an undecidable problem (Theorem 4.3 below) that
explains the difficulties surrounding a general answer to the question P + Jiy.
Because in 6.1 computable functions are equated with recursive functions, we keep
things fairly brief here.

Definition. f:N" — N is called computable® if there is a logic program P (= Py)
in a language that, in addition to 0 and S, contains only relation symbols, including
a symbol denoted by 7y (to mean graph f), such that for all k and m,

(1) Prrkm < fk=m (k= (ky...,kn)).

The domain of the Herbrand model Cp is N and P + ’rfE m < CpFE rfE m by
Theorem 1.4, so that (1) holds when just the following claim has been proved:

(2) Cp F rfgm & fk=m, forallk, m.

A function f:N" — N satisfying (1) is certainly computable in the intuitive sense:
a deduction machine is set to list all formulas provable from P, and one simply has to
wait until a sentence rEm appears. Then m = fE is computed. By Theorem 4.2(a),
the left-hand side of (1) is equivalent to P, {-rkm}
also computable with the resolution calculus.

0. Therefore, f is basically

Example 3. The program P = P, in Example 1 computes +, or more precisely,
graph+. Indeed, Cp F sum knm < k+n =m as was shown there. So (2) holds
and hence also (1). A logic program P, for computing prd := graph - arises from
P+ by adding to the program of P, the following two program clauses:

prd x00 :— ; prd zSyu :— prd xyz, sum zzu.

6By grounding the notion of computability in different terms one could f provisionally call LP-
computable. Our definition is equivalent to that in 6.1, but we will not make full use of this.
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Example 4. The program Ps, consisting of the single fact 15 Sz :—, computes the
graph 75 of the successor function. Clearly, Ps F 15 nSn, since P, {-rsnSn} F D
(notice that [ is a resolvent of {rs 2S2}? and {—rs nSn}” with o = £2). Let m # Sn.

Then (N, 0,8, graph S) F Ps, =15 n.m; hence Ps ¥ 15 n m. This proves (1).

It is not difficult to recognize that each recursive function f can be computed by a
logic program Py in the above sense in a language that in addition to some relation

symbols contains only the operation symbols 0, S. Exercises 2 and 3 are steps in the
proof, which proceeds by induction on the generating operations Oc, Op, and O
of recursive functions from 6.1. Example 4 confirms this for the recursive initial
function S. The interested reader should study 6.1 to some extend to understand
what is going on. Thus, the concept of logic programming is very comprehensive. On
the other hand, this has the consequence that the question P+ 377 is, in general,
not effectively decidable. Indeed, this is the assertion of our next theorem.

Theorem 4.3. A logic program P exists whose signature contains at least a binary
relation symbol r, but no operation symbols other than 0,S, so that no algorithm
answers the question P Jxrxk for each k.
Proof. Let f:N — N be recursive, but ran f = {m € N|3kfk = m} nonrecursive.
Such a function f exists; see Exercise 4 in 6.5. Then we get for P := P,
PrE3Izram < CpEJzram (Theorem 1.4, r stands for r)

< Cp Erkm for some k (Cp has the domain N)

< fk =m for some k (by (2))

< m € ran f.
Thus, if the question P  Jx ram were decidable then so too would be the question
m € ran f, and this is a contradiction to the choice of f. [

Exercises

1. Let H € U,R(Ky, K1). Show that H is a U-resolvent of Ky, K; according to
the definition, that is, there exists a (generic) w’ and a separator p of Ky, K;
such that H € U, R(K{, K;). The converse need not hold.

2. Let g:N* — N and h:N"*2 — N be computable by means of the logic pro-
grams P, and P, and let f:N"*! — N arise from g, h by primitive recursion,
ie., f(a,0) = gd and f(a,k+ 1) = h(d,k, f(d,k)) for all @ € N". Provide a
logic program for computing (the graph of) f.

3. Let Py, and P,, be logic programs for computing A:N™ — N and ¢;: N* — N
(¢ =1,...,m). Further let f be defined by fd@ = h(g:d, ..., gnmad) for allad € N™,
Give a logic program for computing f.
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4.5 Proof of the Main Theorem

While we actually require the following Lemma and Theorem 5.3 below only for
the unified Horn resolution, the proofs are carried out here for the more general
U-resolution. The calculi F"and F* from 4.2 are given henceforth with respect to
variable-free clauses of a fixed identity-free language.

Lemma 5.1. Let Ky, K be clauses with separator p and let K7°, K7' be variable-
free. Suppose K is a resolvent of K(°, K7'. Then there exist substitutions w, T and
some H € U,R(K{, K1) such that H™ = K, i.e., K is a ground instance of some
U-resolvent of Ko, Ki. Further, for a given finite set V of variables, w,T can be
selected such that x*7 =z for all x € V. The same holds for Horn resolution.

Proof. Suppose w.l.o.g. K{° = Lo, 7 and K7 = Ly, - for some prime formula 7,
and K = LoU Ly. Let H; :={a € K; | a” € L;}, Gy :={a € Ky | o = 7} and
Gy ={B€K,|p"=n},i=0,1 Then Ky = Hy UGy, K; = HL UGy, H = L;,
G7" = {r}. Let p be a separator of Ky, K; and define o by 27 = 2*°° in case
z € varK§, and 27 = 27 otherwise. Then K{° = K§’*° = K{° (consider p* = 1),
along with K¢ = K7'. This leads to (GHUG1)° = G UG] = Gi°* UGT' = {n},
that is, o unifies G5 U G;. Let w be a generic unifier of this clause so that o = wr
for suitable 7. Then H := H§* U HY € U,R(K{, K;) by definition of the rule UR.
Furthermore H™ = K, since K{” = K{°. Then wr = ¢ and K{ = K7 yield

H =Hy"UHY™ = HEP UHY = H° UH]' = LyU L, = K.
V being finite, p can be chosen such that V Nvar K = (. By definition of o and by
virtue of ¢ = wr it then follows that z¥7 = 27 = 2 also forx € V. []

Lemma 5.2 (Lifting lemma). Suppose GI(X) F* O for some set of clauses X.

UHR
.

Then also K H" 1. If X consists of Horn clauses only, then X

Proof. We prove the claim If GI(X) F"K then exist H and o with X V" H and
K = H°?. For K =[] is this the lemma (remember that 1 = [I). Our claim follow
straightforwardly by induction on GI(X) FPK; it is clear for K € GI(X), and for
the inductive step (GI(X) F* Ko, K; and K is a resolvent of Ko, K,) one merely
requires Lemma 5.1. The case for Horn clauses is completely similar. [_J

Theorem 5.3 (U-resolution theorem). A set of clauses X is inconsistent iff
KE"0; a set of Horn clauses K is inconsistent iff K .

Proof. If X F" [ then X E [ by Lemma 4.1, hence X is inconsistent. Suppose
now the latter, so that the set U of V-sentences corresponding to X is inconsistent
as well. Then GI(U) is inconsistent according to Theorem 1.1, hence GI(X) as well.
Thus, GI(X) F*[ by Theorem 2.2 and so X F " [ by Lemma 5.2. For sets of Horn
clauses the proof runs similarly using the above lemma and Theorem 2.4. []
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Proof of Theorem 4.2. (a): P F 37y is equivalent to the inconsistency of P, Vi—y

UHR

or of P, N. But this, by Theorem 5.3, is the same as saying P, N - "[I.
(b): Proof by induction on the length ¢ of a successful UH-resolution (P, N;, w;)i<s
for P, N. Let £ = 0, so that 0 € U,HR(PY, N) for suitable p,w. Then w unifies
PYUN = P{U{v,..., %}, L.e, Py = {r} =~ for some prime formula 7 and
all i < k. By virtue of Py € P we obtain P + ¥ (= m) for each ¢ < k, and so
PEA&A-- Ay = 4 as claimed. Now let £ > 0. Then (P, N;,w;)1<ice 1S &
UH-resolution for P, Ny as well. By the induction hypothesis,

(1) PF o whenever ~av € Ny .
It suffices to verify that P  ~¢ for all ¢ < k. To this end we distinguish two cases
for given i: if = € Ny then P F (47°)¥r“¢ by (1), hence P F 4¥. Now suppose
—° ¢ Nj. Then 77° disappears in the resolution step from P/, Ny (= N) to Ny.
So Py takes the form Py = {—f,..., 70y, B} where 370 = 4 and —p{*° € N,
for j =1,...,m. Thus (1) evidently yields P I ({°°)**"*, hence P /\;.”:lﬂfo‘”.
At the same time P = ATl 37° — 37 because of P F Pf*”. Using MP we then
obtain P F 37, From (7“° = ~4° and an application of wy - - -wy to both sides we
obtain §7“ = ~¢, thus proving P F ¢ also in the second case.

(c): Let P+ 47 such that o := £. Then P, =77 is inconsistent, and by Theorem 1.1
so too is P, 7 where P’ := GI(P) (consider GI(—y”) = {-v7}). According to
Theorem 2.4, there is an H-resolution B = (P}, Q;)i<, for ', N7, that is, Qo = N°.

Here let, say, P/ = P for appropriate P; € P and ¢;. From this we obtain

(2) for finite V. C Var there exist p;, Ny, w;, T such that (PP, N;,w;)ice is a UH-
resolution for P, N, and z¥7 = 27 for w :=wg---wp and allz € V.

This completes our reasoning, since (2) yields (for V = {zy,...,z,}) 2" =z =1,
for i =1,...,n, whence (c). For the inductive proof of (2) look at the first resolution
step Q1 = HR(P}, Qo) in B. By Lemma 5.1 choose wy, po, 70, H (where Ky := P,
K, := Ng= N, 0y :=0) in such a way that H € U,HR(P}", No) and H™ = Qy, as
well as %07 = 7 for all x € V. If £ = 0, that is, @; = [, then also H = [J and
(2) is proved with 7 = 75. Now suppose ¢ > 0. For the H-resolution (P, Q;)i<i<e
for ', Q1 and for V' := var{z*° | x € V'} there exist by the induction hypothesis
pis Ni,w; for i = 1,...,¢ and some 7, such that (P, N;,w;)1<i<¢ i a UH-resolution
for P, H and simultaneously y“*“™ = y™ for all y € V' (instead of Qy = N7 here
Q1 = H™). Because of vara“® C V' and z*°™ = 27 for x € V' we get
(3) a¥T = (gwo)¥r T = g0 = 7 forallz € V.

(PP, N;,w;)i<e is certainly a UH-resolution. Moreover, by virtue of (3), in addition
@7 = z7 for i = 1,...,n. This proves (2), hence (c), and completes the proof of the
main theorem.

x



Chapter 5

Elements of Model Theory

Model theory can be seen as applied mathematical logic. Here the techniques devel-
oped in mathematical logic are combined with construction methods of other areas
(such as algebra and analysis) to their mutual benefit. The following demonstra-
tions can provide only a first glimpse in this respect, a deeper understanding being
gained, for instance, from [CK] or [Ho]. For further-ranging topics, such as saturated
models, stability theory, and the model theory of languages other than elementary
ones, we refer to the special literature, [Bue], [Mar], [Pz], [Rot], [Sa], [Sh].

The theorems of Lowenheim and Skolem were first formulated in the generality
given in 5.1 by Tarski. These and the compactness theorem form the basis of model
theory, a now wide-ranging discipline that arose around 1950. Key concepts of model
theory are elementary equivalence and elementary extension. These are not only
interesting in themselves but also have multiple applications to model constructions
in set theory, nonstandard analysis, algebra, geometry and elsewhere.

Complete axiomatizable theories are decidable; see 3.5. The question of decidabil-
ity and completeness of mathematical theories and the development of well-honed
methods that solve these questions have always been a driving force for the fur-
ther development of mathematical logic. Of the numerous methods, we introduce
here the most important: Vaught’s test, Ehrenfeucht’s game, Robinson’s method of
model completeness, and quantifier elimination. For more involved cases, such as
the theories of algebraically closed and real closed fields, model-theoretical criteria
are developed and applied. For a complete understanding of the material in 5.5
the reader should to some extent be familiar with basic constructions in classical
algebra, mainly concerning the theory of fields.

Chapter 2 should have been read. From Chapter 3 we require a certain amount of
material for applications of model theory to the solution of decision problems, and
from Chapter 4 just the notion of a Horn formula.

131
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5.1 Elementary Extensions

In 3.3 nonstandard models were obtained using a method that we now generalize.
For given £ and a set A let LA denote the language resulting from £ by adjoining
new constant symbols a for all @ € A. The symbol a should depend only on a, so
that LA C LB whenever A C B. To simplify notation we write from Theorem 1.3
onwards just a rather than a; there will be no risk of misunderstanding.

Let B be an L-structure and A C B (the domain of B). Then the L£A-expansion
in which a is interpreted by a € A will be denoted by B,. According to Exercise 3
in 2.3 holds for arbitrary a = «(Z) € £ and @ € A", with a(@) :=a & - 2=,

(1) BEald] & B, E afa).

Clearly, every sentence from LA is of the form «(d) for suitable a(Z) € £ and
d € A™. Instead of B, F a(@) (which is equivalent to B E a/[d]) we later write just
Ba E a(d) or even B E a(d), as in Theorem 1.3. Thus, B may also denote a constant
expansion of B if it is not the distinction that is to be emphasized. This notation is
somewhat sloppy but points up the ideas behind the constructions.

Note that for an L-structure A, the LA-expansion A, receives a new constant
symbol for every a € A, even if some elements of A already possess names in L.
The set of all variable-free literals A € LA such that A, E X is called the diagram
DA of A. For instance, D(R, <) contains for all a,b € R the literals a=b, a#b,
a < b, a £ b, depending on whether indeed a=b, a#b, a<b, or a£b for the reals
a,b. Diagrams are important for various constructions of model extensions.

The notion of an embedding 2: A — B as defined in 2.1 (that is, the image of A
under 2 is an isomorphic copy of A), embraces the notion of a substructure. For
A C B, the mapping © = idy is the trivial identical embedding of A into B.

Let Lo € L. In this chapter, the embeddability of an Lg-structure A into an
L-structure B often means the embeddability of A into the Ly-reduct By of B, and
we shall write A C B also in this case. In this sense the group Z, for example, is
embeddable into the field Q. Our first statement is

Theorem 1.1. Suppose Ly C L and let A be an Ly-structure. An LA-structure B
satisfies DA if and only if 1 : a — a® is an embedding of A in B.

Proof. Let BE DA and a,b € A, a # b. Then a#b € DA. Hence BF a#b, or
equivalently, a® # b®. Thus 1 is injective. For r € Ly and @ € A™ it holds that

r4d < rae DA & BFEra (since BF DA)
& rha (1@ == (1, . .. 1ay)).

Similarly +f4d = f%ud is obtained, for note that whenever & € A" and b € A then
fAd =b e fd=b € DA & BE fa=b < f%d = . Thus, ¢ is indeed an
embedding. Now suppose the latter. For variable-free terms ¢ in LyA one easily
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verifies 1t = 5, where here and elsewhere t*, 5 are to mean more precisely 44

and t54. Since 1 is injective it follows for variable-free equations in L£yA that
ti=ts € DA & til=t & uit=uts & tb=tf & Brti=t.

In the same way t; 5%ty € DA < B E ty #15 is verified, and prime sentences of the
form rt are dealt with analogously. This proves B E DA. [

Corollary 1.2. Let A be an L-structure. B E DA iff A is embeddable into B.
Moreover, BE DA < A C B provided A C B.

Indeed, by the theorem with £y = £, the mapping 2: a — a® realizes the embedding,
and also the converse of the claim is obvious. @ is the identical mapping in case
A C B, which verifies the “Moreover” part. Frequent use will be made of this
corollary, without mentioning it explicitly. Taking an (algebraic) prime model for a
theory T to mean a model embeddable into every T-model, the corollary states that
Ay is a prime model for DA, understood as a theory. We will use the concept of a
prime model only in this sense.!

Probably the most important concept in model theory, for which a first example
appears on the next page, is given by the following
Definition. Let A, B be L-structures. A is called an elementary substructure of B,
and B an elementary extension of A, in symbols A < B, if A C B and

(2) AEald] & BEald, for all @« = a(Z) € £ and @ € A™.

Obviously, A < B implies A C B. Terming Dy A := {a € LA | A, F a} the
elementary diagram of A, A < B is equivalent to A C B and B, F D, .A. Namely,
(2) already holds given only AF a[d@] = BE «ad], for all « = a(Z) € £, d € A™.

(2) is equivalent to A, F a(d) < B, F a(a@), by (1). And since every a € LA is
of the form «(a) for appropriate «(Z) € L, @ € A™ and n > 0, the property A < B
is also characterized by A C B and A, = B, (elementary equivalence in LA).

In general, A < B means much more than A C B and A = B. For instance,
let A= (N,,<)and B = (N,<). Then certainly A C B, and since A ~ B, also
A = B. But A < B is false. For example, 3z z < 1 holds in B4, but obviously not
in A4. The following theorem will prove to be very useful for, among other things,
the provision of nontrivial examples for A < B

Theorem 1.3 (Tarski’s criterion). For L-structures A, B with A C B the follow-
ing conditions are equivalent:

(i) A< B,

(il) BE Jyp(d,y) = BFE ¢(a,a) for somea € A (p(Z,y) €L, e A").

LTt must be distinguished from the concept of an elementary prime model for 7', which means that
A is elementarily embeddable into every B E T in the sense of Exercise 2.
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Proof. (i)=(ii): Let A < B and B F Jyp(d, y), so that also A F Jyp(d,y). Then
clearly A F ¢(d, a) for some a € A. But A < B; hence B F (@, a). (ii)=(i): Since
A C B, (2) certainly holds for prime formulas. The induction steps for a,— are
obvious. Only the quantifier step needs a closer look:
AEVYyp(d,y) & AE p(d,a) for all a € A

< BFE p(d,a) for all a € A (induction hypothesis)

< BEYye(d,y) (see below).
We prove the direction = in the last equivalence indirectly: Assume B ¥ Vyo(a,y).
Then B F Jy—p(d,y). Hence B F —p(d, a) for some a € A according to (ii). Thus,
B E (@, a) cannot hold for all a € A. [

Interesting examples for A < B are provided in a surprisingly simple way by the
following Theorem which, unfortunately, is applicable only if B has “many automor-
phisms” as is the case in the example below, and in geometry, for instance.

Theorem 1.4. Let A C B. Suppose that for all n, all @ € A", and all b € B there
s an automorphism v: B — B such that 1@ = d, and b € A. Then A X B.

Proof. It suffices to verify condition (ii) in Theorem 1.3. Let B F Jyp(ad, y), or equi-
valently B E ¢(d@,b) for some b € B. Then B F ¢(ud, 1b) according to Theorem 2.3.4,
and since 1@ = @, we obtain B F ¢(d, a) with a := b € A. This proves (ii). [

Example. It is readily shown that for given aq,...,a, € Q and b € R there exists
an automorphism of (R, <) that maps b to a rational number and leaves ay, ..., a,
fixed (Exercise 3). Thus, (Q, <) < (R, <). In particular (Q, <) = (R, <).

Here an outlook at less simple examples of elementary extensions, considered more
closely in 5.5. Let A = (A,0,1,+,+) denote the field of algebraic numbers and C
the field of complex numbers. The domain A consists of all complex numbers that
are zeros of (monic) polynomials with rational coefficients. Then A < C. Similarly,
A, < R where A, denotes the field of all real algebraic numbers and R is the field
of all reals. Both these facts follow from the model completeness of the theory of
algebraically closed and real closed fields, respectively, proven on page 154.

Before continuing we will acquaint ourselves somewhat with transfinite cardinal
numbers. It is possible to assign a set-theoretical object denoted by |M| not only to
finite sets but in fact to arbitrary sets M in such a way that

(3) M~ N & |[M|=|N| (~ means equipotency, see page 87).
|M]| is called the cardinal number or cardinality of M. For a finite set M, |M] is
just the number of elements in M; for an infinite set M, |M] is called a transfinite
cardinal number, or briefly a transfinite cardinal.

At this stage it is unimportant just how |M| is defined in detail. Significant are
(4) and (5), taken as granted, from which (6) and (7) straightforwardly follow.
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(4) The cardinal numbers are well-ordered according to size, i.e., each nonempty
collection of them possesses a smallest element. Here let |N| < |M] if there is
an injection from N to M.? In particular, |N| < [M] for any infinite M.

(5) IMUN| = |M x N| = max{|M|,|N|} for any sets M and N of which at least
one is infinite.

We first prove that M* := J,., M™ has the same cardinality as M for infinite M
(M* is the set of all nonempty finite sequences of elements of M). In short,

(6) |M*| =[M| (M infinite).

Indeed, |M!| = |M], and the hypothesis |[M"| = |M]| yields |[M™| = |M™ x M| = |M]|
by (5). Thus [M"| = [M| for all n. Therefore |M*| = ||, M™ = |M x N| = |M|.
One similarly obtains from (4), (5) for every transfinite cardinal  the property

(7) If Ag, Ay ... are any sets and |A,| < & for all n € N then |J, oy An| < .

The smallest transfinite cardinal number is that of the countably infinite sets,
denoted by Ny. The next one is called X;. Then follows Ry etc. The Cantor-Bernstein
theorem readily shows that the power set BN and the set R have the same cardinality,
denoted by 2%. Certainly Ry < 2%, and so clearly R; < 2%, Cantor’s continuum
hypothesis (CH) states that R; = 2%. CH is provably independent in ZFC; see e.g.
[Ku]. While there are axioms extending beyond ZFC that decide CH one way or
another, none of these is sufficiently plausible to be regarded as “true.” In the last
decades some evidence has been collected that suggests that 2% = R,, but this is
seemingly not yet enough to convince the majority of mathematicians.

The cardinality of a structure A is always that of its domain, that is, |A] := |A].
The following theorem generalizes Theorem 3.4.1 page 87 essentially. The additive
“downwards” prevents a mix up of these theorems. For |B| > |£|, Theorem 1.5
ensures the existence of some A < B (in particular A = B) such that |A] < [£].

Theorem 1.5 (Lowenheim—Skolem theorem downwards). Suppose B is an L-
structure such that |L| < |B| and let Ag C B be arbitrary. Then B has an elementary
substructure A of cardinality < max{|Ao|, |L|} such that Ay C A.

Proof. We construct a sequence Ag C A; C --- C B as follows. Let Ay be given.
For every a@ = a(Z,y) and @ € AJ' such that B £ Jya(d,y) we select some b € B
with B E «(a@,b) and adjoin b to Ay, thus getting Axy1. In particular, if « is ff=1y
then certainly B E Jy fd=y. Since B F Ily fd=1y, there is no alternative selection,
hence 5@ € Ajy1. Thus, A = UkeN Ay, is closed under the operations of B, and

2With this definition |[M| < [N| & |N| < [M| = |M]| = |N| is derivable without AC , called the
Cantor-Bernstein Theorem. Actually, the first proof without AC (more elegant than Bernstein’s)
is due to Dedekind who left it unpublished in his diary from 1887.
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therefore defines a substructure A C B. We prove A < B by Tarski’s criterion. Let
B E Jya(d,y) for a« = a(Z,y) and @ € A". Then d € A" for some k. Therefore,
there is some a € Ayt (hence a € A) such that B F a(d@,a). This proves (ii) in
Theorem 1.3 and so A < B. It remains to prove |A| < & := max{|Ay|, |£|}. There
are at most x formulas and « finite sequences of elements in Ay. Thus, by definition
of A;, at most x new elements are adjoined to Ag. Hence |A;| < k. Similarly,
|[A,| < & is verified for each n > 0. By (7) we thus get ||J, oy An] < s [J

Combined with the compactness theorem, the above theorem yields

Theorem 1.6 (Lowenheim—Skolem theorem upwards). Let C be any infinite
L-structure and k > max{|C|, |L|}. Then there exists an A = C with |A| = k.
Proof. Let D O C where |D| = k. From (6) it follows that |[£D| = k, because the
alphabet of £D has cardinality k. Because |C| > Ry, by the compactness theorem,
DyCU{c#d|c,d € D, c# d} has amodel B. Since d — d® (d € D) is injective we
may assume d® = dforalld € D, i.e., D C B. By Theorem 1.5 with LD for £ and D
for Ay, there is some A < B with D C A and & < |D| < |A|] < max{|LD|, |D|} = k.
Hence |A| = k. From C C D and A =,p B E D,C it follows that A F D,,C. Since
also C C D C A, the L-reduct of A is an elementary extension of C. [

These theorems show in particular that a countable theory T with at least one
infinite model also has models in every infinite cardinality. Further, Fp a already
holds when merely A F « for all T-models A of a single infinite cardinal number &,
provided T has only infinite models, because under this assumption every T-model
is elementarily equivalent to a T-model of cardinality .

Exercises
1. Let A< C and B < C, where A C B. Prove that A < B.

2. An embedding 1: A — B is termed elementary if 1.4 < B, where 1.4 denotes
the image of A under 2. Show similarly to Theorem 1.1 that an LA-structure
B is a model of D, A iff A is elementarily embeddable into 5.

3. Let ay,...,a, € Q and b € R. Show that there is an automorphism of (R, <)
that maps b to a rational number and leaves all a; fixed.

4. Let A = B. Construct a structure C such that A, B are both elementarily
embeddable into C.

5. Let A be an L-structure generated from G C A and 7 the set of ground terms
in LG. Prove that (a) for every a € A there is some t € T such that a = 4,
(b)if AET and DAt « (€ LG) then Dg A Fr «. Here Dg A := DANLG.
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5.2 Complete and x-Categorical Theories

According to the definition on page 82, a theory T' C L° is complete if it is consistent
and each extended theory 7" D T in L£° is inconsistent. A complete theory need not
be maximally consistent in the whole of £. For instance, even if T is complete, in
general neither 7 =1y nor 7 % y. Some equivalent formulations of complete-
ness, whose usefulness depend on the situation at hand, are presented by

Theorem 2.1. For a consistent theory T the following conditions are equivalent:3
(i) T is complete, (ivyFravpf = Fraortr 8 (o, € L%,
(ii)) T'= Th A for every AET, (v)bFra ortr -a (a€ L.

(iii) A= B for all A, BET,

Proof. (i) = (ii): Since T' C Th.A for each model A F T, it must be that ' = Th.A.

(i) = (iii): For A,B E T we have by (ii) Th.A = T = ThB, and therefore A = B.

(iii) = (iv): Let Fr a v 8, AE T, and A F «, say. Then B F «a for all BE T by (iii),

hence Fr «a. (v) is a special case of (iv) because Fr a v —a, for arbitrary a € L°.

(v) = (i): Let 7" D T and o € T"\T. Then k¢ —a by (v); hence also ¢ —a. But

then 7" is inconsistent. Hence, by the above definition, T is complete. [J

We now present various methods by which conjectured completeness can be con-
firmed. The completeness question is important for many reasons. For example,
according to Theorem 3.5.2, a complete axiomatizable theory is decidable whatever
the means of proving completeness might have been.

An elementary theory with at least one infinite model, even if it is complete, has
many different infinite models. For instance, according to Theorem 1.6, the theory
possesses models of arbitrarily high cardinality. However, sometimes it happens that
all of its models of a given finite or infinite cardinal number x are isomorphic. The
following definition bears this circumstance in mind.

Definition. A theory T is k-categorical if there exists up to isomorphism precisely
one T-model of cardinality k.

Example 1. The theory Taut= of tautological sentences in L= is k-categorical for
every cardinal k. Indeed, here models A, B of cardinality x are naked sets and these
are trivially isomorphic under any bijection from A onto B.

The theory DO of densely ordered sets results from the theory of ordered sets
(formalized in 2.3; see also 2.1) by adjoining the axioms

JIyxs#y; VaVydz(z <y—z<zrz<y).

3 All these conditions are also equivalent (they all hold) if the inconsistent theory is taken to be
complete, which is not the case here as we already agreed upon in 3.3.
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It is easily seen that a densely ordered set is infinite. DO can be extended by
adjoining the axioms L := daVyz < y and R := dxVyy < x to the theory DOy of
densely ordered sets with edge elements. Replacing R by —R results in the theory
DOy of densely ordered sets with left but without right edge element. Accordingly
DOg; denotes the theory with right but without left, and DOy that of dense orders
without any edge elements. The paradigm for DOgyg is (Q, <).

Example 2. DOy is Ny-categorical (Exercise 1 treats the other DO;;). The following
proof is due to Cantor. A function f with dom f C M and ranf C N is said to
be a partial function from M to N. Let A = {ag,a1,...} and B = {bg,b1,...} be
countable DOgp-models. Define fy by foao = by so that dom fo = {ao}, ran fo = {bo}
(construction step 0). Assume that in the nth step a partial function f, from
A to B with finite domain was constructed with a < o & fh,a < f,d/, for all
a,a’ € dom f, (a so-called partial isomorphism), and that {ao,...,a,} C dom f,
and {bo,...,b,} C ran f,. These conditions are trivially satisfied for f,. Let m be
minimal with a,, € A\dom f,,. Choose b € B\ran f, such that g, := f, U {(am,b)}
is also a partial isomorphism. This is possible thanks to the denseness of B. Now
let m be minimal with b,, € B\rang,. Choose a suitable a € A\dom g, such that
for1 =g U{(a,by)} is a partial isomorphism too. This “to and fro” construction
provides both for a, 1 € dom f,; and b,,; € ran f,y1 as is readily seen. Claim:
f = U,en fn is an isomorphism from A onto B. Indeed, f is a function. Moreover,
dom f = A and ran f = B. The isomorphism condition z < y < fx < fy is obvious.

Example 3. The successor theory Ty, in £{0,S} has the axioms
Vz0#8Sz, Vry(Sx=Sy—-zx=y), (Vaz20)Iyz=Sy,

Vao - 2n(Njen STi=1Ti1 — ToF2,) (n=1,2,..., there are no “circles”).
Tiue 1s not Ng-categorical, but it is Nj-categorical. Indeed, each model A E Ty, with
|A] = N; consists up to isomorphism of the (countable) standard model (N, 0, S) and
R; many “threads” of isomorphism type (Z,S) where S: z — z+ 1. For if there were
only countably many such threads then the entire model would be countable. It
now easily follows that any two Tg,.-models of cardinality N; are isomorphic.

Example 4. The theory ACF, of a.c. fields of given characteristic p (page 82) is
R;-categorical. We sketch here a proof very briefly because ACF,, is analyzed in 5.5
in a different way. The claim follows from the facts that each field is embeddable
into an a.c. field (cf. Example 1 of 5.5) and that a transcendental extension K' of a
field K (that is, every a € K'\ K is transcendental on K') has a transcendence basis
B, that is, a maximal system of algebraically independent elements in K\ K. The
isomorphism type of K’ is completely determined by the cardinality of B.

It is fairly plausible that in Examples 3 and 4 x-categoricity holds for every cardinal
k > Wy. This is no coincidence. It is explained by the following theorem.
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Morley’s theorem. If a countable theory T is k-categorical for some k > X then
it is k-categorial for all k > Wg.

The proof makes use of extensive methods and must be passed over here. On the
other hand, the proof of the following theorem requires but little effort.

Theorem 2.2 (Vaught’s test). A countable consistent theory T without finite
models is complete provided it is k-categorical for some k.

Proof. Note first that k > Rg because T' possesses no finite models. Assume that T’
is incomplete. Choose some « € L° with ¥ o and ¥r —a. Then T, o and T, -« are
consistent. These sets have countable infinite models by Theorem 1.5, and according
to Theorem 1.6 there are also models A and B of cardinal . Since A,B E T, by
hypothesis A ~ B, hence A = B, which contradicts A F « and BF —a. [J

Example 5. (a) The theory DOgy of densely ordered sets without edge elements
has only infinite models and is Ny-categorical by Example 2. Hence it is complete
by Vaught’s test, confirming (Q, <) = (R, <) once again. Each DO;; is a complete
theory (Exercise 1). This clearly implies A = B for A, B £ DO iff A, B have “the
same edge configuration.” Each of the DO;;, being a complete axiomatizable theory,
is hence decidable. Therefore, by Exercise 3 in 3.5, the same is true for DO.

(b) The successor theory Ty, is Nj-categorical (Example 3) and has only infinite
models. Hence it is complete and as an axiomatizable theory thus decidable.

(c) ACF, is Ny-categorical by Example 4. Each a.c. field A is infinite. For assume
the converse, that is, A = {ag, ..., a,}. Then the polynomial 1+][;,, (v —a;) would
have no root. Hence, by Vaught’s test ACF,, is complete and decidable (since it is
axiomatizable). This result will be derived by quite different methods in 5.5.

The model classes of sentences are called elementary classes. These clearly include
the model classes of finitely axiomatizable elementary theories. For any theory T,
MAT = Nuer
elementary class. Thus, the class of all fields is elementary, and that of all a.c. fields
is A-elementary. On the other hand, the class of all finite fields is not A-elementary
because its theory evidently has infinite models. An algebraic characterization of

Mda is an intersection of elementary classes, also termed an A-

elementary and A-elementary classes will be provided in 5.7.

The model classes of complete theories are called elementary types. MdT is the
union of the elementary types belonging to the completions of a theory T. For in-
stance, DO has just the four completions DO;; determined by the edge configuration,
that is, by those of the sentences L, R, —L, =R, valid in the respective completion.
For this case, the next theorem provides more information.

Let X C £ be nonempty and T a theory. Take (X) to denote the set (still
dependent on T') of all formulas equivalent in 7" to Boolean combinations of formulas
in X. Clearly, T € (X) since T =¢ a v —« for a € X. Therefore, T C (X), because
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o =1 T whenever a € T. Call X C L° a Boolean basis for L° in T if every a € L°
belongs to (X). A=x Bis to mean AF o & BF q, for all « € X. Example 6(b)
below indicates how useful a Boolean base for decision problems can be.

Theorem 2.3 (Basis theorem for sentences). Let T' be a theory and X C L°
a set of sentences such that A =x B = A= B, for all A, BE T.* Then X is a
Boolean basis for L° in T.

Proof. Suppose @ € £° and Y, := {§ € (X) | a ¢ B}. We claim that (x): Y, Fr a.
Otherwise let A E T,Y,, ~a. Then Tx A := {y € (X) | AF ~} F —q; indeed for any
B E Tx A we have B =x A and hence B = A. Therefore v 7 —a for some v € Tx A,
because (X) is closed under conjunctions. This yields a Fr =, i.e., =y € Y,. Thus
A E =, in contradiction to A F 7. So (%) holds. Hence there are fy,..., 0 € Ya
such that § := /\igm B; Fr a. We know o ¢ §; and so a Fp 3 as well. This and
B Fr a confirms o =7 3, and since § € (X), also a € (X). [1

Example 6. (a) For T'= DO and X = {L, R} it holds that A=x B= A= B, for
all A, BE T. Indeed, A =x B states that A, B possess the same edge configuration.
But then A = B, because the DO;; are all complete; see Example 5(a). Therefore,
L and R form a Boolean basis for £2 in DO. This theory has four completions, and
so by Exercise 3 in 3.6, exactly 15 (= 2* — 1) consistent extensions.

(b) Let T = ACF and X = {char, | p prime}. Again, A =x B = A = B, for all
A,B E T, because by Example 5(c) ACF, is complete for each p (including p = 0).
Hence, by Theorem 2.3, the char, constitute a Boolean basis for sentences modulo
ACF. This implies the decidability of ACF: let @ € L£° be given; just wait in an enu-
meration process of the theorems of ACF until a sentence of the form a <+ 3 appears,
where 3 is a Boolean combination of the char,. Such a sentence definitely appears.
Then test whether 3 =acg T, for example by converting 3 into a CNF.

Corollary 2.4. Let T C L° be a theory with arbitrarily large finite models, such
that all finite T-models with the same number of elements and all infinite T-models
are elementarily equivalent. Then it holds that

(a) the sentences 3, form a Boolean basis for L° in T,

(b) T is decidable provided T is finitely axiomatizable.
Proof. Let X := {3, | ¥ € N}. Then by hypothesis, A =x B = A = B, for
all A,B E T. Thus, (a) follows by Theorem 2.3. By Exercise 4 in 2.3 each «
compatible with T is therefore equivalent in T" to a formula of the form \/ugn E
or \/ygn J—k, v Jm. Then both sentences clearly have a finite T-model. In other
words, T has the finite model property. Thus, (b) holds by Exercise 3 in 3.6. [}

4 This assumption is equivalent to the assertion {y € (X)|.AF 7} is complete; see the subsequent
proof. For refinements of the theorem we refer to [HR].
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Simple examples of applications are the theories Taut— and the theory FO of all
finite ordered sets. It is proved in the next section that the latter theory satisfies
the hypothesis of the corollary. The equivalent formulas mentioned in the proof
also permit a complete description of the elementary classes of £—. These are finite
unions of classes determined by sentences of the form 3_; and 3,,. The elementary
classes of FO-models admit a description of similar simplicity.

These examples make the following sufficiently clear: If we know the elementary
types of a theory T then we also know their elementary classes. As a rule the
type classification, that is, finding an appropriate set X satisfying the hypothesis
of Theorem 2.3, is successful only in particular cases. The required work tends to
be extensive. We mention in this regard the theories of abelian groups, of Boolean
algebras, and of other locally finite varieties; see for instance [MV]. The above
examples are just the simplest ones.

Easy to deal with is the case of an incomplete theory T that has finitely many
completions. Example 6(a) is just a special case. According to Exercise 3 in 3.5, T
then has finitely many extensions. Moreover, all these are finite extensions. Indeed,
if T+ {a; | i € N} is a nonfinite extension then w.lo.g. A,_,
ously implies that T" has infinitely many completions, contradicting our hypothesis.
Thus, we may assume that T3, ..., T,, are the completions of T and that T; = T+ «;
for some a; € £L°. Then {a,...,a,} is a Boolean basis for £L° in T. Exercise 4
provides a canonical axiomatization of all consistent extensions of T

«; ¥ oy, which obvi-

Exercises

1. Prove that also DOy, DOq;, and DOy, are Ng-categorical and hence complete.
In addition, verify that these and DOy are the only completions of DO.

2. Prove that T, (page 138) is also completely axiomatized by the first two given
axioms plus IS: ¢ 2 AVa (e — p 32) — Vap; here ¢ runs over all formulas of the
language £{0,8} (the “induction schema” for £{0,S}).

3. Show that the theory T of torsion-free divisible abelian groups is RXy-categorical
and complete, hence decidable. This shows, in particular, the elementary
equivalence of the groups (R, 0,+) and (Q, 0, +).

4. Let T+, ..., T+ oy, be all completions of T. Prove that T+\/1<V@ o, are
all consistent extensions of T. Here I <n<mand 1 <ijp < --- <14, < m.

5. Show that an Ny-categorical theory T" with no finite models has an elementary
prime model. Example: (Q, <) is an elementary prime model for DOgp.
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5.3 Ehrenfeucht’s game

Unfortunately, Vaught’s criterion has only limited applications because many com-
plete theories are not categorical in any transfinite cardinality. Let SO denote the
theory of discretely ordered sets, i.e., of all (M, <) such that every a € M has an
immediate successor provided a is not the right edge element, and likewise an im-
mediate predecessor provided a is not a left edge element. “SO” is intended to recall
“step order,” because the word “discrete” in connection with orders often has the
stronger sense “each cut is a jump.” SO;; (i.j € {0,1}) is defined analogously to
DO;; (see page 138). For instance, SOy is the theory of discretely ordered sets with
left and without right edge element. Clearly (N, <) is a prime model for SO19. The
models of SOy arise from arbitrary orders (M, <) with a left edge element by re-
placing the latter by (N, <) and every other element of M by a specimen of (Z, <).
From this it follows that SOy cannot be k-categorical for any x > Ny. Yet this
theory is complete will be shown, and the same applies to SOy and SOg;. Only
SOq; is incomplete and is the only one of the four theories that has finite models. It
coincides with the elementary theory of all finite ordered sets, Exercise 3.

We prove the completeness of SOy game-theoretically using a two-person game
with players I and II, Fhrenfeucht’s game T'y(A, B), which is played in k rounds,
k > 0. The A, B be given L-structures and L a relational language, i.e., £ does not
contain any constant or operation symbols. With regard to our goal this presents
no real loss of generality because each structure can be converted into a relational
one by replacing its operations by the corresponding graphs. Another advantage of
relational structures used in the sequel is that there is a bijective correspondence
between subsets and substructures.

We now describe the game I'y(A, B). Player I chooses in each of the &k rounds
one of the two structures A and B. If this is A, he selects some a € A. Then
player II has to answer with some element b € B. If player I chooses B and some
b from B then player II must answer with some element a € A. This is the entire
game. After k rounds elements ay,...,a; € A and by, ..., b, € B have been selected,
where a;, b; denote the elements selected in round i. Player II wins if the mapping
a; — b; (i=1,...,k) is a partial isomorphism from A to B; in other words, if the
substructure of A with the domain {ay,...,a;} is isomorphic to the substructure of
B with the domain {by,...,b}. Otherwise, player I is the winner.

We write A ~y B if player I has a winning strategy in the game I'y(A, B), that
is, in every round player II can answer any move from player I such that at the end
player II is the winner. For the “zero-round game” let A ~y B by definition.

Example. Let A = (N, <) be a proper initial segment of B E SO19. We show that
A ~y. B for arbitrary k > 0. Player II plays as follows: If player I chooses some b; in
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B in the first round then player IT answers with a; = 2F1—1 if d(0,b,) > 2F"1—1;
otherwise with a; = d(0,;).5 The procedure is similar if player I begins with A. If
player I now selects some by € B such that d(0, by), d(b1, by) > 2872—1, then player II
answers with ag = a; 4+ 282 depending on whether by > b; or by < by, and otherwise
with the element of the same dis-

tance from 0 or a; as that of by ® ® ®cec:Brreec e 0 0 0 000

, , ba bs by
from 0 in B respectively from b;.
. . . ® © o o0 o .A
Similarly in the third round etc. a3 G430, G =P 1=3 ay—a-2 =1

The figure shows the course of a
3-round game played in the described way, in which player I has chosen from B only.
With this strategy player II wins every game as can be shown by induction on k.

In contrast to the example, for A = (N, <) and B = (Z, <) player II’s chances have
already dropped in I'y(A, B) if player I selects 0 € A in the first round. Player IT will
loose already in the 2nd round. This has to do with the fact that the existence of an
edge element is expressible by a sentence of quantifier rank 2. We write A =, B for
L-structures A, Bif AF o< BF «, for all & € L° with qra < k. It is always the
case that A =g B for all A, 3, because in relational languages there are no sentences
of quantifier rank 0. Below we will prove the following remarkable

Theorem 3.1. A ~; B implies A =, B. Hence, A= B provided A ~} B for all k.

For finite signatures a somewhat weaker version of the converse of the theorem is
valid as well, though we do not discuss this here. Before proving Theorem 3.1 we
demonstrate its applicability. The theorem and the above example yield (N, <) =, B
for all k£ and hence (N, <) = B for every B £ SOy, because (N, <) is a prime model
for SO19. Therefore SOqq is evidently complete. For reasons of symmetry the same
holds for SOy, and likewise for SOgg. On the other hand, SO;; has the finite model
property according to Exercise 3. This readily implies that SO; coincides with the
theory FO of all finite ordered sets.

For the proof of Theorem 3.1 we first consider a minor generalization of T'y(A, B),
the game T'y(A, B, d, E) with prior moves @ € A”,g € B™. In the first round player
I selects some a,1 € A or b,y1 € B and player II answers with b,,1 or a,,1, etc.
The game protocol consists of sequences (ay, . . ., apix) and (by, ..., by4x) at the end.
Player II has won if a; — b; (i = 1,...,n+ k) is a partial isomorphism. Clearly, for
n = 0 we obtain precisely the original game I'y(A, B).

This adjustment brings about an inductive characterization of a winning strategy
for player II independent of more general concepts as follows:

5The “distance” d(a,b) between elements a, b of some SO-model is 0 for a = b, 1 + the number of
elements lying between a and b if it is finite, and d(a, b) = co otherwise.
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Definition. Player II has a winning strategy in T'o(A, B, d, g) provided a; — b;
for i = 1,...,n is a partial isomorphism. Player II has a winning strategy in
T (A, B, a, 5) if for every a € A there is some b € B, and for every b € B some
a € A, such that player II has a winning strategy in 'y (A, B, &'ua,gub). Here ¢_c
denotes the operation of appending the element ¢ to the sequence €.

- -,

We shall write (A, @) ~j, (B,b) if player II has a winning strategy in I'y(A, B, @, b).
In particular A ~y, B, which is the case @ = b = (), is now precisely defined.

Lemma 3.2. Let (A, @) ~y (B,b) where @ € A™ and b € B™. Then for all = ¢(7)
with qr¢ < k holds the equivalence (x): AF (@) < B E o(b).

Proof by induction on k. Let k¥ = 0. Since a; — b; (i = 1,...,n) is a partial
isomorphism, (*) is valid for prime formulas and since the induction steps in the
proof of (x) for =, A are obvious; it is valid also for all formulas ¢ with qr = 0.
Now let (A, @) ~p+1 (B, 5) The only interesting case is ¢ = Vya(Z,y) such that
qre = k + 1, because every other formula of quantifier rank k 4+ 1 is a Boolean
combination of such formulas and formulas of quantifier rank < % (Exercise 5 in
2.2), and induction over =, A in proving (*) is harmless. Assume A F Vya(ad,y)
and b € B. Then Player II chooses some a € A with (A,@_a) ~ (B,b_b), so that
according to the induction hypothesis, A F «(d, a) < B E a(l_;, b). Clearly, the latter
is supposed to hold for sequences d, b of elements of arbitrary length. Because of
AE «a(d,a), also B F Oz(l_;7 b). Since b was arbitrary we obtain B F Vya(g, y). For
reasons of symmetry, B F Vya(g, y) = AEVYyp(d,y) holds as well. []

Theorem 3.1 is the application of the lemma for the case n = 0 and is therefore
proved. The method illustrated is wide-ranging and has many generalizations.

Exercises

1. Let A, B be two infinite densely ordered sets with the same edge configuration.
Prove that A ~y B for all k. Hence A, B are elementarily equivalent.

2. Let A,B F SOy, k > 0 and |A|,|B|] > 2¥ — 1. Prove that A ~; B, so that
A = B according to Theorem 3.1.

3. Infer from Exercise 2 that SO;; has the finite model property and coincides
with the elementary theory FO of all finite ordered sets.

4. Show that L, R, 31, 35, ... constitute a Boolean basis modulo SO and use this
to prove the decidability of SO.6

6 Moreover, the theory of all linear orders is decidable (Ehrenfeucht), and thus each of its finite
extensions; but the proof is incomparably more difficult than for DO or SO.
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5.4 Embedding and Characterization Theorems
Many of the foregoing theories, for instance those of orders, of groups in -, e, 71, and
of rings, are universal or V-theories. In other words, they possess axiom systems of V-
sentences. We already know that for every theory T of this kind A C B E T implies
AFE T, in short T is S-invariant. DO obviously does not have this property, and so
there cannot exist an axiom system of V-sentences for it. According to Theorem 4.3
the V-theories are completely characterized by the property of S-invariance. This
presents a particularly simple example of the model-theoretical characterization of
certain syntactic forms of axiom systems.

T" := {a € T'| a is an V-sentence} is called the universal part of a theory T'. Note
the distinction between the set 77 and the V-theory TV, which of course contains
more than just V-sentences. For £y C L put T, 37 = LoNTY. If Ais an Ly-structure
and B an L-structure then A C B or “A is a substructure of B” will often mean
in this section that A is a substructure of the Ly-reduct of B. The phrase “A is
embeddable into B” introduced in 5.1 is to be understood similarly. Examples will
be found below. First we state the following

Lemma 4.1. Every Ty -model A is embeddable into some T-model.

Proof. It is enough to prove (x): T, DA is consistent, because if B F T, DA then
A is embeddable into B by Theorem 1.1. Assume (x) is false. Then there is a
conjunction s(a) of sentences in D.A such that »(a@) 7 1, or equivalently, Fr —¢(a).
Here let @ embrace all the constants of LA that appear in the members of > but
not in 7. By the rule (V) of constant-quantification from 3.2, 7 VZ—3¢(Z). Hence
VZ-(%) € Ty and thus A F VTF-¢(Z), contradicting A F »(a). [J

Lemma 4.2. Md TV consists of precisely the substructures of all T-models.

Proof. Every substructure of a T-model is of course a T¥-model. Furthermore, each
A E T is (by Lemma 4.1 for £y = £) embeddable into some B = T, and this is
surely equivalent to B’ ~ B and A C B’ for some B’ £ T, because Md T is always
closed under isomorphic images. [}

Example. (a) Let AG be the theory of abelian groups in £{o}. A substructure of
A E AG is obviously a commutative regular semigroup. Conversely, it is not hard to
prove that every such semigroup is embeddable into an abelian group. Therefore,
the theory AG" coincides with the theory of the commutative regular semigroups.
Warning: noncommutative regular semigroups need not be embeddable into groups.

(b) Substructures of fields in £{0,1,4, —, -} are integral domains. Conversely, ac-

cording to a well-known construction every integral domain is embeddable into a
field, its quotient field. It is constructed similarly to the field Q from the ring Z.
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By Lemma 4.2, the theories Ty of integral domains and T of fields have the same
universal part which is axiomatized by the axioms for T7, i.e., the axioms for com-
mutative rings with 1 and without zero-divisors. Also ACF has the same universal
part, because every field is embeddable into some algebraically closed field.

Theorem 4.3. T is a universal theory if and only if T is S-invariant.

Proof. This follows immediately from Lemma 4.2, since for an S-invariant theory
T holds that Md7T = Md T". In other words, T is axiomatized by 7V. [

This theorem is reminiscent of the HSP theorem cited on page 104. However, the
latter concerns identities only. It has a different proof that is akin to the proof of
the following remarkable theorem. It concerns universal Horn theories introduced in
4.1. Call T SP-invariant if Md T is closed under direct products and substructures.
Always remember that a statement like A F (@) with @ € A™ is to mean Ay F ¢(a),

—

or equivalently, A E ¢(Z) [d]

Theorem 4.4. T is a universal Horn theory if and only if T is SP-invariant.

Proof. =: Exercise 1 in 4.1. < Trivial if -y Yoy z =1y, for then T is axiomatized
by Vzyxz=1y. Let T be nontrivial. Put U = {a € T'| a a universal Horn sentence}.
We shall prove MdT = MdU. Only MdU C MdT is not obvious. Let A E U.
To verify A E T it suffices to show (x): TU DA ¥ 1, since for BE T, DA w.lo.g.
A C B, so AE T thanks to S-invariance. Let P := {7 € DA |« prime}, so that
DA = PU{-m;|i € I} for some I # 0, all 7; prime. We first show (:) : P Vop m for
all i € I. Indeed, otherwise br (@) — m;(@) for some conjunction (@) of sentences
in P, with the tuple @ of constants not in 7. Therefore b7 a := VZ(3(Z) — m;(Z)).
Hence o € U, for a is a universal Horn sentence, whence A F «. But this contradicts
A E 3(@) n—m;(@) and confirms (). From () follows (x) because if A; E T, P, —m;,
then we have B:=[[,.; A FTand BEPU{-m|i€l} =DA [1]

icl
The following application of Lemma 4.1 aims in a somewhat different direction.

Theorem 4.5. Let Ly C L and A be an Ly-structure. For T C L° are equivalent:
(i) A is embeddable into some T-model,
(ii)  any finitely generated substructure of A is embeddable into a T-model,
(iii) AETY (= LoNT).
Proof. (i)=-(ii): Trivial. (ii)=-(iii): Let VZa € Ty with o = a(Z) quantifier-free,
T=(x1,...,2,) wlo.g # 0. Let Ay for @ = (ay,...,a,) € A" be the substructure
in A generated from as,...,a,. By (i), Ay C B for some model B £ T. Since
B E VZa, it holds that Ay F VZa; therefore Ay F «(d), so that A F «a(d) by
Theorem 2.3.2. Since both VZa € Ty and @ € A™ were choosen arbitrarily, A F VZa.
(iii)=-(1): This is exactly the claim of Lemma 4.1. [J
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Examples of applications. (a) Let T be the theory of ordered abelian groups
in £ =L£{0,+,—,<}. Such a group is clearly torsion-free, which is expressed by a
schema of V-sentences in £y = £{0,+, —}. Conversely, Theorem 4.5 implies that a
torsion-free abelian group (the A in the theorem) is orderable, or what amounts to
the same thing, is embeddable into an ordered abelian group. One needs to show
only that every finitely generated torsion-free abelian group G is orderable. By
a well-known result from group theory, G ~ Z" for some n > 0. But Z" can be
ordered lexicographically as is easily seen by induction on n. For nonabelian groups,
the conditions corresponding to torsion-freeness are somewhat more involved.

(b) Without needing algebraic methods we know that there exists a set of universal
sentences in 0,1, 4+, —, -, whose adoption to the theory of fields characterizes the
orderable fields. Sufficient for this, by Theorem 4.5, is the set of all V-sentences in
0,1,4+, —, - provable from the axioms for ordered fields. Indeed even the schema of
sentences ‘—1 is not a sum of squares’ is enough (E. Artin).

Not just V-theories but also V-formulas can be characterized model-theoretically.
Call «(Z) S-persistent or simply persistent in T if for all A,BF T with AC B

(sp) BE a(d) = AFE a(d), for all @ € A™.

This property characterizes the V-formulas up to equivalence according to

Theorem 4.6. If a = «(T) is persistent in T then « is equivalent to some V-formula
o inT, which can be chosen in such a way that freec’ C freea.

Proof. Let Y be the set of all formulas of the form V§3(Z, ¢) with a Fr Y§8(Z, 9)
where (3 is quantifier-free; here the tuples & and ¢ may be of length n > 0 and m > 0,
respectively. We prove (a): Y F¢ «(Z). This would complete the proof because there
then exists, thanks to freeY C {x1,...,2,}, a conjunction 3 = (%) of formulas
from Y with s Fp «. Since also a k7 3¢, we have a = s, and since a conjunction
of V-formulas s is again equivalent to an V-formula, > € Y. For proving (a) assume
(A, @) ET,Y (or AET,Y [d]) with @ € A". We need to show that (A,d) F «. This
follows from (b): T, «(d), DA is consistent, for if B £ T,a(ad), DA, then w.l.o.g.
A C B; hence A E a(@) since a is persistent. If (b) were false then a(a@) br —s(a, b)
for some conjunction (@, b) of sentences from D.A with the m-tuple b of constants
of 5 from A\{ai1,...,a,}. Thus a(d) Fr Vy—s»(d,y). Since the ay,...,a, do not
appear in T, we get a(Z) bp V§—x(Z,y) € Y. Therefore, (.A, a) E Vi-x(Z,7), or
equivalently A E V(@ ), in contradiction to A E 5(a@,b). [1

Remark. Let T be countable and all T-models infinite. Then « is already equivalent in
T to an V-formula, provided « is k-persistent; this means that (sp) holds for all T-models
A, B of some fixed cardinal k > RXg. For in this case each T-model is elementarily equivalent
to a model of cardinality x by the Lowenheim—Skolem theorems. Hence, it suffices to verify
(a) in the above proof by considering only models A, B of cardinality &.
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Sentences of the form VZ Jya with kernel « are called V3-sentences. Many theo-
ries, for instance of fields, of real or algebraically closed fields, of divisible groups,
are V3-theories, i.e., they possess axiom systems of V3-sentences. We are going to
characterize the V3-theories semantically. A chain K of structures is simply a set
K of L-structures such that A C B or B C A for all A,B € K. Chains are often
given as sequences Ay C A; C A, C - -+ of structures. No matter how K is given, a
structure C := |J K can be defined in a natural way: Let C':= [J{A| A € K} be its
domain. Further let r¢d@ < 4@ for @ € C™, where A € K is chosen so that @ € A™.
Such an A € K exists: Let A simply be the maximum of the chain members con-
taining ai, , ..., an, respectively. The definition of 7€ is independent on the choice of
A. Indeed, let A € K and aq,...,a, € A’. Since A C A or A’ C A, it holds that
rAd < r*'d in either case. Finally, for function symbols f let f¢d = fAd, where
A € K is chosen such that @ € A™. Here too the choice of A € K is irrelevant. C
was just defined in such a way that each A € K is a substructure of C.

Example 1. Let D, be the additive group of n-place decimal numbers (with at
most n decimals after the decimal point). Since D,, C D, 1, the D,, form a chain.
Here D = |J,,cy Dy is just the additive group of finite decimal numbers. The cor-
responding holds if the D,, are understood as ordered sets. Because then D E DO,
while D,, E SO for all n, Md SO is not closed under union of chains.

It is easy to see that an V3-sentence a = Vay...2,3y1 ... yn0(Z, 7) valid in all
members A of a chain K of structures is also valid in C = |J K. For let @ € C™.
Then @ € A" for some A € K. Hence, there is some b € A™ with A F 3(a@,b). Since
A C C and B(Z,7) is open, it follows that C F g(d, 5) Therefore, C F 3y6(a, ).
Now, @ is arbitrary here so that indeed C E VZ3§5(Z, 7).

Thus, if T is an V3-theory, Md T is always closed under union of chains, or as it
is said, T is inductive. Just this property is characteristic for V3-theories. However,
the proof of this is no longer simple. It requires the notion of an elementary chain.
This is a set K of L-structures such that A < Bor B < A, for all A, B € K. Clearly,
K is then also a chain in the ordinary sense.

Lemma 4.7 (Tarski’s chain lemma). Let K be an elementary chain and put
C=UK. Then A< C for every A€ K.

Proof. We have to show that A F a(@) < CF «(d), with @ € A”. This follows
by induction on oo = «(Z) and is clear for prime formulas. The induction steps over
A, are also straightforward. Let A F Vya(y,d@) and ap € C arbitrary. There is
certainly some B € K such that ag,...,a, € B and A < B. Thus, B F Vya(y, d)
and hence B F a(ap, @). By the induction hypothesis (which is supposed to hold for
any chain members) so too C F a(ag, @). Since ay € C was arbitrary, C F Vya(y, @).
The converse C E Vya(y,d) = A E Yya(y, @) follows similarly. []
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We require yet another useful concept, found in many of the examples in 5.5. Let

A C B. Then A is termed ezistentially closed in B, in symbols A C,. B, provided
(x) BE3ITp(Z,d) = AEITp(Z,d) (de AM),

where ¢ = ¢(&, @) runs through all conjunctions of literals from LA. (%) then holds

automatically for all open ¢ € LA. One sees this straight away by converting ¢ into

a disjunctive normal form and distributing 3% over the disjuncts.

Clearly A <X B= A C.. B= A C B. Moreover, C,. satisfies a readily proved
chain lemma as well: If K is a chain of structures such that A C.. B or B C,.. A for
all A, B € K, then A C,. |JK for every A € K. This is an easy exercise.

The next lemma presents various characterizations of A C,. B. Let Dy.A denote
the universal diagram of A, which is the set of all V-sentences of LA valid in A.
Clearly DyA C Dy A. In (iii) the indexing of B with A is omitted to ease legibility.

Lemma 4.8. Let A, B be L-structures and A C B. Then are equivalent

(i) ACe B, (i) there is an A" O B such that A< A', (iii) B F DyA.
Proof. (i)=(ii): Let A C.. B. We obtain some A" O B such that A < A’ as a
model of Dy AU DB (more precisely, as the L-reduct of such a model), so that it
remains only to show the consistency. Suppose the opposite, so that D, .A - —w(g)
for some conjunction s(b) of members from DB with the n-tuple b of all constants
of B\A in . Since by, ...,b, do not occur in D, A, we get Dy A - V&—3¢(Z). Thus
A E VZ-3(Z). On the other hand B E x(b); hence B F 37x(Z). With (i) and
#(¥) € LA also A F 3T3(Z), in contradiction to A F VZ—s(Z). (ii)=-(iii): Since
A=< A, we have A’ F Dy A D DyA. Since B C A' F DyA, evidently B F DyA.
(iii)=-(i): By (iii), A F a = B F «, for all V-sentences a of LA. The latter is
equivalent to BF a = AF a, for all I-sentences of LA and hence to (i). []

Theorem 4.9. A theory T is an Y3-theory if and only if T is inductive.

Proof. As already shown, an V3-theory T is inductive. Conversely let 7" be induc-
tive. We show that MdT = Md 7", where T denotes the set of all Y3-theorems
provable in 7. The nontrivial part is the verification of Md77? C MdT. So let
AE T, Claim: T U DyA is consistent. Otherwise -y —s¢ for some conjunction
2 = (@) of sentences of Dy.A with the tuple @ of constants in A appearing in s
but not in T'. Hence Fr VZ—3¢(Z). Now, 3(Z) is equivalent to an V-formula, and so
=3(%) to an F-formula. Thus, VZ-(F) belongs up to equivalence to T%2. Therefore
A E V#—3¢(Z), which contradicts A F »(d). This proves the claim.

Now let A; F T U DyA and w.l.o.g. A7 O A. Then also A C.. A; in view of
Lemma 4.8. By the same lemma there exists an Ay D A; with Ay := A < Aj, so
that Ay E T as well. We now repeat this construction with A, in place of A
and obtain structures Ajs, A4 such that Ay C.. A3 E T, A3 C A, and Ay < Ay



150 5 Elements of Model Theory

Continuing this construction produces a sequence Ay C A; C A, C -- - of structures
with the inclusion relation illustrated in the following figure:

-

A:Ao — A1 .AQ A3 A4°" QC
N < N =
Let C := [U;en Ai- Clearly also C = |,y A2i, and because A = Ay < Ay < --- we
get A < C by the chain lemma. At the same time we also have C = (J, oy A2it1, and

since by construction As; 1 E T for all 4, it holds that C & T', for T is inductive. But
then too A E T because A < C. This is what we had to prove. [}

< < <

A decent application of the theorem is that SOy cannot be axiomatized by V3-
axioms, for SOyg is not inductive according to Example 1. SOqq is an V3V-theory,
and we see now that at least one V3V-axiom is needed in its axiomatization.

The “sandwich” construction in the proof of Theorem 4.9 can still be generalized.
We will not elaborate on this but rather add some words about so-called model
compatibility. Let Ty + T be the smallest theory containing Ty and T;. From the
consistency of Ty and 77 we cannot infer that Ty + T3 is consistent, even if Ty and T)
are model compatible in the following sense: every Ty-model is embeddable into some
Ti-model and vice versa. This property is equivalent to 7y = 7Y by Lemma 4.1,
hence is an equivalence relation. Thus, the class of consistent L-theories splits
into disjoint classes of pairwise model compatible theories. That model compatible
theories need not be compatible in the ordinary sense is shown by the following
Example 2. DO and SO are model compatible (Exercise 2) but DO+SO is clearly in-

consistent. Since DO is inductive, we get another argument that SO is not inductive:
if it were inductive, DO + SO would be consistent according to Exercise 3.

Exercises

1. Let X be a set of positive sentences, i.e., the o € X are constructed from prime
formulas by means of A, v ,V,3 only. Prove AE X = B E X, whenever B
is a homomorphic image of A, that is, Md X is closed under homomorphic
images. Once again the converse holds (Lyndon’s theorem; see [CK]).

2. Show that the theories DO and SO are model compatible.

3. Suppose Ty and T} are model compatible and inductive. Show that Ty + T3 is
an inductive theory which, in addition, is model compatible with 7y and T7.

4. For inductive T show that of all inductive extensions model compatible with
T there exists a largest one, the inductive completion of T'. For instance, this
is ACF for the theory T of fields.
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5.5 Model Completeness

After [Rol], a theory T is called model complete if for every model A E T the theory
T + DA is complete in LA. For A, B E T where A C B (hence B, F DA) the
completeness of T+ DA obviously means the same as A, = B,, or equivalently,
A =< B. In short, a model complete theory 7" has the property
(x) ACB=A=xB, forall A,BFT.

Conversely, if () is satisfied then T'+ DA is also complete. Indeed, let BE T, DA
so that w.l.o.g. A C B and hence A < 5. But then all these B are elementarily
equivalent in LA to A, and therefore to each other, which tells us that 7'+ D.A
is complete. (x) is therefore an equivalent definition of model completeness and this
definition, which is easy to remember, will be preferred in the sequel.

It is clear that if T C L is model complete then so too is every theory that extends
it in £. Furthermore, T is then inductive. Indeed, a chain K of T-models is always
elementary, by (*). By the chain lemma 4.7 we obtain that A < |J K for any A € K
and so |J K E T thanks to A F T, which confirms the claim. Hence, by Theorem 4.9,
only an V3-theory can be model complete.

An V3-theory that is not model complete is DO. Let Q, := {x € Q | a < z}
for a € Q. Then (Q1,<) € (Qo, <) but (Q1,<) £ (Qo, <) as is easily seen. This
choice of models also shows that the complete theory DO1q is not be model complete.
Another example is SO, since as noticed on page 150, SOqq is not an V3-theory
and hence is not model complete. Conversely, a model complete theory need not
be complete: A prominent example is ACF which will be treated in Theorem 5.4.
Nonetheless, with the following theorem the completeness of a theory can often be
obtained more easily than with other methods.

Theorem 5.1. If T is model complete and has a prime model then T is complete.

Proof. Suppose AF T and let P £ T be a prime model. Then up to isomorphism
P C A, and so P < A by (), in particular P = A. Hence, all T-models are
elementarily equivalent to each other so that T is complete. [_J

The following theorem states additional characterizations of model completeness,
of which (ii) is as a rule more easily verifiable than the definition. The implication
(ii)=(i) carries the name Robinson’s test for model completeness.

Theorem 5.2. For any theory T the following items are equivalent:

(i) T is model complete,

(i) ACB = AC.. B, forall AJBET,
(
(

iii) each I-formula « is equivalent in T to an V-formula 3 with free 3 C freea,

iv) each formula « is equivalent in T to an V-formula § with free 3 C freea.
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Proof. (i)=(ii): evident, since A C B= A < B = A C. B. (ii)=(iii): According
to Theorem 4.6 it is enough to verify that every 3-formula o = (%) € L is persistent
inT. Let A BET, ACB,d € A", and B E «(a@). Then A E a(a), because A C.. B
thanks to (ii). (ili)=(iv): induction on «. (iii) is used only in the —-step: Let oo = 3,
(3 some V-formula (induction hypothesis). Then =3 = ~ for some V-formula -y, hence
—a=7. (iv)=(i): let A,BET, AC B, and B F «a(a@) with @ € A". Then A F «(a)
since by (iv), a(Z) =7 [ for some V-formula 3. This shows A < B, hence (i). [J

Remark. If T is countable and has infinite models only, then it is possible to restrict the
criterion (ii) to models A, B of any chosen infinite cardinal number x. Then we can prove
that an 3-formula is k-persistent as defined in the remark on page 148, which by the same

remark suffices to prove the claim of Theorem 5.2 and hence (iii). Once we have obtained
(iii) we have also (i). This is significant for Lindstrom’s criterion, Theorem 5.7.

A relatively simple example of a model complete theory is Tyq, the theory of
(nontrivial) Q-vector spaces V = (V,+,0,Q), where 0 denotes the zero vector and
each r € QQ is taken to be a unary operation on the set of vectors V. Ty formulates
the familiar vector axioms, where e.g. the axiom r(a + b) =ra + rb is reproduced as
a schema of sentences, namely YaVbr(a+b)=ra+rb for all r € Q. Let V, V' E Ty
where V C V'. We claim that V C.. V'. By Theorem 5.2(iii), Ty is then model

complete. For the claim let V' F 3%, with a conjunction « of literals in zq, ..., 2,
and constants aq, ..., am,b1,...,b, € V. Then « is essentially a system of the form
T+ F Ty =0 S11T1 + -+ S1pTn F by

(s)
Tid®1 + -+ Tpn@n =G Sp@1+ -+ SenZn F by

Indeed the only prime formulas are term equations, and every term in zq, ..., z, is
equivalent in Tygp to some term of the form rzy + -+ + r,z,,. Without stepping
into details it is plausible by the properties of linear systems that the system (s) has
already a solution in V, if it is solvable at all; see for instance [Zi].

For the rest of this section we assume some knowledge of classical algebra where
closure constructions are frequently undertaken. For instance, a torsion-free abelian
group has a divisible closure, a field A has an algebraic closure (a minimal a.c.
extension of A), and an ordered field has a real closure; see Example 2 below. Gen-
erally speaking, we start from a theory T and A F T". By a closure of A in T
we mean a T-model A D A such that A C B = A C B, for every B T. More pre-
cisely, if A C B then there is an embedding of A into B leaving A pointwise fixed. In
this case we say T' permits a closure operation. Supposing this, let A, BE T, A C B,
and b € B\A. Then there is a smallest submodel of B containing A U {b}, the T"-
model generated in B by AU {b}, denoted by A(b). Its closure in T is denoted by
AP Tt is called an immediate extension of A in T, because of A C A® C B.
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Example 1. Let T := ACF. A T"-model A is here an integral domain. T permits
a closure operation: A is the so-called algebraic closure of the quotient field of A.
That there exists an a.c. field A embeddable into every a.c. field B O A is the
claim of Steinitz’s theorem regarding a.c. fields, [Wae, p.201]. Whenever A,BE T
with A C B and b € B\ A, then b is transcendental over A, since A is already a.c.
Thus ag+aib+- - -+a,b™ # 0, for all ay, . .., a, € A with a,, # 0. For this reason .A(b)
is isomorphic to the ring A(z) of polynomials >, a;z’ with the “unknown” z (the
image of b). Hence, A(b) ~ A(z) ~ A(c) provided A, B,C E T, with A C B,C and
be B\A, c € C\A. The isomorphism A(b) ~ A(c) extends in a natural way to the
quotient fields of A(b), A(c) (represented by the field of rational functions over A)
and hence to their closures A” and A°. Thus, a T-model has up to isomorphism
only one immediate extension in 7. Not so in the next more involved example.

Example 2. A real closed field is an ordered field A (like R) in which every poly-
nomial over A of odd degree has a zero and every a > 0 is a square in A. These
properties will turn out to be equivalent to the continuity scheme CS page 86. Let
RCF denote the theory of these fields. Although the order is definable in RCF by
z <y & Jzy—x=2% order should here be a basic relation. Let T := RCF. A
T"-model A is an ordered integral domain that determines the order of its quotient
field Q. According to Artin’s theorem for real closed fields ([Wae, p.244]), some
A = Q E RCF can be constructed, called the real closure of A or Q in T.

Let A,BERCF, A C B, and b € B\A. Then b is transcendental over A, because no
algebraic extension of A is orderable (this is another characterization of real closed
fields). Here A(b) is isomorphic to the ordered ring A(x) of polynomials over A. A(b)
determines the isomorphism type of its quotient field Q(b) (containing the quotients
of polynomials p(b) over A) and of A* = Q(b). Actually, <*" is determined by its
restriction to AU {b}, or by the partition A = {a € A|a <A b} U{a € A|b <A a}.
To see this note that it is provable in RCF that a polynomial p(z) with the zeros
ai,...,a, € A decomposes in A F RCF as ¢ g(x) - [[_,(z — a;) withc € A, n >0,
and ¢(z) a product of irreducible polynomials of degree 2 or perhaps =1. In Q(b)
(and A®) holds g(b) > 0. Indeed, each irreducible factor b? + db + e of q(b) is > 0
since B> +db+e = (b+9)* +e— %2 >0 (d,e € A). Thus we know whether or not
p(b) > 0 if we know the signs of b — a; for all zeros a; of p(x) in A. This suffices to
fix the order in Q(b) as is easily seen, and hence in A° by Artin’s theorem.

For inductive theories T  that permit a closure operation, Robinson’s test for model
completeness can still be simplified as follows:

Lemma 5.3. Let T be inductive, and suppose T permits a closure operation. Assume
further that A C.. A for all A, A’ E T for the case that A’ is an immediate extension
of AinT. Then T is model complete.
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Proof. Let A,BET, AC B. By Theorem 5.2(ii) it suffices to show that A C,. B.
Let H be the set of all C C B such that A C.. C E T. Trivially A € H. Since
T is inductive, a chain K C H satisfies |JK E T. One easily verifies A C.. K
as well, so that |JK € H. By Zorn’s lemma there is a maximal element A,, € H.
Claim: A,, = B. Assume A,, C B. Then there is an immediate extension A}, = T
of A,, such that A,, C A, C B. Since A C.. A, and by hypothesis A,, C.. A/, we
get A C.. Al,. This, however, contradicts the maximality of A,, in H. Therefore,

it must be the case that A,, = B. Consequently, A C.. B. []

Theorem 5.4. ACF is model complete and thus so too ACF,, the theory of a.c. fields
of given characteristic p (=0 or a prime). Moreover ACF, is complete.

Proof. Let A,BE ACF, A C B,and b € B\ A. By Lemma 5.3 it suffices to show that
A C,. A, Here A° is an immediate extension of A in ACF. Let o := 373(%, @) € LA,
3 quantifier-free, and A® F . We shall prove A F « and for this we consider

X :=ACFUDAU {p(z)#0|p(r) a monic polynomial on A}.

With b for  one sees that (A% b) F X (b is trancendental over A). Let (C,c) F X,
with ¢ for z. Since C F DA, w.lo.g. A C C. By Example 1 A® ~ A° and so A° F a.
A¢ C C implies C F «, for « is an 3-sentence. Since (C, ¢) has been chosen arbitrarily
we obtain X F «, and from this by the finiteness theorem evidently
DA, N\, pi(2) #0 Fack @, for some k and monic polynomials po, . .., py.

Particularization and the deduction theorem show DA Face 3z /\igk pi(x)#0 = .
Every a.c. field is infinite (Example 5(c) in 5.2), and a polynomial has only finitely
many zeros in a field. Thus, DA Facr Jz /\igk pi(xz) #0. Hence, DA Facr o and
so A F . This proves A C.. A’ and in view of Lemma 5.3 the first part of the
theorem. The algebraic closure of the prime field of characteristic p is obviously a
prime model for ACF,. Therefore, by Theorem 5.1, ACF, is complete. []

The following significant theorem is won similarly. It was originally proved by
Tarski in [Ta2] by means of quantifier elimination. Incidentally, the completeness
claim is not obtainable using Vaught’s criterion, in contrast to the case of ACF.

Theorem 5.5. The theory RCF of real closed fields is model complete and complete.
It is thus identical to the theory of the ordered field of real numbers, and as a complete
axiomatizable theory it is also decidable.

Proof. Let A = RCF. It once again suffices to show that A C.. A? for an immediate
extension A” of A in RCF. Let U :={a € A|a <B b}, V:={a € A|b<B a},
with B := A, Then UUV = A. Now let A F 36(7, @), 3 quantifier-free, @ € A™.
The model (B, b) with b for = then clearly satisfies the set of formulas
X:=RCFUDAU{a<z|lacUjU{zr<alacV}.
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Suppose (C,c¢) E X, interpreting x as ¢. We may assume A C C because C E DA.
Since ¢ ¢ UUV = A, ¢ is transcendental over A (see Example 2). Hence, the
quotient field Q(c) of A(c) is isomorphic to the field of rational functions over A
with the unknown x. The order of Q(c) is fixed by the partition A = U UV coming
from Q(b). Thus, Q(b) ~ O(x) ~ Q(c). The isomorphism Q(b) ~ Q(c) extends to
one between the real closures A” and A¢. As in Theorem 5.4 we thus obtain X F a,
and so for some aq,...,ax,b1,...,b, € A, where k,l > 0but k+1> 0,
DAbgrer Iz(N_ @i <an N_jz<b)—a (€U beV).

Now, an ordered field is densely ordered without edge elements, and is infinite.
Hence, Frcr 33@(/\?21 a; < T A /\li:1 x < b;). This results in DA Frer . Therefore
AE a, and A C,, A’ is proved. To verify completeness observe that RCF has a
prime model, namely the real closure of Q, the ordered field of the real algebraic
numbers. Applying Theorem 5.1 once again confirms the completeness of RCF. [}

A theory T is called the model completion of a theory Ty of the same language if
To € T and T+ DA is complete for every A E Ty. Clearly, T is then model complete;
moreover, T is model compatible with Ty (A E Ty implies (3Ce Md T).A C C, since
T+ DA is consistent). The existence of a model complete extension is necessary for
the existence of a model completion of Tj, but not sufficient; see Exercise 1.

A somewhat surprising fact is that a model completion of T" is uniquely determined
provided it exists. Indeed, let T,7" be model completions of T,. Both theories are
model compatible with Tj, and hence with each other. T', 7" are model complete and
therefore inductive, so that 7'+ 7" is model compatible with T (Exercise 3 in 5.4).
Thus, if A FE T then there exist some BF T + T" with A C B, and since T is model
complete we obtain A < 5. This implies A = B F T", and consequently A E T".
For reasons of symmetry, AF T" = AE T as well. Therefore T =T".

Example 3. ACF is the model completion of the theory T'; of all integral domains
and so a fortiori of the theory T of all fields. Indeed, let A F T;. By Theorem 5.4,
ACF is model complete, hence also T' := ACF+D.A (in LA). Moreover, T is complete,
because by Example 1, T has a prime model, namely the closure A of A in ACF.
Using Theorem 5.5, one analogously shows that RCF is the model completion of the
theories of ordered commutative rings with unit element, and of ordered fields.

AE T is called existentially closed in T, or 3-closed in T for short, if A C.. B for
each B E T with A C B. For instance, every a.c. field A is 3-closed in the theory
of fields. For let B O A be any field and C be any a.c. extension of B. Then A 5 C
thanks to the model completeness of ACF. Hence A C.. B by Lemma 4.8(ii). The
following lemma generalizes in some sense the fact that every field is embeddable
into an a.c. field. Similarly, a group, for instance, is embeddable into a group that
is 3-closed in the theory of groups.
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Lemma 5.6. Let T be an VY3-theory of some countable language L. Then every
infinite model A of T can be extended to a model A* of T such that |A*| = | A,
which is 3-closed in T

Proof. For the proof we assume, for simplicity, that A is countable. Then LA
is also countable. Let ag, vy, ... be an enumeration of the J-sentences of LA and
Ay = As." Let A, be an extension of A, in LA such that A, F T + ay,
as long as such an extension exists; otherwise simply put A,.1 = A,. Since T is
inductive, By = UneN A, ET. If « = «, is an J-sentence in LA valid in some
extension B E T of By, then already A,11 F a and thus also By F a. Now we
repeat this construction with By in place of Ay with respect to an enumeration of all
J-sentences in LBy and obtain an L£By-structure B; F T. Subsequent reiterations
produce a sequence By C By C -+ of LB,,-structures B, 1 F T. Let A* (F T') be the
L-reduct of |,y Bn F T and A* € BE T. Assume B = 376(d, 7), d € (A*)". Then
B, E (i, b) for suitable m. Hence |, . B, E 4(d@,b) and so A* £ 326(a, 7). [

With this lemma one readily obtains the following highly applicable criterion for
proving the model completeness of certain theories, which, by Vaught’s criterion,
are always complete at the same time.

Theorem 5.7 (Lindstrém’s criterion). A countable k-categorical ¥3-theory T
without finite models is not only complete but also model complete.

Proof. Since all T-models are infinite, 7" has a model of cardinality «, and by
Lemma 5.6 also one that is 3-closed in 7. But then all T-models of cardinality x
are 3-closed in T', because all these are isomorphic. Thus A C B = A C,. B, for all
A, B E T of cardinality k. Therefore, T' is model complete according to the remark
on page 152. []

Examples of applications.

(a) The Rg-categorical theory of atomless Boolean algebras.

(b) The N;-categorical theory of nontrivial Q-vector spaces.

(¢) The Ny-categorical theory of a.c. fields of given characteristic.

A few comments: A Boolean algebra B is called atomless if for each a # 0 in B
there is some b # 0 in B with b < a (< is the partial lattice order of B). The proof
of (a) is similar to that for densely ordered sets. Also (b) is easily verified. Observe
that a Q-vector space of cardinality N; has a base of cardinality ®;. From (c¢) the
model completeness of ACF follows in a new way: If A, F ACF and A C B then
both fields have the same characteristic p. Since ACF, is model complete by (c),
A < B follows. This obviously implies that ACF is model complete as well.

7 For uncountable A we have |[LA| = |A|. In this case one proceeds with an ordinal enumeration of
LA rather than an ordinary one. But the proof is almost the same.
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Exercises

1. Prove that of the four theories DO;; only DOgg is model complete. Moreover,
show that DO has no model completion.

2. Let T be the theory of divisible torsion-free abelian groups. Show that
(a) T is model complete,
(b) T is the model completion of the theory Tj of torsion-free abelian groups.

3. T* is called the model companion of T provided T, T are model compatible and
T* is model complete. Show that if T* exists then T is uniquely determined,
and Md T™ consists of all models 3-closed in 7.

4. Prove that an V3-sentence valid in all finite fields is valid in all a.c. fields. This
fact is highly useful in algebraic geometry.

5.6 Quantifier Elimination

Because Jz(y < z Az < 2) =po y < 2, in the theory of densely ordered sets the
quantifier in the left-hand formula can be eliminated. In fact, in some theories,
including the theory DOgy (see 5.2), the quantifiers can be eliminated from every
formula. One says that T (C L°) allows quantifier elimination if for every ¢ € L
there exists some open formula ¢’ € £ such that ¢ =7 ¢’. Quantifier elimination is
the oldest method of showing certain theories to be decidable and occasionally also
to be complete. Some presentations demand additionally free’ = freep, but this
is irrelevant.

A theory T allowing quantifier elimination is model complete by Theorem 5.2(iv),
because open formulas are in particular V-formulas. T is therefore an V3-theory, a
remarkable necessary condition for quantifier eliminability.

In order to confirm quantifier elimination for a theory T it suffices to eliminate
the prefix 3z from every formula of the form Jxa, where « is open. Indeed, think
of all subformulas of the form Vxa in a formula ¢ as being equivalently replaced by
—dr—a, so that only the J-quantifier appears in ¢. Looking at the farthest-right
prefix 9z in ¢ one can write ¢ = -+ - Jza - - with quantifier-free «. Now, if Jzxa is
replaceable by an open formula o’ then this process can be iterated no matter how
long it takes for all 3-quantifiers in ¢ to disappear.

Thanks to the v -distributivity of the 3-quantifiers we may moreover assume that
the quantifier-free part a of 3z from which 3z has to be eliminated is a conjunction
of literals, and that x explicitly occurs in each of these literals: simply convert a
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into a disjunctive normal form and distribute 3z over the disjuncts such that 3z
stands in front of a conjunction of literals only. If  does not appear in any of these
literals, 3z can simply be discarded. Otherwise remove the literals not containing x
beyond the scope of 3z, observing that Jx(a A ) = Jza A G if x ¢ var .

Furthermore it can be supposed that none of the conjuncts is of the form x=t
with x ¢ vart. Indeed, since 3x(z=t A a) = a £, the quantifier has then already
been eliminated. We may also assume that z is not vy (using bound renaming) and
that neither x =1z nor = # z is among the conjuncts. For z=2x can equivalently
be replaced by T, as can x #z by 1. Here one may define T and 1 as vo=wv, and
Vg # vy, respectively. Replacement will then introduce vy as a possible new free
variable, but that is harmless. If the language contains a constant ¢ one may replace
v by ¢ in the above consideration. If not, one may add a constant or even 1 as a
new prime formula to the language, similar to what is proposed below for DO.

Call an 3-formula simple if it is of the form 3z A, o;, where every o; is a literal
with x € varca;. Then the above considerations result in the following

Theorem 6.1. T allows quantifier elimination if every simple 3-formula 3z A\, oy
s equivalent in T to some open formula. Here without loss of generality, none of
the literals o; is t=1x, xF#x, or of the form x=t with x ¢ vart.

Example 1. DOy allows quantifier elimination. Because y £ z =7 2 <y v z=y
and z#y =r z < y vy < z and since in general (a v B)ry = (ary) v (Br7), we
may suppose that the conjunction of the «; in Theorem 6.1 does not contain the
negation symbol. We are therefore dealing with a formula of the form

Ar(yy <TA - AYn <T A T <214 AT < 2g),

which is equivalent to L if = is one of the variables y;, z;. If not, it is equivalent to
T whenever m = 0 or k = 0, and in the remaining case to /\Zj:1 y; < z;j. That’s it.

DO itself does not allow quantifier elimination. For instance, in a(y) := Jzz <y
the quantifier is not eliminable. If a(y) were equivalent in DO to an open formula
then A, BE DO, AC B, a € A, and B E a(a) would imply A F a(a). But this is
not so for the densely ordered sets A, B with A = {x € Q|1 < z} and B = Q.
Choose a = 1. Quantifier elimination does however become possible if the signature
{<} is expanded by considering the formulas L, R as 0-ary predicate symbols. The
fact that {L, R} forms a Boolean basis for sentences in DO is not yet sufficient for
quantifier eliminability. What is needed here is a Boolean basis for the set of all
formulas (not only sentences) modulo DO.

Also the theory SO does not allow quantifier elimination in the original language,
simply because it is not an V3-theory as was noticed earlier. The same holds for the
expansions SO;;.
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Example 2. A classic, by no means trivial, result of quantifier elimination by
Presburger refers to Th(N,0, 1,4, <), with the additional unary predicate symbols
m| (m = 2,3,...), explicitly defined by m|z <> Jymy=x where my denotes the
m-fold sum y + --- + y of y. We shall prove a related result with respect to the
group Z in £{0,1,+,—,<,2],3],...}. Denote the k-fold sum 1+ ---+ 1 by k in
what follows, and set (—k)z := —kz.

Let ZGE be the elementary theory in £{0,1,+,—,<,2[,3l,...} whose axioms
subsume those for ordered abelian groups, and the axioms

Vr(0 <z ¢ 1< ), Ve(mlz & Jymy=x) and 9, :=Va \/,_, mlz+k

for m =2,3,... ZGE-models, more precisely, their reducts to £ := £{0,1,+, —, <},
are called Z-groups. These are ordered with smallest positive element 1. The 9,
state for a Z-group G that the factor groups G/mG are cyclic of order m. Here
mG = {mz |z € G}. Let ZG denote the reduct theory of ZGE in £ whose models
are just the Z-groups. ZGE is a definitorial and hence a conservative extension of
ZG (cf. 2.6). It will turn out that Z-groups are precisely the ordered abelian groups
elementarily equivalent to the paradigm structure (Z,0,1,+, —, <). Let us notice
that -z 1, for each n, where 7, is the formula 0 <z <n — \/k<nx— k.

We are now going to prove that ZGE allows quantifier elimination. Observe first
that since t#s =zge s < tvi < sand mft =z \/ﬁ;lmltJri and m|t =zgg m|—t
it may be assumed that the kernel of a simple 3-formula is a conjunction of formulas
of the form nz=10, nlz < t! 2 < n/z, and m;|n/"z + t3 where = ¢ vart!. By
multiplying these formulas by a suitable number and using ¢ < s =zgg nt < ns and
mlt =zce nmint for n # 0, one sees that all the n;, n}, n/, n! can be made equal to
some number n > 1. Clearly, in doing so, t{ and the “modules” m; all change. But
the problem of elimination is thus reduced to formulas of the following form, where
the jth conjunct disappears whenever k; =0 (j < 3):

(1) Elx(/\f"lnx—t?A Nt <nza N2 ne <24 N2 17nZ|7w:+253)

=1 "1

With y for nz and mg = n, (1) is certainly equivalent in ZGE to

(2) Ely(/\fily=t? A /\511752 <yA /\ 1y < 3 A /\z 1] ly 4+t A mOly)'
According to Theorem 6.1 we can at once assume that ky = 0, so that the elimination
problem, after renaming y back to z, reduces to formulas of the form

(3) Jw(AL th<aa N2z <0 NBymlz+12)
where still © ¢ Vartf. Let m be the smallest common multiple of my, ..., my,.
Case 1: ky = ky = 0. Then (3) is equivalent in ZGE to \/7_, A milj + t3. Indeed
if an & such that A m;lz + ¢ exists at all, then so does some z = j € {1,...,m}.
For let j be determmed by axiom ¥, so that m|z + (m — j), i.e., also mlz —j and
consequently m;|z — j for all i < k3. Then m;lz + &2 — (z — j) = j + 3 also holds
fori =0,..., k3 as was claimed.
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Case 2: k; # 0 and j as above. Then (3) is equivalent to
(@) ViLIAL <t VIL(AZ 6+ < 8 8 NZgmilt) + 5+ 1))

This is a case dlbtlIlCthIl according to the maximum among the values of the t}.
From each disjunct in (4) certainly (3) follows in ZGE (consider t; < t}, 4 j). Now
suppose conversely that z is a solution of (3). Then in the case /\111 t} <t} the pth
disjunct of (4) is also valid. For this we need only confirm tb +j <t Wthh comes
downtot1 +7j <. V\/erear:<t1 + 7, ie., O<;137t‘1 <J, thenalrft‘1 = k follows
for some k < j by n;, that is, x—tl + k. Thus mllt +j—x=75—k for all i < ks.
But this yields the contradiction mlj —k<m.

Case 3: k; = 0 and ko # 0. The argument is analogous to Case 2 but with a
distinction according to the smallest term among the tfz.

From this remarkable example we obtain the following

Corollary 6.2. ZGE is model complete. ZGE and ZG are complete and decidable.

Proof. Since Z is obviously a prime model for ZG, completeness follows from model
completeness, which in turn follows from quantifier eliminability. Clearly, along
with ZGE also its reduct theory ZG is complete. Hence, as complete axiomatizable
theories, both these theories are decidable. [

Remark 1. Also ZG is model complete; Exercise 1. It is in fact the model completion of
the theory of discretely ordered abelian groups because every such group is embeddable
into some Z-group (not quite easy to prove). This is a main reason for the interest in ZG.
Although model complete, ZG does not allow quantifier elimination.

We now intend to show that theories ACF and RCF of algebraically and real closed
fields respectively allow quantifier elimination, even without any expansion of their
signatures. We undertake the proof with a model-theoretical criterion for quantifier
elimination, Theorem 6.4. In its proof we will use a variant of Theorem 2.3. Call
X C L a Boolean basis for L in T if every ¢ € L belongs to (X) (page 140). Let
M, M’ be L-models and write M =x M’ instead of (VpeX)(ME ¢ & M'E ¢),
and M = M’ instead of (VpeL)(M E p & M'E ).

Theorem 6.3 (Basis theorem for formulas). Let T be a theory, X C L, and
suppose that M =x M’ = M = M, for all M, M’ ET. Then X is a Boolean
basis for L in T.

Proof. Let a € £ and Y, := {y € (X) | a ¢ v}. One then shows that Y,, Fr a as

in the proof of Theorem 2.3 by arguing with a model M rather than a structure A.
The remainder of the proof proceeds along the lines of Theorem 2.3. []

A theory T is called substructure complete if for all A, B where A C B E T the
theory T' 4+ DA is complete. This is basically only a reformulation of T’s being the
model completion of TV. Indeed, let T be substructure complete and A E T7. Then



5.6 Quantifier Elimination 161

by Lemma 4.1, A C B for some BE T, and T + DA is hence complete. Conversely,
let T be the model completion of 7% and A C BET. Then AE TV, hence T + DA
is complete so that T is substructure complete. In view of this fact we need to pick
up only one of these properties in the next theorem. There exist yet other criteria,
in particular the amalgamability of models of TV; see for instance [CK].

Theorem 6.4. For every theory T in L the following properties are equivalent:

(i) T allows quantifier elimination,  (ii) T is substructure complete.

Proof. (i)=(ii): Let A be a substructure of a T-model, (%) € £, and @ € A" such
that A F «[d]. Further let BE T, DA so that w.l.o.g. B D A. Then also B F a(d),
because in view of (i) we may suppose that « contains no quantifiers. Since B was
arbitrary, DA ¢ «(@). Hence T+ DA is complete.

(il)=(i): Suppose M := (A, w) E T, p(Z) and let X be the set all of literals A of L.
Claim: TxM br (%), where TxM := {p € X | M E @} is the set of formulas
from X true in M. Let A” be the substructure generated from E := {ay,...,a,}
in A, where a; = 2¥,...,a, = z¥. By (ii), T + DA” is complete and moreover
consistent with (@) (observe Ay E T + DA” + o(@)). Hence DA® b1 ¢(a@). Thus,
by the finiteness theorem, there are literals A\o(T), . .., \(Z) with \;(@) € DAF and
Nici 2i(@) Fr p(@). Therefore A, Ai(%) Fr ¢(Z), because ay, ..., a, do not appear
in T. Certainly A\;(%) € Tx M for all i < k, hence Tx M Fp ¢(Z). This proves the
claim. It holds for arbitrary ¢(Z) € £ provided M E ¢(Z), so that Tx M is clearly
maximally consistent. This in turn implies that M =x M’ = M = M/, for all
M, M’ E T as is easily seen. Thus, according to Theorem 6.3, the literals of £
form a Boolean basis for £ in T, which obviously amounts to saying that 7" allows
quantifier elimination, and (i) is proved. [

Corollary 6.5. An V-theory T permits quantifier elimination if and only if T is
model complete.

Proof. Dueto AC BET = AE T, (ii) in Theorem 6.4 is satisfied provided only
T 4+ DA is complete for all AE T. But this is granted if T is model complete. []

Example 3. Let T be the V-theory with two unary function symbols f, g whose
axioms state that f and g are injective, f and g are mutually inverse (Va fgx =z and
Vz gfx=1), and there are no circles (cf. Example 3 in 5.2). Note that Vy3zfr=y
is provable from the axiom Vz f(gr)=x. Hence, f and g are bijective. The T-
models consist of disjoint countable infinite “threads” which occurred also in the
just mentioned example. Hence, T is Nj-categorical and thus model complete by
Lindstrém’s criterion. By the corollary, T permits the elimination of quantifiers.
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Theorem 6.6. ACF and RCF allow quantifier elimination.

Proof. By Theorem 6.4 it is enough to show that ACF and RCF are substructure
complete, or put another way, ACF and RCF are the model completions of ACF”
and RCFY, respectively. Both claims are clear from Example 3 in 5.5, since ACFY
is identical to the theory of integral domains, and RCF” is nothing other than the
theory of ordered commutative rings with unit element. [}

This theorem was originally proved by Tarski in [Ta2]. While thanks to a host
of model-theoretical methods the above proof is significantly shorter than Tarski’s
original, the latter is still of import in many algorithmic questions. Decidability and
eliminability of quantifiers in RCF have great impact also on other fields of research,
in particular on the foundations of geometry which are not treated in this book.

Remark 2. Due to the completeness of RCF, one may also say that the first-order theory
of the ordered field R allows quantifier elimination. Incidentally, the quantifiers in RCF are
not eliminable if the order, which is definable in RCF, is not considered as a basic relation.
Also the (complete) theory T := Th(R, <,0,1,+, —,, exp) with the exponential function
exp in the language does not allow quantifier elimination. 7" is nonetheless model complete
as was shown in [Wi]. Because of completeness, the decision problem for T reduces to the
still unsolved axiomatization problem, whose solution hinges on the unanswered problem
concerning transcendental numbers, Schanuel’s conjecture, which lies outside the scope of
logic (consult the Internet). A particular question related to the conjecture is whether or
not e® is transcendental.

Exercises

1. Show that the theory ZG is model complete in its language, and even in the
language £{0,1,+, —}.

2. A structure elementarily equivalent to (N, 0,1, 4, <) is called an N-semigroup.
Axiomatize the theory of N-semigroups and show (by tracing back to ZG) that
it allows quantifier elimination in £{0,1,+,<,11,2],... }.

3. Let RCF° be the theory of real closed fields without order as a basic notion.
Prove that the Jy is not eliminable in RCF® from «o(z) = Jyy - y==.

4. Show that RCF is axiomatized alternatively by the axioms for ordered fields
and the continuity scheme CS in 3.3 page 86.

5. Show that the theory T of divisible ordered abelian groups allows quantifier
elimination.
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5.7 Reduced Products and Ultraproducts

In order to merely indicate the usefulness of the following constructions consider for
instance Z", a direct power of the additive group Z. By component-wise verification
of the axioms it can be shown that Z" is itself an abelian group (n > 2). But in
this and similar examples we can save ourselves the bother, because by Theorem 7.5
below a Horn sentence valid in all A4; is also valid in the product [[,.; Ai, and the
group axioms are Horn sentences in each reasonable signature.

Let (A;)ier be a family of L-structures and F' a proper filter on I (# 0, cf. 1.5).
We define a relation = on the domain B of the product B := Hiel A; by

a%pb 54 {z€I|a1:bz}€F

This is an equivalence relation on the set B. Indeed, let I, := {i € I | a; = b;}.
~r is reflexive (since I,—, = I € F) and trivially symmetric, but also transitive,
because I,—p, [—. € F = I,_. € F, thanks to I,—, N [,—. C I,—..

Furthermore ~p is a congruence in the algebraic reduct of B. To see this let f be

icl

an n-ary function symbol and @ ~p b, which for @ = (at,...,a"), b= (b, ..., ")
in B™ abbreviates a' ~p b',...,a" ~p b™. Then I_; = ﬂ:zl Tv—pv belongs to F.
Since certainly I,_; C I, we get I . € F and hence fBa ~p fB.

Now let C := {a/F | a € B}, where a/F denotes the congruence class of ~p to
which a € B belongs. Thus, a/F = b/F < 1,-, € F. C becomes the domain of
some L-structure C in that first the operations f¢ are defined in a canonical way.
With @/F := (a'/F,...,a"/F) set fC(a/F) = (f®a@)/F. This definition is sound
because ~p is a congruence. For constant symbols c let of course ¢ := cB/F.

Similar to the identity, the relation symbols are interpreted in C as follows:

rafF e La € F (ITE ={iel|ra}, @ = (a},... aT”)).

» "

Also this definition is sound, since I,; € F and d ~p Eimply I; € F. Indeed,
a~gp bis equivalent to I,_; € F' and it is readily verified that I, N I, _; C I ;.

The L-structure C so defined is called a reduced product of the A; by the filter F
and is denoted by [/, A; (some authors denote it by [[,., A;/F). Imagining a filter
F as a system of subsets of I each of which contains “almost all indices,” one may
think of [\, A; as arising from B = [[,; A; by identification of those a,b € B for
which the ith projections are the same for almost all indices 3.

Let C =[], Ai. For w: Var — B (= [[,; A;) the valuation z + (z%); to 4, is
denoted by w;, so that 2 = (2%%);c;. Induction on ¢ yields ¥ = (¢*#);c;. Define the
valuation w/F — C by 2/ = x/F. This setting generalizes inductively to

(1) tF =¢v/F, for all terms ¢ and valuations w: Var — B.

To verify (1) consider (f)/F = fC(tF) = fC(tw/F) = fB(t")/F = (fi)/F. It is
easily seen that each w': Var — C'is of the form w/F for suitable w: Var — B.
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Let w: Var = B and a € L. Define I := {i € I | A; E a[w;]}. Then holds
(2) 1%, C Iy for some a € B and w'=w$.
Indeed, let i € 1% 5, ie., A; F 323 [w;]. Choose some a; € A; with A; F a [w;F]. For
i ¢ I%,5 pick up any a; € A;. Then clearly (2) holds with a = (a;)ier and w'=wg.
The case that F is an ultrafilter on I is of particular interest. By Theorem 7.1, all
elementary properties valid in almost all factors carry over to the reduced product,
which in this case is called an ultraproduct. If A; = A for all i € I then er 1A
is termed an ultrapower of A, denoted by A!/F. The importance of ultrapowers is
underlined by Shelah’s theorem (not proved here) that A = B iff A and B have
isomorphic ultrapowers. The proof of Theorem 7.1 uses mainly filter properties; the
specific ultrafilter property is applied only for confirming I*, € F < I¥ ¢ F.

Theorem 7.1 (Los$’s ultraproduct theorem). Let C = HZFQ

product of the L-structures A;. Then for all a € L and w: Var — []
(x) CEaw/F]< IY e F.
Proof by induction on «. (x) is obtained for equations t; =+, as follows:

Ceti=t[w/F] & &7 =" « w/F=w/F (by (1)
& fiel|ty =ty e (t"= ("))
=4 {Z S [|Az E t1=1o [wl]} el & It“1]=t2 e F.

A; be an ultra-

Ai7

icl

One similarly proves (*) for prime formulas of the form ri. Induction steps:
CFRarBw/F] & CFa,Bw/F] « Iy, 1§ € F' (induction hypothesis)
& Iynly e F (filter property)
s IV, €F (since I}y, 5 = IY N IY).

Further, C F —~a[w/F]| & CE aw/F] < I¥ ¢ F < I\[" € F & % € F. Now
let 1Y, € F, a € [[;c; A, and w' := w$. Since I%, C I, also I*" € F. Hence,
C F afw'] by the induction hypothesis. a was arbitrary, so C E Vza [w/F]. The
converse is with 3 := —a equivalent to 13,5 € F' = C F 3z [w/F]. This follows

from (2) since () holds by the induction hypothesis for «, hence also for —=a. [J
Corollary 7.2. A sentence « is valid in the ultraproduct HF A; iff a is valid in

iel
“almost all” A;, that is, {i € I | A; F o} € F. In particular, A/F F a < AF a.
In other words, an ultrapower of A is elementarily equivalent to A.

The last claim is clear since the validity of a in a structure does not depend on the
valuation chosen. The ultrapower case can be further strengthened to A < A!/F
(Exercise 2), useful for the construction of special nonstandard models, for instance.
From the countless applications of ultraproducts, we present here a very short proof
of the compactness theorem for arbitrary first-order languages. The proof is tricky,
but undoubtedly the most elegant proof of the compactness theorem.
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Theorem 7.3. Let X C L and let I be the set of all finite subsets of X. Assume
that every i € I has a model (A;,w;). Then there exists an ultrafilter F on I such
that erl A; B X [w/F], where ** = (2%);e; for x € Var. In short, if every finite
subset of X has a model then the same applies to the whole of X.

Proof. Let J, := {i € I | a € i} for @« € X. The intersection of finitely many
members of F := {J, |« € X} is # §; for instance {ag,...,an} € Joy N+ N Ty, .
By the ultrafilter theorem (page 28), there exists an ultrafilter F' O E. If o € X
and 7 € J, (that is, a € i) then A; F « [w;]. Consequently, J, C I; hence I € F.
Therefore, [, A; E a[w/F] by Theorem 7.1 as claimed. [J

A noteworthy consequence of these results is the following theorem; by Shelah’s
theorem mentioned above condition (a) can be converted in a purely algebraic one.

Theorem 7.4. Let K be the class of all L-structures, and K C K. Then

(a) K is A-elementary iff K is closed under elementary equivalence and under
ultraproducts,

(b) K is elementary < K is closed under elementary equivalence and both K
and \K (= K \K) are closed under ultraproducts.

Proof. (a): A A-elementary class is clearly closed under elementary equivalence.
The rest of direction = holds by Theorem 7.1. <: Suppose T':= ThK and AE T
and let I be the set of all finite subsets of Th.A. For each i = {ay,...,a,} € T
there exists some A; € K such that A; F i, for otherwise \/_; =@, € T, which
contradicts ¢ € T. According to Theorem 7.3 (with X = Th.A) there exists a
C = erI.Aq; E ThA, and if A; € K then so too C € K. Since C £ Th A we
know that C = A, and therefore A € K. This shows that AF T = A € K.
Hence A F T & A € K, ie, K is A-elementary. (b): = is obvious by (a),
because for K = Mda we have \K = Md—a. <: By (a), K = Md S for some
S C L° Let I be the set of all nonempty subsets of S. We claim (x) : there is some
i ={ag,...,a,} € I such that Mdi C K. Otherwise let A; F i such that 4; € \K
for all i € I. Then there exists an ultraproduct C of the A; such that C € \ K and
CEiforall i € I; hence C F S. This is a contradiction to Md .S C K. So (x) holds.
Since also K = Md S C Md i, we obtain K = Mdi = Md /\ugn a,. 4

Application. Let K be the (A-elementary) class of all fields of characteristic 0.
We show that K is not elementary, and thus in a new way that Th K is not finitely
axiomatizable. Let P; denote the prime field of characteristic p; (po=2, p1=3,...)
and let F' be a nontrivial ultrafilter on N. We claim that the field HZFGN P; has
characteristic 0. Indeed, {i € I | P; F —char,} is for a given prime p certainly
cofinite and belongs to F', so that HZN P; E —char, for all p. Hence \K is not
closed under ultraproducts and so by Theorem 7.4(b), K cannot be elementary.
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We now turn to reduced products. Everything said below on them remains valid
for direct products; these are the special case with the minimal filter F = {I}. More
precisely, Hfél}r A; >~ Hie ; A;i. Filters are always proper in the sequel.

Theorem 7.5. Let C = HZFE[ A; be a reduced product, w: Var — [[,.; A;, and a a
Horn formula from the corresponding first-order language. Then

(x) IY € F= CE aw/F].
In particular, a Horn sentence valid in almost all A; is also valid in C.
Proof by induction on the construction of Horn formulas. For prime formulas the
converse of (%) is also valid, because in the proof of (x) from Theorem 7.1 for prime
formulas no specific ultrafilter property was used. Moreover, if « is prime then
" e F=1"¢F=CFalw/F]=CF -alw/F|. Hence, (x) is correct for all
literals. Now suppose (x) for a prime formula a and a basic Horn formula 3, and
let Iy, ; € F. We show that C F a - [w/F]. Let C F a[w/F]. Then I} € F
since a is prime. Iy N IY_, 5 C If leads to Iy € F; hence C F 3[w/F| by the
induction hypothesis. This shows that C F o — § [w/F] and proves () for all basic
Horn formulas. Induction on A and V proceeds as in Theorem 7.1 and the 3-step
easily follows with the help of (2) above. [

According to this theorem the model classes of Horn theories are always closed
under reduced products, in particular under direct products. This result strengthens
Exercise 1 in 4.1 significantly. We mention finally that also the converse holds: every
theory with a model class closed with respect to reduced products is a Horn theory.
But the proof of this claim, presented in [CK], is essentially more difficult than that
for the similar-sounding Theorem 4.4.

Exercises

1. Show that []/,A; is isomorphic to A;, for some ig € I if F is a trivial
ultrafilter. This applies e.g. to ultraproducts on a finite index set (Exercise 3

in 1.5). Thus, ultraproducts are interesting only if the index set I is infinite.
2. Prove that A is elementarily embeddable into every ultrapower A/F.

3. (Basic in nonclassical logics). Let Fg:= ({F4| A € K} be the consequence
relation defined by a class K of L-matrices (page 40). Show that Fg is finitary
if K is closed under ultraproducts (which is the case, for instance, if K = { A}
with finite A). Thus, F 4 is finitary for each finite logical matrix.

4. Let A, B be Boolean algebras. Prove that A E a < B E « for all universal
Horn sentences a. This holds in particular for identities and quasi-identities.
Every sentence of this kind valid in 2 is therefore valid in all Boolean algebras.



Chapter 6

Incompleteness and Undecidability

Godel’s fundamental results concerning the incompleteness of formal systems suffi-
ciently rich in content, along with Tarski’s on the nondefinability of the notion of
truth and Church’s on the undecidability of logic, as well as other undecidability
results, are all based on essentially the same arguments. A widely known popular-
ization of Goédel’s first incompleteness theorem runs as follows:

Consider a formalized axiomatic theory T that describes a given domain of objects
A in a manner that we hope is complete. Moreover, suppose that T is capable of
talking in its language £ about its own syntax and proofs from its axioms. This is
often possible if 7" has actually been devised to investigate other things (numbers
or sets, say), namely by means of an internal encoding of the syntax of £. Then the
sentence v: “I am unprovable in 77 belongs to £, where “I” refers precisely to the
sentence v (clearly, this possibility of self-reference has to be laid down in detail,
which was the main work in [Go2]). Then v is true in A but unprovable in T.

Indeed, if we assume < is provable, then, like any other provable sentence in T,
~ were true in A and so unprovable, since this is just what v claims. Thus, our
assumption leads to a contradiction. Hence, s assertion goes conform with truth;
more precisely, v belongs to the sentences from £ true in A. Put together, our goal
of exhaustively capturing all theorems valid in .4 by means of the axioms of 7" has
not been achieved and is in fact not achievable as we will see.

Clearly, the above is just a rough simplification of Godel’s Theorem which does
not speak at all about a domain of objects, but is rather a proof-theoretical asser-
tion the proof of which can be carried out in the framework of Hilbert’s finitistic
metamathematics. This in turn means about the same as being formalizable and
provable in Peano arithmetic PA, introduced in 3.3.

This result was a decisive point for a well founded criticism of Hilbert’s program,
which aimed to justify infinitistic methods by means of a finitistic understanding
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of metamathematics. For a detailed description of what Hilbert was aiming at, see
[K12] or consult [HB, Vol. 1]. The paradigm of a domain of objects in the above sense
is, for a variety of reasons, the structure N' = (N, 0,8, +,-). Godel’s theorem states
that even for N a complete axiomatic characterization in its language is impossible,
a result with far-reaching consequences. In particular, PA, which aims at telling us
as much as possible about N, is shown to be incomplete.

PA is the center point of Chapter 7. It is of special importance because classical
number theory and large parts of discrete mathematics can be developed in it; all
interesting combinatorial functions are definable. In addition, known methods for
investigating mathematical foundations can be formalized and proved in PA. These
methods have stood firm against all kinds of criticism, leaving aside some objections
concerning the unrestricted use of two-valued logic, not discussed here.

Some of the steps in Godel’s proof require only modest suppositions regarding
T, namely the numeralwise representability of relevant syntactical predicates and
functions in 7" in the sense of 6.3. It was one of Godel’s decisive discoveries that all
the predicates required in +’s construction above are primitive recursive! and that
all predicates and functions of this type are indeed representable in T'. As remarked
by Tarski and Mostowski, the latter works even in certain finitely axiomatizable,
highly incomplete theories T and, in addition, covers all recursive functions. This
yields not only the recursive undecidability of T" and all its subtheories (in particular
the theory Taut.), but also of all consistent extensions of T in its language L.

From this it follows that the first incompleteness theorem as well as Church’s and
Tarski’s results can all be obtained in one go, making essential use of the fized-point
lemma in 6.5, also called the diagonalization lemma because it is shown by some
kind of diagonalization on the primitive recursive substitution function. Its basic
idea can even be recognized in the ancient liar paradox, and is also used in the
foregoing popularization of the first incompleteness theorem.

In 6.1 we develop the theory of recursive and primitive recursive functions to
the required extent. 6.2 deals with the arithmetization of syntax and of formal
proofs. 6.3 and 6.4 treat the representability of recursive functions in axiomatic
theories. In 6.5 all the aforementioned results are proved, while the deeper-lying
second incompleteness theorem is dealt with in Chapter 7. Section 6.6 concerns the
transferability of decidability and undecidability by interpretation, and 6.7 describes
the first-order arithmetical hierarchy, which vividly illustrates the close relationship
between logic and recursion theory.

L All these predicates are also elementary in the recursion-theoretical sense, see e.g. [Mo], although
it requires much more effort to verify this. Roughly speaking, the elementary functions are the
“not too rapidly growing” primitive recursive functions. The exponential function (m,n) + m"
is still elementary, however the hyperexponential function defined on page 186 is not.



6.1 Recursive and Primitive Recursive Functions 169

6.1 Recursive and Primitive Recursive Functions

In this chapter, along with 4,...,n we take a, . .., e to denote natural numbers, unless
stated otherwise. The set of all n-ary functions with arguments and values in N is
denoted by F,,. For f € F,, and ¢1,...,9m € F, we call h : @ — h(qid, ..., gnd)
the (canonical) composition of f and the g; and write h = f[g1,...,gm]. The arity
of h is n. Analogously, let Plgy, ..., gn] for P C N™ and m > 0 denote the n-ary
predicate {@ € N* | P(¢1d@, ..., gmd@)}.

In an intuitive sense f € F,, is computable if there is an algorithm for computing
fa for every a in finitely many steps. Sum and product are simple examples. There
are uncountably many unary functions on N, and because of the finiteness of every
set of computation instructions, only countably many of these can be computable.
Thus, there are noncomputable functions. This existence proof brings to mind the
one for transcendental real numbers, based on the countability of the set of algebraic
numbers. Coming up with concrete examples is, in both cases, less simple.

The computable functions in the intuitive sense have the following properties:

Oc: It heF,, and g1,...,gn € F, are computable, so too is f = h[g1, ..., gm]-

Op: If g € F,, and h € F,, 5 are computable then so is f € F,,,1, determined by
£(@,0) = g@  f(@Sh) = h(d@,b, (d,b)).

This are the so-called recursion equations for f. The function f is said to result
from g, h by primitive recursion, or f = Op(g, h) for short.

Op: Let g € F,,; such that Va3b g(a@, b) = 0. If g is computable then so is f, given
by fd = ublg(a@,b)=0]. Here the right-hand term denotes the smallest b with
g(@,b) = 0. f is said to result from g by the u-operation.

Considering Oc, Op, and Op as generating operations for obtaining new functions
from already-constructed ones, we state the following definition due to Kleene:

Definition. The set of p.r. (primitive recursive) functions consists of all functions
on N that can be obtained by finitely many applications of Oc and Op starting
with the following initial functions: the constant 0, the successor function S, and
the projection functions I}:d—a, (1 <v<n, n=1,2,...).

With the additional generating schema Op one obtains the set of all recursive or
u-recursive functions. A predicate P C N™ is called p.r. or recursive (also decidable)
provided the characteristic function X p of P has the respective property, defined by

. 1 in case Pa,
Xpad = . o
0 in case —Pa.
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Remark 1. By Dedekind’s recursion theorem (see e.g. [Ra2]), Op defines exactly one
function f € F,, in the sense of set theory (cf. 3.4). Note that for n = 0 the recursion
equations reduce to f0 = ¢ and fSb = h(b, fb), where ¢ € Fy and h € Fy. If the condition
Va3bg(d,b) = 0 in Op is omitted, then f is regarded as undefined for those @ for which
there is no b with g(a@,b) = 0. In this way the so-called partially recursive functions are
defined, which, however, we will not require.

The following examples make it clear that by means of the I, our stipulations
concerning arity in Oc and Op can be extensively relaxed. In the examples, however,
we will still adjoin the normed notation each time in parentheses.

Examples. Let $° = I} and S*+! = S[s¥], so that clearly S¥: a + a+k. By Oc these
functions are all p.r. The n-ary constant functions K : @~ ¢ can be seen to be p.r.
as follows: K? = $°[0] (¢ > 0), while K!0 = ¢ (= K?) and K!Sb = ¢ ( = I3(b,K}b)).
For n > 1 we have simply K? = K}[I]. Further, the recursion equations

a+0=a (=Ij(a)); a+8Sb=8(a+b) (=SsI(a,b,a+b))
show addition to be a p.r. function. Since a -0 =0 ( = Kéa) anda-Sb=a-b+a
( =I3(a,b,a-b) +13(a,b,a - b))7 it follows that - is p.r. and entirely analogously so
is (a,b) — a’. Also the predecessor function Pd is p.r. because

PA0=0; Pd(Sb) =0 (=1}(b,PdD)).

“Cut-off subtraction” —, given by a ~ b=a — b for a > b and a — b = 0 otherwise,
is p.r. since a = 0 = a (=1Ij(a)) and a = 8b=Pd(a = b) (=PdI3(a,b,a = b)). The
absolute difference |a — b| is p.r. because of |[a — b| = (a = b) + (b - a).

One sees easily that if f is p.r. (resp. recursive) then so too is every function that
results from swapping, equating, or adjoining fictional arguments. For example,
let f € Fy. For f, := f[I3,13] then fi(a,b) = f(b,a); for fo := f[I},1}] clearly
foa = f(a,a), and for f3:= f[I3,13] finally f3(a,b,c) = f(a,b), for all a,b, c.

From now on we will be more relaxed in writing down applications of Oc or Op,
and the I} will no longer explicitly appear. If f € F, 4 is p.r. then so is the function
(@,b) — Hk<b f(@. k), since Hk<0 fla k) =1, Hk<sb fla, k) = Hk<b fla.k)- f(ab).
The same holds for (d,b) — Y, _, f(d@, k), which is defined by >, , f(@, k) = 0 and
[lics, f(@ k) = >, f(@ k) + f(@,b). The §-function, the characteristic function
of the singleton {0}, is defined by 60 = 1, §Sn = 0 and hence is p.r. With ¢ we easily
obtain the characteristic function of the identity relation: X=(a,b) = d|la — b|. This
in turn implies that every finite subset E = {a1,...,a,} of N is p.r. because

Xp(a) = X=(a,a1) + -+ X=(a,a,) (=0forn=0,1ie, E=0).
# is p.r. because X (a,b) = ola—b| with the signum function o, defined by o0 = 0,
oSn = 1. Also < is p.r. because X (a,b) = o(Sb = a) as is easily verified.

Very important is the closure of the set of p.r. functions with respect to definition
by p.r. (resp. recursive) case distinction: If P, g, h are p.r. (resp. recursive) then so
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is f, defined by fd = gd - Xpd + hd - §X pd. Written in the familiar form,

fa ga in case Pd,
a =
hd in case = Pd.

A simple example is (a,b) — max(a,b), defined by max(a,b) = b if a < b and
max(a,b) = a otherwise. Almost all functions considered in number theory are p.r.,
in particular the prime enumeration n — p, (with pg =2, p; = 3,...). The same is
true for standard predicates like | (divides) and prim (to be a prime number). This
will all be verified after some general remarks.

Of fundamental importance is the hypothesis that recursive functions exhaust all
the computable functions over N. This hypothesis is called Church’s thesis; all
undecidability results are based on it. Though it is not at all obvious from looking
at the definition of the recursive functions, all the variously defined computability
concepts turn out to be equivalent, providing evidence in favor of the thesis. One of
these concepts is computability by means of a Turing machine ([Tu]), a particularly
simple abstract model of automated information processing. Also programming
languages may be used to define computability, for instance PROLOG; see 4.4.

Below we compile a list of the easily provable basic facts about p.r. and recursive
predicates needed in the following. Further insights, above all concerning the form
of their defining formulas, will emerge in 6.3 and thereafter. P,Q, R now denote
exclusively predicates of N. In order to simplify the notation of properties of such
predicates, we use as metatheoretical abbreviations the prefixes (Ja<b), (Ja<b),
(Va<b), and (Va<b) as in (B) below. Their meaning is self-explanatory.

(A) The set of p.r. (resp. recursive) predicates is closed under forming the com-
plement, union, and intersection of predicates of the same arity, as well as under
insertion of p.r. (resp. recursive) functions, and finally under swapping, equating,
and adjoining fictional arguments. This is proved as follows: for P C N™ §[X ] is
exactly the characteristic function of =P := N"\P; furthermore Xpng = Xp - Xg
and Xp g = sg[Xp+Xq| aswellas Xp, = Xp[g1,.. ., gm]- Since Xy, (@, D) is
the same as X=(fd,b), graph f is p.r. if f is (though the converse need not hold, see
the end of this section). All other mentioned closure properties are simply obtained
from the corresponding properties of the characteristic functions.

(B) Let P,Q,... C N"T'. If Q(a@,b) & (Vk<b)P(a, k), R(a,b) & (Ik<b)P(a,k),
Q'(a,b) & (Vk<b)P(ad,k), and R'(d,b) & (Ik<b)P(a, k) we say that Q,R,Q’, R’
result from P by bounded quantification. If P is p.r. so too are all these predicates,
because X (d@,0) = [[,., Xp(@, k) and X5(a@,b) = sg(D_,., Xp(d@, k)), and similarly
if @, R are replaced by @', R'. The proofs of these equations are so simple that we
pass over them. Briefly, the set of p.r. (resp. recursive) predicates is closed under
bounded quantification. For instance, since alb < (Ik<b)[a - k = b], also | is p.r.
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So too is the predicate prim, because primp < p # 0,1 & (Va<p)[alp = a=1]. Note
that alp = a = 1 is equivalent (at the metatheoretical level) to af pV a =1 and is
therefore the union of p.r. predicates. Hence, this predicate is indeed p.r.

(C) Suppose P C N**! satisfies Va 3b P(a@,b) and let f(@) = uk[P(@, k)] be the
smallest & such that P(d@, k). Then by O, if P is recursive so too is f, because
fa = pk[dXp(d, k) = 0]; however, in general f is no longer p.r. provided P is p.r.
This does hold, though, for the bounded p-operation: if P C N"*! is p.r. so too is
the function f defined by f(@, m) = uk<m[P(d,k)]. Here let

{the smallest k& < m such that P(@, k), if such a k exists,

pk<m[P(d, k)] =
m otherwise.

Clearly f(a@,0) =0, and f(d,Sm) = f(a,m) if (3k<m)P(d, k), and f(@,Sm) = Sm

otherwise. To convert this into a normed recursion we define a p.r. function g by

(G, b) = {b if (3k<m)P(@, k),

gla,m

Sm otherwise.

Then f(@,Sm) = g(d@, m, f(d, m)) is easily confirmed. Therefore, f is indeed p.r.

Let h € F,, be p.r. and define pk<ha[P(ad, k)] := pk<m[P(d, k) & m = hd]. Then
also @ — pk<hd[P(d, k)] is p.r. A useful application is
the pairing function g, a bijective mapping from N? to
N, defined by p(a,b) = >, +a. It enumerates the
pairs (a,b) as in the figure (Exercise 2). One can see in
yet another way that p is p.r. By a well-known arith-
metical formula, p(a,b) = 3(a+b)(a+b+1)+a. Using
the bounded p-operation we get the following equation:
o(a,b) = pk<(3a +b+1)2[2k = (a +b)? + 3a + b].
Here another application of the bounded p-operation: let lem{a, | v<n} denote

the least common multiple of aq, ..., a,. Then n — lem{fr|v<n} is p.r. provided
f is, simply because of the equation lem{ fv|v<n} = pk< ] fv [(Yv<n) frik].
vn

Still another application of the bounded p-operation is a rigorous proof that the
prime number enumeration is p.r. If p is prime than p!+1 is certainly not divisible by
a prime g < p, for qIp!+1 and ¢|p! yield ¢q|p!+1—p! = 1 and hence the contradiction
ql11. Thus, a prime divisor of p! 4+ 1 is a new prime. What is important here is that
the smallest prime following p is < p!+1. Therefore, the function n +— p,, is uniquely
characterized by the equations

(*) po=2; pan1 = pg<pal+ligprim & g > pol.
Also (x) is an application of Op, because with f: (a,b) — pg<blgprim & ¢ > al,
g: (a,b) — f(a,bl+1) is p.r. as well, and the second equation in (*) can be written
Pni1 = g(n, p,) as is easily verified. Hence, n — p, is indeed p.r.
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Remark 2. Unlike the set of p.r. functions, the set of u-recursive functions can no longer
be effectively enumerated; indeed, not even all unary ones: if (f,,)nen were such an effective
enumeration then f:n — f,(n)+ 1 would be computable and hence recursive by Church’s
thesis. Thus, f = f, for some m, so that fp,(m) = f(m) = fm(m) + 1, a contradiction.
While this seemingly speaks against the thesis, it can in fact be eliminated from the
argument using some basic recursion theory. (C) clarifies the distinction between p.r. and
recursive functions to some extent. The former can be computed with an effort that can
in principle be estimated in advance, whereas the existence condition in the unbounded p-
operation may be nonconstructive, so that even crude estimations of the effort required for
computation are impossible. It is wrong to think that non-p.r. computable functions are
“growing too fast.” There are examples of such functions taking values from {0,1} only.
On the oth(;zr hand, it is simply impossible to compute the digits of f6 for the p.r. function

fin— i/ While f5 has “only” 19729 digits, the number f6 is already astronomical.
n
The following considerations are required in 6.2. They concern the encoding of
finite sequences of numbers of arbitrary length. There are basically several possi-
bilities for doing this. One of these is to use the pairing function g (or a similar
one, cf. [Shoe]) repeatedly. Here we choose the particularly intuitive encoding from
[Go2], based on the prime enumeration n — p,, and the unique prime factorization.

Definition. (ao, ..., a,) == p{*" - p@*! (= i<, pdY is called the Gddel number
of the sequence (ag,...,a,). The empty sequence has the Gddel number 1, also
denoted by (). Let GN denote the set of all Godel numbers.

Clearly, {(ag,...,a,) = {(bo,...,bp) = m=n& a; =b; fori =1,...,n. Also,
(ag,...,an) > {ag,...,a,) is certainly p.r. and by (A), (B) above, so is GN, since

a€ GN & a+#0& (Vp<a)(Vg<p)[primp, q & pla = qla].

We now create a small provision of p.r. functions useful for the encoding of syntax
in 6.2. Using (C) we define a p.r. function a — fa as follows:

la = pk<alpe) a).

We call fa for a Godel number a the “length” of a, since clearly ¢1 = 0, and for
a={ag,...,an) = Hi@p?“rl we have fa = n + 1, because k = n + 1 is the smallest
index such that pr ) a. Note that k < a is satisfied since p,} a in view of p, > a.
Also the binary operation (a,7) — (a); is p.r. where the term (a); is defined by

(a); = pk<alp** al.

This is the “component-recognition function.” pf*'la and p*™2y a imply k = (a);,

hence ({aq, . .., a,)); = a; for all i < n. This function, printed bold in order to catch
the eye, always begins counting the components of a Godel number with ¢ = 0.
Therefore, ()45t := (a),,-, is the last component of a Godel number a # 1. Which
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values (a); and ¢ have if their arguments are not Godel numbers is not important;
some authors redefine them so that their value is 0 in this case.

From the above definitions it follows that a = [],_,, pﬁ"”“ for Godel numbers a
including ¢ = 1. Next we define the arithmetical concatenation * by

axb=a- Hidbp%)ijl for a,b € GN and a * b = 0 otherwise.

Obviously, (ai,...,an) * (b1, ..., by) = (a1,...,0n,b1,...,bn), so that GN is closed
under *. Moreover, a,b < a*b whenever a,b € GN as immediately follows from the
definition of *. Note also that a *b € GN = a,b € GN, for arbitrary a,b. Clearly, x*
is p.r. This function is useful for, among other things, a powerful generalization of
Op, the course-of-values recursion explained below.

To every f € F,,; corresponds a function f € F,,; given by

f(@o0)={ (=1); f(@bv) =(f(ao),...,,f(@b—1)) for b>0.
f encodes the course of values of f. Now let F be a given function in F, 5. Then
just as for Op there is exactly one f € F,; satisfying the functional equation
Ogq: f(d,b)=F(a,b, f(a,b)).

Namely, it holds that f(@,0) = F(a,0,()) = F(a,0,1), f(a,1) = F(a,1,{f(a,0))),
f(@,2) = F(a,2,(f(a,o0), f(a,1))), etc. In Oq, f(@,b) in general depends for b > 0
on all values f(@,0),..., f(d@,b—1), not just on f(@,b—1) as in Op. Therefore Oq is
called the schema of course-of-values recursion. A simple example is the Fibonacci
sequence (fn)nen, defined by f0 =0, f1 =1 and fn = f(n—1)+ f(n —2) for
n > 2. The F in “normal form” Ogq is given here by F(b,c) = b for b < 1 and
F(b,c) = (¢)p—1 + (¢)p—2 otherwise. Indeed, f0 =0 = F(0, f0), f1 =1 = F(1, f1),
and fn=f(n—1)+ f(n—2) = (fn)n_1 + (fn)n_2 = F(n, fn) whenever n > 2.

Op is a special case of Og. If f = Op(g,h) and F is defined by the equations
F(a@,0,c) = g(@) and F(a,Sb,c) = h(d,b,(c),), then f also satisfies Oq with this F
as may straightforwardly be checked while observing that f(a@,b) = (f(a@,Sb))s.

Theorem 1.1. Let f satisfy Oq. If F is primitive recursive then so too is f.

Proof. Since {(co,...,c) = {co,...,cp1) * {c;) for b > 0, the function f satisfies

The second equation can be written f(@,Sb) = h(a,b, f(d@,b)), where h defined by
h(a,b,c) = c* (F(a,b,c)). With F also the function h is p.r. Hence, by Op, f is p.1.
But then also f, because in view of Ogq, f is a composition of p.r. functions. [_J

We now make precise the intuitive notion of recursive (or effective) enumerability.
M C Nis called r.e. (recursively enumerable) if there is some recursive R C N2 such
that M = {b € N | (JaeN)Rab}. In short, M is the range of some recursive relation.
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Since a € M < (FbeN)R'ab where R'ab < Rba, M is at the same time the domain
of some recursive relation.

It is readily shown that M # () is r.e. if and only if M = ran f for some recursive
f € Fi; Exercise 4. This characterization corresponds perfectly to our intuition:
stepwise computation of f0, f1,... provides an effective enumeration of M in the
intuitive sense. This enumeration can be carried out by a computer that puts out
f0, f1,... successively and does not stop its execution by itself.

The empty set is r.e. because it is the domain of the empty binary relation, which is
recursive, and even p.r. since its characteristic function is the constant function K3.
In view of the above characterization of r.e. sets M # (), one could have defined these
from the outset as the ranges of unary recursive functions. But the first definition
has the advantage of immediately expanding to the n-dimensional case given below,
and it avoids a case distinction as to whether or not M is empty.

More generally, a predicate P C N™ is called r.e. provided Pd < (JzeN)Q(z,d)
for some (n + 1)-ary recursive predicate ). Note that a recursive predicate P is r.e.
Indeed, Pad < (FbeN)P'(b,@); here P'(b,d) < Pd (adjoining a fictional variable).
It is not quite easy to present an ad hoc example of an r.e. predicate that is not
recursive. But such examples arise in a natural way in 6.5, where we will show the
undecidability of several axiomatic theories.

It is easily seen that a function f € F,, is recursive provided graph f is, simply be-
cause fa = pb[graph f(d@,b)] (or in strict terms of O, f@ = pb[0X graph (@, b) = 0]),
that is, f can immediately be isolated from graph f with the py-operator. Conversely,
if f is recursive then so is graph f, because X grapnh f(@, b) = X=(f@,b). This equation
also shows that graph f is p.r. whenever f is p.r. On the other hand, it is highly
interesting to notice that there is a function f € F; (and not only one) whose graph
is p.r. although f itself is not p.r. Much preparation is needed for getting such an
example, namely the f constructed in Exercise 4 in 6.5.

Exercises

1. Let a < fa for all a. Prove that if f is p.r. (resp. recursive) then so is ran f.
Show the same for f € F,, whenever aq,...,a, < fd for all @ € N,

2. Prove in detail that the pairing function p:N? — N is bijective and that its
diagram in the figure on page 172 is correct.

3. Since p:N? — N is bijective, there are functions »¢,36 € F; such that
p(3an, 3on) = n, for all n. Prove that sq, 5 are p.r. (one need not exhibit
explicit terms for these functions).

4. Let § # M C N. Show M is r.e. iff M = ran f for some recursive f € F.
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6.2 Arithmetization

Roughly put, arithmetization (or Gédelization) is the description of the syntax of a
formal language £ and of formal proofs from an axiom system by means of arith-
metical operations and relations on natural numbers. It presupposes the encoding
of strings from the alphabet of £ by natural numbers. Syntactical functions and
predicates correspond in this way to well-defined functions and predicates on N.

Thus many goals at once become attainable. First of all, the intuitive idea of a
computable word function can be made more precise using the notion of recursive
functions. Second, syntactical predicates like for instance ‘z € vara’ can be replaced
by corresponding predicates of N. Third, using encoding, statements about syntac-
tical functions, predicates and formal proofs can be formulated in theories T C L
able to speak about arithmetic, and perhaps be proved in T.

We demonstrate the arithmetization of syntax using as an example the language
L = L, whose extralogical symbols are 0,5, +,-. This is the language of Peano
arithmetic PA. However, the same procedure can be carried out analogously for
other formal languages, as will be apparent in the course of our considerations.

The first step is to assign uniquely to every basic symbol ¢ of £ a number #(, its
symbol code. The following table provides an example for £ = L,

(l==a ¥ () 0 8 + - w v
)1 3 5 7911 13 15 17 19 21 23

Next we encode the string & = (g - (, by its Gddel number, which is the number
8oy - -+, HCn) = péﬂco - piHin  The empty string gets the Godel number 1.

Example. The term 0 and the prime formula 0=0 have the still comparatively
small Godel numbers 2'+% = 214 and 2. 32 . 5 respectively. The term 1 has the
Godel number 216« 314, This encoding is not particularly economical, but that need
not, concern us here. Nor is it a problem that the symbol code of = is the same as
the Godel number of the empty string. For note that =, considered as a string of
length 1, has the Godel number 22 = 4.

In the following, &, n,9 denote strings (or words) of the basic symbols of £; the
set of these strings is denoted by 8. Let £ be the Godel number of &, and £, &
therefore that of the the term ¢ and the formula «, respectively. If we write &n
for the concatenation of &, € 8., then obviously (£n) = € %1, where x is the
arithmetical concatenation from 6.1. §, = {€| £ € 8.} is a p.r. subset of the set of
all Gédel numbers. Indeed, since £-symbols are encoded by odd numbers,

nes; o ne GN& (Yk<ln)2f (n)y.

At least for the time being, it is necessary to distinguish between the symbol ¢

and the string ¢, which actually means the single-element sequence (¢). The Godel



6.2 Arithmetization 177

number of the string ¢ is 2'+%. For example, the prime term 0 (which is a one-letter
string) has the Gédel number (0 = 21+, while the symbol 0 has the symbol code 13.
Similarly, we must distinguish between v; as a term and v; as a symbol. The term
v; and the symbol v; are equally denoted only for faster readability.

Remark 1. One could, right from the beginning, identify symbols with their codes and
strings with their Godel numbers, so that ¢ = ¢ and ¢ = t for formulas ¢ and terms ¢,
and syntactical predicates are arithmetical from the outset. We postpone this until we
have convinced ourselves that syntax can indeed adequately be encoded in arithmetic.
Further, the alphabet of L, could easily be replaced by a finite one, consisting, say, of
the symbols =,—, ..., v, in that vy is replaced by the string v0, v; by vS0, and so on.
Other encodings found in the literature arise from the identification of the letters in such
alphabets with the digits of a suitable number base.

In the following, let W = {£ | &€ € W} for sets W C 8, of words. A corresponding
notation will be used for many-place word predicates P. We call P p.r. or recursive
whenever P is p.r. or recursive, respectively. So, for example, if we talk about a
recursive axiom system X C £, it is always understood that X is recursive. Other
properties, such as recursively enumerable or representable, can be transfered to
word predicates by means of the above or a similar arithmetization.

All these remarks refer not just to £L = L., but to an arbitrary arithmetizable
(or godelizable) language £, by which we simply mean that £ possesses finitely
or countably many specified basic symbols, so that each string can be assigned a
number code in a computable way. In this way, the concepts of an axiomatizable or
decidable theory, already used in 3.3, obtain an absolutely precise meaning.

Of course, one must distinguish between the axioms and theorems of an axiomatic
theory; the axiom systems of familiar theories like PA and ZFC are readily seen to
be p.r., while these theories considered as sets of theorems are shown in 6.5 to be
undecidable and cannot even be extended in any way to decidable theories.

The main goal now is the arithmetization of the formal proof method. We use F
from now on to denote the Hilbert calculus of 3.6 consisting of the axiom system A
with the axiom schemas A1-A10 given there and MP as the only rule of inference,
based on some fixed arithmetizable language L.

Just as for strings, for a finite sequence ® = (¢, ..., p,) of L-formulas we call
P = (£0s - -+, Pn) its Godel number. This includes in particular the case that ® is
a proof from X (C £) in the sense of 3.6, which in the general case also contains
formulas from A. Note that ® # ¢ for all £ € 8., because (<i>)0 = ¢ is even, so that
21(®)o, whereas 2/ (€)o because the symbol codes are odd. This is the case in our
example language L, and may actually be presupposed throughout. Thus, we can
comfortably distinguish the Godel numbers of formulas and terms from the Godel
numbers of finite sequences of formulas.
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Now let T (C L°) be a theory axiomatized by some fixed axiom system X C T.
Examples are PA or ZFC. The language L. is obviously simpler than L., which of
course simplifies encoding. A proof ® = (py,...,¢,) from X is also called a proof
in T. Here and elsewhere X is tacitly understood to be an essential part of T'. First
define the p.r. functions =, A, = as follows: Sa = S % a, arb = (*xax A *bx)
and a b := S(a A Sb) (argument parentheses in the last expression should not be
mixed up with parentheses belonging to the alphabet of L).

Let proof; denote the unary arithmetical predicate that corresponds to the syn-
tactical predicate ‘® is a proof in T from X’. We denote the arithmetical predicates
corresponding to ‘@ is a proof for ¢’ (the last component of @) and to ‘there is a
proof for ¢ in 77 by bewr and bwbr, respectively (coming from beweis=proof and
beweisbar=provable). The precise definitions of these predicates look as follows:

(1)  proofp(b) & be GN & b#1
& (Vk<b)[(b)x € X UAV (3i,5 < k)(b); = (b); > (D)l

(2) bewr(b,a) < proofp(b) & a = (b)ast, (3) bwbra < 3b bewr(b,a).

Since bwbr is a unary predicate, we may omit the argument parentheses in writing
bwbr a. Easily obtained from (1), (2), and (3) are
(4
(5

Fra < bewr(n, &) for some n < bwbr @,

bewr(c,a) & bewr(d,a =b) = bewr(c* d = (b),b), for all a,b,c,d,
(6) bwbra & bwbr(a =b) = bwbr b, for all a, b,

(7) bwby & & bwbp(a — 3) = bwby 3, for all a, 3 € L.

(4) is clear, for 7 « iff there is a proof ® for a iff In bewr(n, &) (choose n = ®).
(5) tells us in arithmetical language the familiar story that joining together proofs
for «, v — 3 and tacking on ( yields a proof for 8. (5) immediately yields (6) by
particularization, and (6) implies (7) since (o —3) = & > 3.

—_ = =

Remark 2. We will not need (5)—(7) until 7.1. But it is instructive for our later transfer
of proofs to PA to verify (5) first naively. This is simple when we use the following facts:
for all a,b € GN, £(a * b) = La + £b, (a* b); = a; for i < la, (a* b)ger; = b; for i < £b, and
£{c) =1, ({¢))o = ¢ for all ¢ € N. Since it would impede the proof of (5), we did not add
(Vk<b)(b)), € L to the right-hand side of (1). This is in fact not necessary, since induction
on the length of the proof code b readily shows that proofy(b) implies (Yk<(b)(b)y € L.
Here we need a,a >be £ = be L, for all a,b € N; Exercise 2.

Now we really get down to work and show that the syntactic basic notions up to
the predicate bewr are p.r. In 6.5 basically only their recursiveness is important;
not until Chapter 7 do we make essential use of their p.r. character. We return to
our example £ = L,,, because the proofs of the following lemmas are not entirely
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independent of the language’s syntax and the selected encoding, though they can
be proved for other arithmetizable languages in nearly the same way.

In addition to the already-defined =, A, and =, we define n=m :=n* = xm
(= n*2%xm) and Q(Z,n) =V i%n. 3is defined similarly. Finally, for S, +,- let
Sn =S *n, ntm = (*xn*+*m=), and similarly for -. Then (s=t)" = §=f and
(st) = Si hold, for example, as does (Vza) = Vid (= V(i,d)). All these functions
are obviously primitive recursive.

The set V of variable terms is p.r. because n € V < (Ik<n)n = 222+2*  Thus
Tprim = Y U{0}, the set of all prime terms of £, is p.r. as well. For arbitrary strings
&, let &€ < 1 mean 5 < 7. For example, £ < n holds if £ is a substring of 7, in
particular if £ denotes a subformula of the formula 7. This follows immediately from
the property a,b < a * b for Gédel numbers a, b, which was noted on page 174.

Lemma 2.1. The set T of all terms is primitive recursive.

Proof. By the recursive definition of 7, ¢t € T if and only if
t€ TyrimV (Ft1 by < O)[t1,ts €T & (t =Sty Vi = (ty + 1) VE = (1 - t))].

Therefore the corresponding arithmetical equivalence holds as well, namely

(x) neT eneThmV @i k<n)ikeT & Q(n,i, k)]
where Q(n,i,k) < (n =SiVn =i+kVn = i-k). We now show how to convert this
“informal definition” of 7, which on the right-hand side makes use of elements of 7
smaller than n only, into a course-of-values recursion for X whence X5 and so T
would turn out to be p.r. Consider the p.r. predicate P defined by

P(a,n) & n € TprimV 31,k <n)(a); = (a)r =1 & Q(n, 1, k)].
We claim that the characteristic function f := X+ satisfies
O fn=xp(fn.n)  (fn={fO).....f(n—1))
and hence is p.r. by Theorem 1.1. Indeed, since fi = fk =1< i,k € T, we have
neT & neTmV@ik<n)|fi=fk=1&Q(n,i,k)) (by (+))
< P(fn,n) (because (fn); = fi and (fn), = fk)
From this equivalence it clearly follows that fn =1 < Xp(fn,n) = 1, which in turn
implies Ogq since both f and X take values from {0,1} only. []

Lemma 2.2. The set L (= Lg,) of all formulas is primitive recursive.

Proof. L, is p.r. because n € Ly < (3ik <n)li,k € T &n = i=k]. If
we consider & < £ for every £ € 8, and x € varé (because then & = nzf for some
strings 1,0 € 8.), then the predicate ‘p € L’ clearly satisfies the condition

0 € LyimV(Ba,fix<)a,feL&rzeV&(p="aVe=(arf)Vyp=VYa)].
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This “informal definition” can then be transformed just as in Lemma 2.1 into a
course-of-values recursion of the characteristic function of £ using the characteristic
function of the certainly p.r. predicate P given by

P(a,n) < n€ Lyim V (3ik,j<n)|(a)i=(a)p=1& jEV
&(n==iVn=1ii kVn=VYjk). O

Beginning with the substitution & — £ £, which is interesting both for formulas
and terms, we may now define a ternary p.r. function (m,i, k) — [m]F so that

(+) [E=(cL) forall¢ e LUT.
For this we first translate the equations of the recursive definition for £ £ into

corresponding requirements for [m]*. For allm € LUT, i€V and k € N let

[m]f =kifi=me 7;11'1'77“ [m}f =mifi 7é me 7;)1'1'77“ [:‘m]]f = :‘[m]f7

[Sm]¥ = S[m]¥, [m+n]f = [m]f+[n]F and similarly for -, » and =,
[Fmlf = (j,m) for j =i, [Vjm]f = V(j, [m]f) for j # 1.
For all remaining triples m, i,k let [m]¥ = 0. It is left to the reader to construct
(using p.r. case distinction) a course-of-values recursion for the determination of

[m]% such that the given conditions and hence (x) are satisfied.

As was already noticed the predicate ‘x occurs in &, or ‘x € var&’ for short, is p.r.
since z € var{ & xz €V & (In, Y < §)(§ = nzv). Replacing here nzd by nvzv
makes it clear that ‘x € bnda’ is p.r. as well. The binary predicate ‘x € freea’
is also p.r. because z € freea & z eV &al#a(ezecV & # ad).
Consequently £° is p.r. With these preparations we now prove

Lemma 2.3. The set A of logical axioms is primitive recursive.

Proof. Al is p.r. because ¢ € Al if and only if
Fa. B,y <@o,ByELE p=(a—B=7)—(a—P)=@—7)]

To characterize the corresponding arithmetical predicate we use the p.r. function
= . One reasons similarly for A2-A4. For a p.r. characterization of A5 use the fact
that the ternary predicate ‘a, £ collision-free’ is p.r. For ‘a, £ collision-free’ holds
iff (Vy<a)(y € bnda & y € vart = y = ). Further, the predicate ‘¢ = Voza - a £’
which depends on ¢,a,x,t, is p.r., as can be seen by applying (m,i,k) — [m]¥.
Hence, A5 is p.r. as well, because ¢ € A5 if and only if
Qazt<p)aelL&zeV&teT &p=Via—sal & a,f collision-free).

Similarly it is shown that A6-A10 are p.r. Thus, each of the schemas Ai is p.r. and
therefore so is Ag := A1 U --- U A10. But then the same holds for A itself, because
k — vy, is surely p.r. and every @ € A can be written o« = VZ«v with some (possibly
empty) prefix VZ and for some «y € Ag, and then it must hold that
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neh @ nel& @mk<n)(n=mxk&2ltm& kel
& (Vi<tm)[21i & (m); =tV V 2)i & (Fk<n)(m); = fvg).

The second line of this formula tells us that m is the Godel number of a prefix
V- --Va;. This is a string of length m = 2[. [J

All of the above holds completely analogously for every arithmetizable language.
Hence, given a p.r. or recursive axiom system X, X U A is p.r. (resp. recursive) as
well. This applies in particular to the axiom systems of PA and ZFC. These are p.r.
like every other common axiom system, despite the difference in their strengths.
The proof is carried out in a manner fairly similar to that of Lemma 2.3.

The main result of this section that now follows, is completely independent of the
strength of an axiomatic theory T'. The strength of a theory T first comes into the
picture when we want to prove something about bewr and bwby within T itself.

Theorem 2.4. Let X be a p.r. axiom system for a theory T of an arithmetizable
language. Then the predicate bewyp is p.r. The same holds if we substitute here
“recursive” for “primitive recursive.” T is in either case recursively enumerable.

Proof. Definition (2) on page 178 shows that bewr is p.r. Because of (3) on the
same page, T' = {a € L°| bwbr a} is the range of a (primitive) recursive relation and
thus is r.e. Clearly, the last part of the theorem is proved in the same manner. [

Theorem 2.4 can be strengthened only in particular circumstances, for example, if
T is complete. Although bewr is a (primitive) recursive predicate for each axiomatic
arithmetizable theory T, bwbr need not be recursive as, for example, in the case
T = Q. This is a famous finitely axiomatizable theory presented in the next section
whose particular role for applied recursion theory was revealed in [TMR].

Exercises

1. Prove that if a theory T" has a recursively enumerable axiom system X, then
T also possesses a recursive axiom system (W. Craig).

2. Let L = L,. Prove (a) axb € S < ab € 8, (b) Sa € L& ace L,
arbe L& a,be Lyand (¢) asbe L abe L, for all a,b e N.

3. Let T (C L?,) be axiomatizable and a € £9,.. (a) Define a binary p.r. function
f such that bewro(®,¥) = bewr(f(P,d), (. —)’) (arithmetization of the
deduction theorem). (b) Show that bwbria ¢ < bwbr(a — ).

4. Show that the set of quantifier-free sentences of £,, true in N is p.r. That the
corresponding does not hold for the set all sentences of L, will be shown in
Section 6.5.
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6.3 Representability of Arithmetical Predicates

First of all we consider the finitely axiomatized theory Q with the axioms

Q1: Vz Sz #0, Q2: VaVy(Sz=Sy »z=y), Q3: (Vx#0)Jy z=Sy,

Q4: Vezx+0=z, Q5 VaVyz+Sy=S(z+y),

Q6: Vzx-0=0, QT: VaVyz -Sy=z-y+z.
These axioms characterize Q as a modest subtheory of Peano arithmetic PA. Both
theories are formalized in L,,, the first-order language in 0,3, +, -, and are subthe-
ories of Th N, where N as always denotes the standard model (N, 0,8, +,+). In Q,
PA and related theories in L,,, let < and < be defined by x <y <> dzz+xr=y and
<y <>z < yarFy, respectively. As in 3.3, the term S"0 is denoted by n.

From the results of this and the next section, not only will the recursive unde-
cidability of Q be derived, but also that of every subtheory and every consistent
extension of Q, see 6.5. If we were interested only in undecidability results, we
could simplify the proof of the representation theorem 4.2 by noting that all recur-
sive functions can already be obtained with Oc and Op from the somewhat larger
set of initial functions 0,8, I}, +, -, ~. But even ignoring the considerable effort re-
quired to prove the eliminability of the schema Op at the price of additional initial
functions, such an approach would blur the distinction between primitive recursive
and p-recursive functions, relevant for some details in Chapter 7.

Vx x # Sz is easily provable in PA by induction, but Q is too weak to allow a proof
of this sentence. Its unprovability follows from the fact that (N U {co},0,8,+,-)
satisfies all axioms of Q, but not Vzx % Sx. Here co is a new object and the
operations S, +, - are extended to NU {co} by putting Sco = 0o, 0o - 0 = 0, and

o4+n=nt+oco=00+0c0=n+:00=00-m =00, for all n and all m # 0.
This model shows the unprovability in Q of many familiar laws of arithmetic, which
tell us that A is an ordered commutative semiring with smallest element 0 and unit

element 1 := S0, with the order defined as in Q above. These laws are collected in
the following axiom system defining a still finitely axiomatizable theory N C L,,.:

NO: z+ 0=z NI: z+y=y+x N2 (z+y) +z=z+(y+2)
N3:z- 1=z Nd: z-y=y-x N5: (z-y)-z=z-(y-2)
N6: z-(y+z2)=x-y+z-2 N: z<yvy<z N8 z+y=z+z-oy=z
N9: z <y Sxr<y N10: 2 <0—2=0 NI11: 0#1

V-quantifiers in the axioms are omitted. N is, like Q, a subtheory of PA, but with
stricter axioms. These are all provable in PA, see Exercise 2 in 3.3. The axioms of
Q are derivable in N. For instance, Fy Sz # 0, since Sx=0 implies © < 0 by N9;
hence =0 by N10, but SO=0 contradicts N11. Thus, Q C N C PA.
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In this section we simply write -« for Fq o and o = 5 for a Fq G etc. We also write
occasionally a = B~y for a3 & B v, Fti=to=t3 for Ft1 =ty A ty=13, and
F a = [ instead of F a & o = 3, just for brevity. The use of F in the subtle deriva-
tions carried out below helps one see what is going on and makes the metainduction
used there more vivid. Some of the proofs can be seen as “transplanting inductions
from PA into the metatheory.” For instance, consider Vx x = Sz which is provable
in PA but unprovable in Q. Nontheless, we still can prove by metainduction on n
that nSn is provable in Q, for all n. = 0580 is clear by Q1. The induction step
F n#Sn = F SnsSS8n follows from n# Sn F Sn#SSn. This in turn follows from
Sn=2S88n - n=_3n, an application of Q2. We now shall prove

CO: FSx+n=ux+Sn,

Cl: Fm+n=m+n, m-n=m-n, C2: Fn#m forn#m,
C3: Fm<n form<n, C4: Fmgn formLn,
Ch. z<nktx=0v - vr=n, C6: Fx<nvn<azx.

From C5 follows r <nbkz=0v --- ve=n—1l,orz<nt \/K" x=1 for short,
which is 1 for n = 0. The proofs of CO-C6 will be carried out by induction (more
precisely, metainduction) on n. Always remember that 0 = 0 and Sn = Sn.

CO: Clear for n = 0, because - Sz + 0=Sz=S(z + 0)=2 + SO by Q4 and Q5.
Our induction hypothesis is - Sz + n=2x + Sn. This yields, in view of axiom Q5,
the induction claim - Sz + Sn=S(Sz + n)=S(z + Sn) =z + SSn.

Cl: By Q4, - m +0=m, and since m = m+0 we get - m + 0=m + 0. The
induction hypothesis F m + n=m +n yields F m + Sn=S8(m + n)=Sm +n, by
Q5, and the last term is the same as m + Sn. This proves the induction step.
Analogously we derive - m - n=m - n with Q6, Q7 and what was shown already.

C2: Clear for n = 0, for then m = Sk for some k, and so F 0#%m by Q1. Assume
that Sn # m. By Q1, - 8n# m in case m = 0. Otherwise m = Sk for some k, so
that n # k, hence F nsk by the induction hypothesis. Thus, F Sn#m by Q2.

C3: m < n implies k +m = n for some k, hence k+m =n. Thus, Fk+m=n
by C1. Therefore + 3z z + m=n, which just means - m < n.

C4: m £ n= m #0, hence m = Sk, some k. Let m £ 0. Then - m £ 0 because

<O0FSk<O0F Jvo+8k=0+ JuS(v+k)=0F L by Q1. Now let m £ Sn. Then
k ;{ n and so - k & n by the induction hypothesis, which yields - m £ Sn by Q2.

C5: Clear for n = 0, because z# 0,2 < 0 F FvSv=0F 1 by Q3, Q5, Q1. The

induction claim is equivalent to x#0,z < Sn \/ZLJrl1 y=1. It is derived as follows:

x#0,2 < 8n F Jy(r=Sysry < n) (Q3, Q5, and Q2)
F3y(r=8Syr Vg, y=1i)  (induction hypothesis)
Fy(e=syn Vi) sy=1) = Vi1 =i
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C6: Clear for n = 0 since - 0 < . Further, n < x F JySy+n=xF Jyy+Sn=1z,
by Q3 and CO0, provided one has first shown F 0 + n=n by induction on n. Thus,
n<xzhkSn <<z Ch C3leads to x < nt x < Sn. This and the former yield the
inductive step, because t <nvn<zr F z<nvn<z F x<8nvsSn <.

With these preparations we now give the following crucial definition, in which
T D Q is supposed for simplicity’s sake. This will cover all our applications.

Definition. P C N" is called numeralwise representable? or simply representable in
T D Q if there is some a = «(Z) (a representing formula) such that

R™: Pi =tra(@; R: —Pd = kr-a(d).

Examples. The identity relation {(a,a) | a € N} is represented by ==y, because
F a=0b is trivial if @ = b, and F a # b is derivable for a # b by C2. By C3 and
C4 the formula = < y represents the <-predicate (“in Q” is often omitted). z#x
represents the empty set, represented as well by each sentence o with -« € Q.

For consistent 7' D Q, whenever RT, R~ are valid then so too are their converses,
so that in fact Pd < Fr a(@) and -Pd < Fr —«a(@). Note that a P C N,
represented by «(Z), is recursive by Church’s thesis: simply turn on the enumeration
machine for Q and wait until a(@) or —a(@) appears. The set of n-ary representable
predicates is closed under union, intersection, and complement, as well as swapping,
equating, and adjoining fictional arguments. If P, Q) are represented respectively by
a(Z), B(Z), then so too are PN Q by a(Z) » B(Z) and =P by —«a(Z), etc.

A predicate P represented in Q by « is clearly representable by the same « in any
consistent extension of Q, in particular in Th . But this just means definability of
P in N by « in the sense of 2.3, because N E « [d@] is equivalent to N F a(a). In
short, definability of P in A" and representability of P in Th coincide. In the main,
however, we consider representability in Q to obtain some strong results needed
in 6.5. We always have to look carefully at the representing formulas.

One could define f € F,, to be representable if graph f is representable. However,
it turns out that this definition is equivalent to a stronger notion of representability
for functions that will be introduced after some additional preparation.

Predicates and functions definable in NV, that is, by 0, S.+, -, are called arithmetical
after [Go2]. From now on this word will always have this meaning. The arithmetical
predicates encompass the representable ones. In order to discover more about these
objects we consider their defining formulas more closely. Prime formulas in £,
are equations, also called Diophantine equations. If §(,¥) is such an equation and
Pd < N E 3§6(a, i), then P is called Diophantine. A simple example is <, because

2In [Go2] representable predicates are called entscheidungsdefinit, in [HB] vertretbar, in [K11]
numeralwise expressible, in [TMR] definable, in [Hej] decidable, and in [En] representable.
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a < b< Jyy+ a = b (this notation is an informal and faster legible substitute for
the lengthy a < b & N E Jyy +a=0). In fact, all predicates definable in N by
J-formulas Jyp from L, with kernel ¢ are Diophantine. The proof is not difficult:
Think of ¢ as being constructed from literals by means of A, v, and use the following
equivalences in an inductive proof on ¢ of what has been claimed:

s#t =n F2(Sz+s=tvSz+t=ys),
s1=t1Vvsa=ty =pn 5152+ t1ta=351lo + Solq,
si=tiAsa=ty =p SEAHt2+ 52 +t2=2(s1t; + sot).
A classification of arithmetical formulas and predicates helpful not only for the sake
of representability is given by the following definition, to be generalized in 6.7:

Definition. A formula is called Ag or a Ag-formula if it is generated from prime
formulas of L, by a,—, and bounded quantification, i.e., if a is a Ag-formula then
so is (Ve<t)a (:: Va(z<t — a)); here ¢ is any L,,-term with x ¢ vart. Let ¢ be Ay.
Then every formula of the form 37y is called a 3 -formula while V¥ is said to be a
I1; -formula. Further: P C N™ is said to be Ag, X1, or II; whenever P is defined in
N by a Ag-formula, 3;-formula, or II;-formula, respectively. Ay, 21, and II; denote
the sets of Ag-, ¥1- and IIj-predicates. In addition, A; := X N1I;.

We will call a formula Ay, ¥; or II; also if it is equivalent to one of the above.
In this sense, for instance, if a is Ag then so too are (Jz<t) « (E ﬁ(ngt)ﬁoz) and
(Ve<t)or (= (Vo<t)(x=t v @)). Note that A; consists of the predicates, that are
both ¥;- and II;-definable, with possibly distinct formulas. Obviously, II; consists
of the complements of the P € 3. There are no A;-formulas; there is no meaningful
definition of such formulas as we will see. By Exercise 3 in 2.4, ¥; and II; are closed
under union and intersection of predicates of the same arity, and A; moreover under
complements, as is Aj. Note that if P € N™ and g¢y,...,g, € F, are ¥ so too is

Q= Plgi,...,gm], because Qd < Y (A, vi=g:@ & Py).

Examples. Diophantine equations are the simplest Ag-formulas. To these belong
the formulas y=1t(Z) with y ¢ vart, which define the term functions @ — tV(a).
Since alb < (Je<b)(a - ¢ = b), divisibility and thus also the predicate prim are A,.
Because p(a,b) = ¢ < 2¢ = (a + b)? + 3a + b, the graph of the pairing function p
is Ag. The same holds for the relation of two numbers being coprime, denoted by L
and defined by aLb < (Ve < a+ b)(cla,b = ¢ = 1), that is, a,b have no common
prime factor. Diophantine predicates are trivially ;. Surprisingly, by Theorem 5.6
the converse holds as well, although it had been conjectured for some time that
the set P, := {a € N | (Vp<a)(primp & pla = p = 2)} of all powers of 2 was not
Diophantine. P; is obviously Ag. Note that this does not yet mean that the graph
of n — 2" is Ay, although the latter is in fact the case; see Remark 1.
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Remark 1. More generally, the predicate ‘a® = ¢’ is Ag, though it is difficult to prove this
fact. Indeed, even the proofin 6.4 that this predicate is arithmetical requires effort. Earlier
results from Bennet, Paris, Pudlak, among others, are generalized in [BD] as follows: if
f € Fuy1 (more precisely, graph f) is Ay then so is g: (d,n) — Hign f(@,i), and the
recursion equation g(Z, Sy) = g(Z,y)- f (&, y) is provable in IAj. This theory is an important
weakening of PA. It results from N by adjoining the induction schema restricted to Ag-
formulas. IA( plays a role in various questions, e.g., in complexity theory ([Kr]). Induction
on the Ap-formulas readily shows that all Ag-predicates are p.r. The converse does not
hold; an example is the graph of the very rapidly growing hyperexponentiation, deﬁ({led by
hex(a,0) = 1 and hex(a, Sb) = a"**(@), Stated more suggestively, hex(a,n) = é‘v_/
n

A model-theoretical glance at Q facilitates a quick proof of the following interesting
theorem. It claims that even the seemingly weak theory Q is X;-complete. This
result is significantly strengthened for 7' = PA in 7.1, where it is shown that the
Y -completeness of PA is provable within PA. If stated as “Fq « or Fq —a, for Ag-
sentences «” Theorem 3.1 could also be shown with proof-theoretical means. The
reader may try to prove this on his own, to compare the proof-theoretic approach
and the model-theoretic approach chosen here. C1 and C2 guarantee that n — n#
provides an embedding of A/ in any model A of Q. Thus, N is a prime model of Q
in the sense of 5.1, so that w.l.o.g. N' C A. Moreover, by C5, A is an end extension
of N, which is to mean that the elements of A\N are located “at the end” of A;
more precisely, a <* b and b € N imply a € N, for all @ € A.

Theorem 3.1 (on the %;-completeness of Q). Every ¥;-sentence true in N is
already provable in Q and hence in each extension T D Q.
Proof. It is enough to show for an arbitrary A EF Q with ' C A,

(x) NEa o AFEq, for all Ag-sentences a.
Indeed, let N E 3Zp(Z) where ¢(T) is Ag and N E a := ¢(d), say. Then, by (x),
AFE « for each AE Q. Thus, Fq a and hence Fq 3Zp(Z). Clearly, (x) holds for all
prime sentences «. The induction steps for A, = are obvious. It remains to verify the
step for bounded quantification. Let N F (Va<t)3(x) € L9, where 3(x) is Ay and
(necessarily) vart = (J, so that (:ﬁ) ca <NtV = N E B(a), for all a € N. To prove
A E (Vz<t)p(z), let w: Var — A, a = 2, and a <* tA. Clearly t* = tV € N.
Since A is an end extension of A, we get a € N. Hence, N E B(a) by (%), and
so A F (a) by the induction hypothesis. This proves A E (Vx<t)§ and hence the
direction = of our induction step. The converse is obvious since N' C A. [1

If (%) is Ag then N F ¢(@) = Fq (@) and N E —¢(d) = Fq —¢(d) by the
theorem, because both ¢(&@) and —¢(@) are trivially ¥;. Thus, we obtain

Corollary 3.2. A Ag-formula represents in Q the predicate that it defines in N.
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Lemma 3.3. Let P C N**! be represented by o(T,y). Then both (3z<y)a(Z, z) and
(Vz<y)a(Z, z) represent the predicates Q and R, where
Q(ad,b) = (Je<b)P(d, c) and R(a,b) & (Ve<b)P(d,c).

Proof. RT: Suppose Q(a@,b), hence P(@,c) for some ¢ < b. Then e < b A «(d,c).
Consequently, - (3z<b)a(a, z). To prove R~ suppose —~Q(d, b), hence —P(d, ) for
all i < b. Thus, \/,_,z2=1i F —a(d,z). By C5 we have z < bt \/,_, z=1i and so
z < bF-a(a, z). Therefore, - (Vz<b)—a(d, z) = ~(3z<b)a(d, z). This proves R™.
For the predicate R it is enough to notice that R(d,b) < —(3e<b)—-P(d,c). 4

Since (3z<y)a = (Fz<y)a v a £, the lemma shows that, for representable P, the
predicates defined by (Je<b)P(d, c¢) and (Ve<b)P(d, ¢) are representable as well.

Following [Go2] and [TMR], we now define the notion of a representable function.
Although representability of f is much stronger a notion than representability of
graph f, Lemma 3.4(b) will show that both properties coincide.

Definition. f € F,, is representable in T (if “in T” is omitted we always mean
T = Q and write I for Fq) if there is a formula ¢(Z,y) such that for all @ € N,

R*: br (@ fa), R™: @@y Fry=fa.

If v is Ag (resp. X1 or IIy) then f is said to be Ag- (resp. X1- or I1;-) representable.
A similar phrase is used for predicates. In particular, P C N" is Aj-representable if
P is both ¥1- and II;-representable.

Since R™ is equivalent to Fr ¢(@,y) »y= fd, it is easily seen that R* and R=
together are replaceable by the single condition y= fd =r o(d,y) for all @. If f is
represented by (%, y) then graph f is represented by the same formula, because if
b# fd and so - b# fd by C2, then - =p(d, b) by R=, so that R™ holds.

Lemma 3.4. (a) Let P C N"™! be represented by o(T,y) and suppose YaIbP(a,b).
Then o(Z,y) = oZ,y)r(Vz<y)-a(Z, z) represents f:d — pb[P(a,b)]. If P is
Ag-representable (that is, represented by some Ag-formula) then so is f. If P is
A;-representable then f is ¥1-representable. (b) f is representable provided graph f
is representable. (c) If f is Xq-representable then f is I;-representable as well.
(d) If Xp is Xq-representable then P is Aq-representable.

Proof. By Lemma 3.3, ¢(&, y) represents the predicate defined by ¢(Z,y) and this
is clearly graph f. Hence, R™ holds. To verify R~ it has to be shown that

(*)  aldy) » (Ve<y)-a(d, 2) Fy:E"

Suppose b := fd. Then b < y  (3z<y)a(d, z), because F a(a,b). Contraposition
yields (Vz<y)—a(d, z) b £ y. By C5and R™ wehavey < bk \/,_,y=1ikF —a(d,y).
Hence a(d,y) Fy £ b. So a(@,y)n(Ve<y)—a(@,y) Fy £ b A b<Lyky=0bby C6.



188 6 Incompleteness and Undecidability

This proves (). Clearly, ¢ in (a) is Ag if a is Ag. Let P be represented at the
same time by the II;-formula 3. Repeating the above with a(Z,y) A (Vo<y)—6(Z, v)
(a Xq-formula by Exercise 2) in place of ¢, yields the additional claim. (b) follows
from applying (a) to P = graph f while noting that fd = pb[P(d,b)]. (c): Let the
Yi-formula o(Z,y) represent f and z ¢ varp. Then ¢'(Z,y) := Vz(p(Z, 2) = z=1y)
is a II;-formula that represents f as well: Application of R~ results in F ¢'(d, fa)
which confirms R* for ¢/, and because of - ¢(@, fa@), we obtain R~ for ¢’ from
¢'(@,y) =Vz(p(@ z) »y=2) b ¢(@ f@) »y=fai F y=fa
(d): Let Xp be Xj-represented by ¢(Z,y). Then P is clearly X;-represented by
(2, 1) and II;-represented by —¢(Z,0). [14
Remark 2. graph g is represented in Q by a(x,y, 2) = 2-2=(z+y)-S(z+y)+2z-2. Thus,
by Lemma 3.4(a), p is represented by the Ag-formula a(z,y, z) A (Vu<z)-a(z,y,u). We
mention that in PA (but not in Q) even the quantifier-free a represents the function p.

Lemma 3.5. (a) Let P C N* be represented by oY), and g; € F,, represented by
v fori=1,... k. Then B(Z) = 3N\, %(Z,vi) » ()] represents the predicate
Q = Plg1,...,gx). If the vi are ¥y and P is A;-representable then so is Q. (b) If
heF, and gv,...,9m € F,, are representable then so is f = hlg1, ..., gm].

Proof. Let b; := ¢;d, so that & v;(a@,b;) for i = 1,... k and let b= (by,...,bg). If
Qa holds, hence Pb, then F a(b), whence + N 7@, bi) A a(b), and so F 3(d@). But
if =Qa and thus —Pb, then clearly —u(E). Using R™ for the ~;, this then yields
Nivi(@ yi) A vi=bi F —ay). Hence - VYA, 7@, v:) = —a(y)] = ~8(a). If the
~; and also « are X1, then so too is 3. If P is represented by the II;-formula o/(Z)
at the same time, then @ is represented by the IT;-formula Vi [A, 7 (%, y;) = &/ (9)),
as is easily seen. (b) results without difficulty from (a) applied to graphh. [J

Exercises

1. Suppose « is a Agp-formula so that ¥« is ¥; and VZ« is II;. Construct
Ag-formulas § and « such that 3Za = Jzf and VZa =5 Vay (quantifier
compression). Each Ag-predicate is p.r. (Remark 1). Hence, each ¥;-predicate
P isr.e. and w.lo.g. of the form (IbeN)Q(d,b) with @ € A,.

2. Show that ¥ is closed under bounded quantification, that is, if o« = «(Z,y)
defines some X;-predicate, then so do (Vz<y)a £ and (3z<y)a . The analogue
holds for II; and hence also for A;.

3. Prove that a(Z)any=1v —«a(Z) ny=0 represents X p provided « represents P.

4. Show that every Ag-formula is equivalent to a formula constructed from literals
by means of A, v, and the bounded quantifiers (Vz<t) and (Jz<t).



6.4 The Representability Theorem 189

6.4 The Representability Theorem

For the representability of all recursive or just all p.r. functions, it is helpful to have
a representable function g € F, that satisfies the following: for every n and every
sequence ¢, . . ., ¢, there exists a number ¢ such that (x): g(c,i) = ¢; for all i < n.
In short, ¢ can be chosen such that the values g(c,0),g(c,1),...,g9(c,n) are the
given ones. Now, there are many p.r. functions g that can do this. For instance, if
g: (¢, i) = (c); then () holds with ¢ = pg*® ... pLten. Tnitially there is no obvious
way to show the representability of such a function g in Q or in some extension of
Q within the frame of the language L. Therefore, K. Godel, who around 1930 was
working on this and related problems, in the words of A. Mostowski “phoned with
God.” Although nowadays several possibilities are known, we follow the original,
which has not lost any of its attraction.

Let a(a,b,i) :=rem(a : (14 (1+1)b)), where rem(c : d) denotes the remainder of
¢ divided by d (# 0) and rem(c : 0) := 0. Note that rem(c : d) is well defined since
for ¢,d (# 0) there are unique ¢,r € N with r < d such that ¢ = ¢d + r (this can
readily be shown by induction on ¢). Clearly, graph a has the Ag-definition

a(a,bi) =k & (Fe<a)fa=c(1+ (1 +0)b) +k &k <1+ (1+1)b].

Hence, the function a is Ag-representable by Lemma 3.4(a). The same holds for
the pairing function p. Because p is bijective there are unary functions sz, 3¢5 such
that p(se1k, s0k) = k for all k. Their explicit form is insignificant; we just require
the obvious property sk, >0k < k. The function 3: (¢, i) — a(se1¢, sac, 1) is called
the B-function. Since B(c,i) = k & (Ja<c)(3bLe)[p(a,b) = ¢ & ala,b,i) = k],
graph 3 is Ag. Hence, by Lemma 3.4, 3 is represented by a Ag-formula, which is
denoted by beta. Omitting the argument parentheses in beta, this means that
(1) Fqbetaciy <> y=p(c,1), for all ¢,i € N.

The following simple number-theoretical facts known for ages will be applied in
proving the property of the B-function stated in Lemma 4.1 below.

Euclid’s lemma. Let a,b be positive and coprime (aLb). Then there exist x,y € N
such that za + 1 = yb. (The converse is obvious: cla,b = clyb—za=1 = c=1.)

Proof by <-induction on s = a + b. Trivial for s < 2, i.e., a =b=1. Let s > 2.
Then a # b, say a > b, and a — b_L b as well (pla — b,b = pla—b+b = a). Since
(a—b)+b < s, there are z,y € N with x(a—b)+1 = yb by the induction hypothesis.
Hence, xa + 1 = ¢'b with ¥ = z + y. The case a < b is treated similarly. [J

Chinese remainder theorem. Let ¢; < d; fori =0,...,n and let dy,...,d, be
pairwise coprime. Then there exists some a € N such that rem(a : d;) = ¢; for
1=0,...,n.
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Proof by induction on n. For n = 0 this is clear putting a = ¢y. Now suppose the
assumptions hold for n > 0. By the induction hypothesis, rem(a : d;) = ¢; for some
a and all i < n. Further, k := lem{d, | v<n} and d,, are coprime (Exercise 1). Thus,
by Euclid’s lemma, there are numbers z,y € N such that vk + 1 = yd,,. Multiplying
both sides by ¢,(k—1)+a gives 2’k +c,(k—1)+a = y'd,, with new values 2/, ¢y’ € N.
Let « := (¢’ + ¢,)k + a = y'd,, + ¢,. Then rem(a’ : d;) = rem(a : d;) = ¢; for all
i <n (because d;|k). But also rem(d’ : d,) = ¢,, since ¢, < d,,. [J

Unlike those in most textbooks of number theory, the proof above is constructive
and easily transferable to PA as will be shown in 7.1. In logic it is occasionally not
just important what you prove, but how you prove it.

Lemma 4.1 (on the B-function). For every n and every sequence cy, .. ., c, there
exists some ¢ such that B(c,i) =¢; fori =0,...,n.

Proof. It suffices to provide numbers a and b such that a(a,b,i) = ¢; for all i < n.
Because of B(p(a,b),i) = a(a,b,i) the claim is then satisfied with ¢ = p(a,b). Let
m = max{n,cy,...,c,} and b :=lem{i +1|i < m}.> We claim that the numbers
di =14+ (1+14)-b> ¢ (i <n) are pairwise coprime. Indeed, let p be a prime
factor of d;. Then p > m, for otherwise p|b|d,—1, contradicting pld,. If pld;, d; for
i < j < n, then pld; — d; = (j — i)b. But since pf b in view of p > m, it follows
that plj —i <n <m < p. Thus j —i = 0. Hence, dy,...,d, are pairwise coprime.
By the Chinese remainder theorem there is an @ such that rem(a : d;) = ¢;, that is,
afa,b,i)=c¢ fori=0,...,n. [1

Remark 1. Already at this stage we gain the interesting insight that the exponential
function (a,b) — a® is explicitly definable in A/, namely by the ¥;-formula

Oezp(,y, z) = Fu[B(u,0) =80 A (Vo<y) B(u,Sv)=B(u,v) -z A B(u,y)=z].

More precisely, d..p is the description of a ¥i-formula arising after the elimination of the
occurring (3-terms by means of (1) and the use of further 3-quantifiers. By induction on
b one sees that N F dzp(a, b, ¢) implies a’ = c. Suppose conversely that a® = ¢. Then
Lemma 4.1 guarantees a sought-for u such that N F 8.p(a, b, ¢): simply choose u such
that B(u,i) = a’ for all i < b. This argument is generalized in Theorem 4.2 below.

For simplicity, we assume 7" O Q in Theorem 4.2 below, though it holds as well
if Q is merely interpretable in 7" in the sense of 6.6, for instance in ZFC. For the
derivation of undecidability results or a simplified version of the first incompleteness
theorem, the “Moreover” part of the theorem is not needed.

Theorem 4.2 (Representability theorem). Fach recursive function f—and
hence every recursive predicate—is representable in an arbitrary consistent axiomatic
extension T O Q. Moreover, f is ¥1-representable.

3 Here Godel chooses b = m!, but our choice later alleviates the proof of this lemma in PA.
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Proof. It suffices to construct a ¥;-formula that represents f in Q. For the initial
functions 0, S, I}} we may choose the formulas vy =0, v; =Sv; and v, =v,. Now let
f =nhlg1,...,9m] and suppose (¥, z) and ~;(Z,y;) are ¥1-formulas which represent
h and the g;. Then (7, z) := IF[N\;%(Z, ;) » B(¥, 2)] is such a formula for f
(Lemma 3.5). Next let f = Op(g,h) and f, g both be ¥j-representable. Then the
predicate P, defined by P(@,b,c) < B(c,0) = gd » (Vo<b)B(c, Sv) = h(Z,v, B(c,v)),
clearly results from a Ag- and hence A;j-definable predicate by the insertion of ;-
representable functions, and hence is Aj-representable according to Lemma 3.5(a).
Obviously P(d,b, c) is equivalent to
(%) Bl(e,i) = f(@,q) for all i < b.

By Lemma 4.1, for given @,b there is some ¢ satisfying (), hence Va, b3cP(d, b, ¢).
Thus, f:d@— pcP(@,b,c) is Xy-representable by Lemma 3.4. Since P(d,b, f(a,b)),
(x) holds with ¢ = f(@,b). This, for i = b, yields f(a@,b) = B(f(d,b),b). Thus, as
a composition of Yj-representable functions, f is Xi-representable. Finally, let f
result from g by O, that is, fd@ = ub[P(d,b)], where P(d,b) < g(d,b) =0 and g is
Yj-representable. By Lemma 3.4(c), g is II;-representable, too. This clearly implies
that P is Aj-representable. Hence, f is ¥j-representable by Lemma 3.4(a). []

Let T D Q be a theory in L,.. To ¢ € L, corresponds within T the term n
with n := ¢, which will be denoted by "™ (or ¢) and called the Gddel term of
. For example, Tvy=071is 9o=0 (= 222.32.5"). Analogously "t7 is defined for
terms ¢. For instance, "17 = TS07 = 216. 3 If T is axiomatized, also "®7 = &
for proofs ® in T is well defined. For instance, (vo=wy) is for such a T a trivial
proof of length 1 by axiom A9 in 3.6. Its Godel term is 2°=% * ! The predicate
bewr is p.r. (Theorem 2.4), hence 3-representable (Theorem 4.2), by the formula
bewr(y, ), say. Define bubp(z) := Jybewr(y,x). Then Theorem 4.2 and (4) from
page 178 obviously yield the following important

Corollary 4.3. Let T 2 Q be axiomatizable. Then b1 ¢ = bp bewr(n, ") for
some n (hence Fr ¢ = b bubr(T9?)), and ¥r ¢ = Fr —bewr(n, @) for all n.

Theorem 4.2 has several other important consequences, for example Theorem 4.5
below. Before stating it we will acquaint ourselves with a method of eliminating
Church’s thesis from certain intuitively clear arguments that demand justification
when “decidable” is identified with “recursive.” Clearly, such an elimination must
in principle always be possible if the thesis is to retain its legitimacy. For instance,
Church’s thesis was essentially used in the proof of Theorem 3.5.2. We reformulate
it together with a rigorous proof.

Theorem 4.4. A complete axiomatizable theory T is recursive.

Proof. Because of completeness, f:a s ubla € L0 = bewr(b, a)V bewy (b, <a)] is a
well defined function. To see this, denote the recursive predicate in square brackets
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by P(a,b); then Ya3bP(a,b) (note that P(a,0) in case a ¢ £°). By Op, then, f
is recursive. Note that (x): a € T < a € L° & bewr(fa,a) immediately implies
the recursiveness of 7. In order to prove (x) let a € T', so certainly a € £°. Then
for b = fa, the smallest b such that bewr(b,a) V bewr(b, 5a), the first disjunct must
hold, because due to the consistency of T', no ¢ € N with bewr(c, 5a) can exist at
all. Hence, bewr(fa,a). The <-direction in (*) is obvious. []

This proof illustrates sufficiently well the distinction between a primitive recursive
and a recursive decision procedure. Even when X and thus the predicate P in the
proof above are primitive recursive, the defined recursive function f need not be so,
because the completeness of T may have been established in a nonconstructive way.
The use of Church’s thesis in the proofs of (i)=-(ii) and (iii)=-(ii) of the following
theorem can be eliminated in almost exactly the same manner as above, although
then the proof would lose much of its transparency.

Theorem 4.5. For a predicate P C N" and any consistent axiomatizable theory
T D Q the following are equivalent:

(i) P is representable in T, (ii) P is recursive, (iil) P is A;.

Proof. (i)=(ii): Suppose P is represented in T" by «(Z). Given @ we set going
the enumeration machine of 7" and wait until (@) or —«(d@) appears. Thus, P is
decidable and hence recursive by Church’s thesis. (ii)=-(i),(iii): By Theorem 4.2, X
is representable in T' by a 3;-formula, hence P is A;-representable by Lemma 3.4(d)
and of course by the corresponding formulas also defined in . Thus, P € A;.
(il)=>(ii): Let P be defined by the X;-formula «(Z) and the II;-formula 5(Z). Given
a we kick start the enumeration machine for Q and wait until one of the ¥;-sentences
a(d) or —4(d) appears. In the first case Pd holds; in the second it does not. The
procedure terminates because Q is 3;-complete by Theorem 3.1. []

This theorem tells us that in all consistent axiomatic extensions of Q exactly the
same predicates are representable, namely the recursive ones. Moreover, A; contains
precisely the recursive predicates, from which it easily follows that ¥; consists just
of the r.e. predicates (observe Exercise 2 in 6.3). Theorem 4.5 clarifies fairly well the
close relationship between logic and recursion theory. It is independent of Church’s
thesis. Even if the thesis for some theoretical or practical reason had to be revised,
the distinguished role of the p-recursive functions would not be affected.

Remark 2. The above results allows us to define recursive or decidable predicates directly
as follows: P C N™ is recursive iff there is some finitely axiomatizable theory in which
P is representable. We need only to notice that a predicate representable in any finitely
axiomatizable theory in which representability makes sense, is recursive by Church’s thesis.
In this and the previous section we met several formulas or classes of those that represent
predicates in Q and hence are recursive. It would of course be nice to provide a somewhat
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more surveyable system of formulas that represent the recursive predicates, or at least
that define them in N. Unfortunately, such a system of formulas cannot be recursively
enumerated. Indeed, suppose there is such an enumeration. Let ag, aq, ... be the resulting
sub-enumeration of its members in £),.. These define in A the recursive sets. Then also
{n e N|n¢ o} isrecursive, hence is defined in V' by ay,, say, so that n € oY < n ¢ oY,

However, this equivalence yields for n = m the contradiction m € aﬁ\nf o mé¢ od\n/ .

In 6.5 we need a p.r. “substitution” function and in 7.1 a generalization of it. Let
cf n = (n) denote the Gédel number of the “cipher term” n (= 8"0). Thenn +— cfn

cfn
&

function sbz € F,4; as follows: sbz(m,d@) = sby, (Sbay,. on (M, a1, ..., Gn-1), an),
n > 1. Here the x; denote arbitrary but distinct variables. The function sbz may
also be denoted by sby,...;,,. In order to have it defined for all sequences & including
the empty one, set sbg(m) = m. Let &z(@) denote the Godel number of the formula
az(@) that arises from o by stepwise substituting a; at the free occurrences of z; in
afori=1,...,n (see also page 48). Then we obtain

is p.r. since ¢f 0 = 0 and cf Sn = § * cf n. Let sb,(m,n) = [m]$" and define the p.r.

Theorem 4.6. sbz(&, @) = az(a@), for arbitrary a € L and all @ € N™.

Proof. Since az(@) results from applying simple substitutions stepwise, we need
only show that sb, (&, a) = d,(a) for all @ € £, = € Var, and a € N. This is done
by induction on «, starting with the proof of sb,(,a) = t,(a); see Exercise 3. []

Example. Let a be St =y. Then sb,(&,a) = (Sa=y)" for all a € N. Furthermore,

sbyy (¢, a,8a) = (Sa=8a)" = Scfa= cfSa = Scfa=Scfa, because cf Sa = Scfa.

But sb,((a5),a) = Scfa=Scfa as well. Hence sby, (&, a,8a) = sb,((a3), a).
The example is generalized in Exercise 3, where we write & in place of d@. This

simplifies the formulation of item (b) of the exercise. Therein the tuple Z’ may of
course be empty, in which case (b) reduces to sbz(&, ¥) = a.

Exercises

1. Let a,b,ag,...,a, (n > 0) be positive natural numbers and p a prime. Prove
(a) plab = pla V plb, (b) pllem{a,|v<n} = pla, for some v < n, and
(¢) lem{a,|v<n} and a, are coprime provided ay, . .., a, are pairwise coprime.

2. Provide a defining 3;-formula for the prime enumeration n — p,,.

3. Verify for arbitrary «, 5 € L, the following equations in N:
(a) sbz((iB), ) = sba(c, @) & shz(3, ©), and analogously for =, —, and V.
(b) sbz(c, Z) = sbz/(&, %) where Z’ covers all x € freea such that x € varZ.
(c) sbz.(d, @, t) = sbz((at), &) for t € {0,y,Sy} in the case z ¢ freea or
y € varZ; otherwise sbz (¢, Z,t) = sbz, ((a %), #,y). Here y ¢ bnd .
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6.5 The Theorems of Godel, Tarski, Church

Call a theory T' C L arithmetizable if L is arithmetizable and a sequence (n),en of
constant terms is available such that Fr n# m for n # m and cf:n — (n) is p.r.
This are minimal requirements for that representabilty of arithmetical predicates
in T makes sense. They are trivially satisfied for 7" 2 Q, but also for ZFC with
respect to w-terms (page 90). Terms and formulas are coded within 7" similar as in
theories in L,,. In particular, "o = & always denotes the Gddel term of a formula
«. However, in order to evoke a concrete picture of the following two fairly general
lemmas, take £ = L, and T = PA as standard examples.

A sentence v is called a fized point of o« = a(x) in T if v = a("y™); equivalently,
Fr v < a(™7). In intuitive terms, v then says “a applies to me.” The p.r.
function sb, from 6.4 is representable in T under relatively weak assumptions by
Theorem 4.2. Hence, the lemmas below have a large spectrum of application.

Fixed-point lemma. Let T be an arithmetizable theory and suppose that sb, is
representable in T. Then for each o = a(x) € L there is some v € L° such that

1) v=ra(™?).
Proof. Let x1, 22,y # x and sb(x1, 9, y) be a formula representing sb, in 7. Then
sb(Te ' n,y) =r y="¢(n)" for all ¢ = ¢(z) and n. With n = "¢ we then get

A

(2) sb(" T y) = y="e(Te )
Let B(x) := Vy(sb(z, x,y) =« %). Then v := 5("57) yields what we require. Indeed,

v o= Vy(sb("B,"By) »al)
=r Yyy="8("F")"—ak) ((2) with ¢ = 5(2))
= Yyly="y"-al) (because v = [)’(’_[3—‘))
= o). =

A fixed point can in the most interesting cases of « fairly easily be constructed,
see 7.4. The following lemma also formulates a frequently appearing argument.

Nonrepresentability lemma. Let 7" be a theory as in the fixed-point lemma.
Then 7' (more precisely T') is not representable in 7' itself.

Proof. Let T be represented by the formula 7(z). We show that even the weaker
assumption (a): (Va€L’) ¥r a < Fp —7(Ta™) leads to a contradiction. Indeed,
let v be a fixed point of =7 (z) according to (1), so that (b): k7 v & Fp =7(T77).
Choosing o = v in (a) clearly yields with (b) the contradiction ¥r v < Frv. [1

We now formulate Godel’s first incompleteness theorem, giving in fact three ver-
sions, of which the second corresponds essentially to the original. For simplicity, let
henceforth £ D L, and T' O Q, ensuring the applicability of the two lemmas above.
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However, all of the following holds for theories T, such as ZFC, in which Q is just
interpretable in the sense of 6.6.

Theorem 5.1 (the popular version). Every consistent (recursively) aziomatiz-
able theory T D Q is incomplete.

Proof. If T is complete then it is recursive by Theorem 4.4, hence representable in
T by Theorem 4.2, which is impossible by the nonrepresentability lemma. [_]

Unlike the proofs of Theorems 5.1’ and 5.1”, the above proof is nonconstructive,
for it does not explicitly provide a sentence « such that ¢ o and ¥ —a.

Stronger than the consistency of T is the so-called w-consistency of T (C Ly ),
i.e., for all ¢ = p(x) such that k7 Jzp(z) we have ¥ —p(n) for at least one n, or
equivalently, if b7 —(n) for all n, then ¥ Jzp(z). Clearly, if N E T then T is surely
w-consistent, because the supposition Fr Jza and Fr —a(n) for all n implies the
contradiction N F Jza, Vr—a. Thus, from a semantic perspective the theories Q and
PA are certainly w-consistent. Proof theory tries to eliminate nonfinitistic semantics,
and there are famous consistency proofs for PA that presuppose considerably less
than the full semantic approach; see for instance [Tak].

Theorem 5.1’ (the original version). For every w-consistent theory T 2O Q
axiomatized by a p.r. axiom system X, there is a Il;-sentence o such that neither
Fr a norbr —a. In other words, « is independent in T'. There exists a primitive
recursive function that assigns such an « to a formula representing X .

Proof. Let bewr be represented in T by the ¥;-formula bew(y, x), see page 191. For
bwb(x) = Jybeu(y, x) from Corollary 4.3 we obtain (a): b7 ¢ = k7 bub("¢?), for
all . Let v be a fixed point of =bwb(x) by (1), so that (b): v = ~bub("y™"). The
assumption k7 « yields Fr bub("y7) by (a), but ¢ = bwb("y ™) by (b), contradicting
the consistency of T'. Thus, ¥r 7. Now assume Fr —y, so that F4 bub("v™) by (b),
hence (¢): Fr Jybew(y, 7). Obviously ¥r v because T is consistent. Applying
Corollary 4.3 once again, we infer that Fr —bew(n, ™) for all n. However, this and
(c) contradict the w-consistency of 7. Consequently Fr —v is impossible as well.
Thus, v is independent in 7". But then too is the II;-sentence a := = bwb(™™) which
is equivalent to v in T. The claim of the p.r. assignment follows evidently from the
construction of + in the proof of (1). [

This theorem remains valid without restriction if the axiom system X is just r.e.
In this case X can be replaced by some recursive X’ (Exercise 1 in 6.2), so that
bewr is still recursive according to Theorem 2.4.

Theorem 5.1” (Rosser’s strengthening of Theorem 5.1'). The assumption
of w-consistency in Theorem 5.1 can be weakened to the consistency of T'.
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Proof. Let T be consistent and prov(z) := Jy[bew(y,z) r (Vz<y)-bew(z, 2z)].
We think here of the p.r. function = as having been eliminated in the usual way by
a formula representing it. Because of the consistency of 7', prov(z) says essentially
the same as bwb(z) and has the following fundamental properties:
(a) Fr o = Fr prov(Ta’), (b) Fr —a = ¢ = prov(Ta).4

Indeed, suppose Fr « so that Fr bew(n, o) for some n (observe Corollary 4.3).
Since ¥r —a it follows that by —~bew(k, " —a™) for all k. Therefore, C5 in 6.3 gives
Fr (Vz<n)—bew(z,"—a™) and so Fr bew(n, a?) A (Vz<n)—bew(z,"—a™), whence
particularization yields the claim Fr prov("a™). Proof of (b): Suppose Fr —a,
say Fr bew(m, —a™). Since ¥r «, we have Fr (Vy<m)—-bew(y,"a™) by C5. This
gives bew(y, a™) Fr y>m by C6. Since y > m bFr (Iz<y) bew(z,"—a7) (choose
z = m) it follows that b7 Vy[bew(y,"a™) — (F2<y) bew(z,"—a™)] = —prov(Ta’).
This confirms (b). Now let v =r —prov("™y") according to (1). The assumption
ko —y then yields k7 prov(™y ™), contradicting (b), and the assumption Fr v leads
to a contradiction as in Theorem 5.1’. Thus, neither k7 v nor k¢ —y. [4

T C L0 is called w-incomplete if there is some ¢ = ¢(z) such that Fr p(n) for
all n and yet ¥ Vxp. We show that PA is not only incomplete but w-incomplete.
Let v =pa —bwbpa("y™") and ¢(z) := —bewpa(x,"y"). Then, by Theorem 5.1/,
Fea v =pa —bubpa(Ty7) = Vi, that is, #pa V. On the other hand, since Fpa 7y
we know from Corollary 4.3 that Fpa ¢(n) (= ~bewpa(n, ™)) for all n. Note that
() is even a II;-formula which is particularly surprising.

a € L° is said to be true in A if AF a. In particular, o € £9, is called true (more
precisely, true in A or true in reality, as some people like to say) if N F a. If there
is some 7(z) € L with a single free variable such that A F a & A E 7(Ta7), for
all o € L° it is said that truth of A is definable in A. Clearly, this is equivalent
to the representability of Th.A in ThA. For A = N, however, such a possibility is
excluded by the nonrepresentability lemma. We therefore obtain

Theorem 5.2 (Tarski’s nondefinability theorem). The notion of truth in N is
not definable in N'; in other words, ThN is not arithmetical.

In this theorem lies the origin of a highly developed theory of definability in N
(see also 6.7). The theorem holds correspondingly for every domain of objects A
whose language is arithmetizable and in which the function sb, is representable for
some variable z.

We now turn to undecidability results. First of all we prove the claim in Exercise 1
of 3.6 without recourse to Church’s thesis.

4In particular -7 ~prov(”L7). That the latter is not the case if we write bwb instead of prov is
the import of Godel’s second incompleteness theorem 7.2.2. Thus, bwb and prov behave within
T very differently, although bewr(y, z) =5 prov(y, ).
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Lemma 5.3. Every finite extension T' of a decidable theory T of one and the same
(arithmetizable) language L is decidable.

Proof. Suppose T" extends T' by ap, ..., a, and a := A, a;, so that T" =T + .
Since € T' & a—peT,weobtainn €T < neLl’&dg>neTl. Now, T,
L and 5 are recursive. Hence the same applies to 77. [

That 7" belongs to the same language as T is important here. A decidable theory
T axiomatized by X C L°, if considered as a theory in £ D £ with the same axiom
system X, may well be undecidable, e.g., due to the additional tautologies of L'.

Ty C Ly is called strongly undecidable if Ty is consistent and each theory in £
compatible with Tj is undecidable. Then each theory T compatible with T, in a
language £ O L is also undecidable, for otherwise T'N Ly would clearly be decidable.
If Ty is strongly undecidable so is every consistent 77 O Ty, for if T is compatible
with 77, then it is also compatible with Ty. Moreover, each subtheory of Ty in £ is
then also undecidable, or Ty is hereditarily undecidable in the terminology of [TMR].
The weaker a strongly undecidable theory, the wider the scope of applications. This
will become plain by means of examples in the next section.

Theorem 5.4. ([TMR]). Q is strongly undecidable.

Proof. Assume T'UQ is consistent and 7" decidable. The same holds by Lemma 5.3
for the finite extension 77 = T + Q. But then, by Theorem 4.2, T} is representable
in itself, which again is impossible by the nonrepresentability lemma. [

Theorem 5.5 (Church’s undecidability theorem). The set Taut; of all tauto-
logical sentences is undecidable for L O L.

Proof. Taut, is surely compatible with Q, hence undecidable by Theorem 5.4. []

This result readily carries over to the language with a single binary relation, as
will be shown in the next section, and hence to all expansions of this language.
Indeed, it carries over to all languages with the exception of those containing unary
predicate symbols only and at most one unary function symbol. For the tautologies
of these languages there exist various decision procedures; see [ML, vol. I].

By Theorem 5.4, in particular ThN is undecidable; likewise is every subtheory of
Th N, for instance Peano arithmetic PA and each of its subtheories, as well as all
consistent extensions of PA, because these are all compatible with Q. ThN is not
even axiomatizable, since an axiomatizable complete theory is decidable. Further
conclusions concerning undecidable theories will be drawn in 6.6.

Alongside undecidability results concerning formalized theories, numerous special
results can also be obtained in a similar manner; for instance negative solutions
to word problems of all kinds, and halting problems (see e.g. [Rog] or [Ba, C2]).
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Of these perhaps the most spectacular was the solution to Hilbert’s tenth problem:
Does an algorithm exist that for every polynomial p(Z) with integer coefficients
decides whether the Diophantine equation p(Z) =0 has a solution in Z? The answer
is no, as Matiyasevich proved in 1970.

We briefly sketch the proof. It suffices to show that no algorithm exists for the
solvability of all Diophantine equations in N. Indeed, by a well-known theorem from
Lagrange, every natural number is the sum of four squares of integers. Consequently
p(Z)=0is solvable in N iff p(u? + v +w? + 27, -+ ,u? +v2+ w2 +22)=0 is solvable
in Z. Thus, if we could decide the solvability of Diophantine equations in Z, then
we could solve as well the corresponding problem in N. For the latter notice first
of all that the question of solvability of p(Z)=0 in natural numbers is equivalent
to the solvability of a Diophantine equation of L, (i.e., an equation s(Z)=1%(Z)),
by simply bringing all terms of p(Z) preceded by a minus sign “to the other side.”
Thus, Hilbert’s problem is reduced to the question of a decision procedure for the
problem A F 37§(Z), where §(Z) runs through all Diophantine equations in L.

The negative solution to the last question follows easily from the much further-
reaching Theorem 5.6, which establishes a surprising connection between number
and recursion theory; it is proved in detail in [Mat]. This theorem is a paradigm of
the experience that certain mathematical questions lead to results whose significance
extends way beyond that of an answer to the original question.

Theorem 5.6. An arithmetical predicate P of any arity is Diophantine if and only
if P is recursively enumerable.

To give at least an indication of the proof, let the Diophantine predicate P C N" be
defined by Pd < N E 356V (a@, ), with the equation §(Z, 7). The defining formula
for P is ¥, and hence is r.e., because 6" (@, ) is recursive by Theorem 4.5. This is
so to speak the trivial direction of the claim. The converse, that every r.e. predicate
is Diophantine, is too large in scope to be given here. Much tricky inventiveness
must be used in order to show that numerous arithmetical predicates and functions
are Diophantine. Among these is the ternary predicate ‘a® = ¢’, which for a long
time resisted the proof of being Diophantine. This theorem easily yields

Corollary 5.7. (a) Hilbert’s tenth problem has a negative answer. (b) For every
aziomatizable theory T O Q, in particular for T = PA, there ezists an unsolvable
Diophantine equation whose unsolvability is provable in T .

Proof. bwbq is by 6.2 r.e. Hence, by Theorem 5.6, there exists a Diophantine
equation d(z, ) such that (x): bwbg(n) < N E 37d(n, 7). We claim that even for
the set {376(n, ) | n € N} of Diophantine sentences there is no decision procedure.
Otherwise {n € N| N E 3§ d(n, %)} would be recursive, and thus by (x) so too bwbq,
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contradicting Theorem 5.4. This proves (a). If the unsolvability of every unsolvable
Diophantine equation §(Z) were provable in T', then either by =3Z6(Z) (provided
0(Z) is unsolvable) or - 3Z6(Z) otherwise, because of the ¥;-completeness of T
Since the theorems of T are r.e., one would then have a decision procedure for the
solvability of Diophantine equations, which contradicts part (a). []

Theorem 5.6 can be yet further strengthened; namely, it can be proved within PA.
Thus, one obtains the following theorem, whose name stems from Matiyasevich,
Robinson, Davis, and Putnam, all of whom made significant contributions to the
solution of Hilbert’s tenth problem. Because of the lengthy proof, we shall not use
the theorem, though in fact many things would thereby be simplified.

MRDP theorem. For every ¥ -formula o there exists an 3-formula ¢ in L4 such
that oo =pa @. Here @ is without loss of generality of the form 3% s=t.

Fermat’s meanwhile proved conjecture
(¥)  (Vxyz#£0)(Vn>2)z™ +y"#2"
is a II;-sentence, because by Theorem 4.5 (z,y) — x¥ is A; and a fortiori explicitly
definable by 0,8, +,- in A/. This was noticed already in Remark 1 in 6.4. Hence,
the conjecture (*) is a candidate for a sentence which may be independent in PA.

Remark. It would be interesting to discover whether the conjecture’s proof at the end of
the last century, or any modification can be carried out in PA. A demonstration that this
is not the case would be hardly less sensational than the solution of the problem itself.
However, it seems that the proof can be carried out in a suitable conservative extension
of PA (communication by letter to the author from G. Kreisel). Note also the following:
Since PA is w-incomplete already for IT;-formulas (page 196), it may even be the case that
Fpa (VaVyVz#0) 22 4+ y2 22 for every single n > 2, although (*) is not provable in PA.

Exercises

1. Show that an w-incomplete theory in L, has a consistent but w-inconsistent
extension.
2. Suppose T is complete; prove the equivalence of
(i) T is strongly undecidable, (ii) T is hereditarily undecidable.
3. Let A be a finite list containing explicit definitions of new symbols in terms of

those occurring in £. Show that if 7" is decidable then so is T+ A (independent
of whether all definitions in A are legitimate in 7).

4. Construct a primitive recursive function f:N — N such that ran f is not
recursive. Hint: Note that the set of all proofs in Q is p.r.
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6.6 Transfer by Interpretation

Interpretability is a powerful method to transfer model-theoretical and other prop-
erties, such as undecidability, from one theory to another. Roughly speaking, inter-
preting a theory Ty C Ly into a theory T3 C £; means to make the basic notions
of Ty understandable in T} via explicit definitions. Quantifiers from 7T run over
subdomains of the domains of T;-models, that is, “for all z” from Ty is replaced
in T} by “for all x € P”, where P is a unary predicate symbol for the domains of
To-models. We consider the most important concepts, interpretability from Tarski
(also called relative interpretability) and interpretability from Rabin, called model
interpretability. All theories are supposed to be consistent in this section.

Let P be a unary predicate symbol not occurring in 73. The formula ¢°, the
P-relativized of a formula ¢, results from ¢ by replacing all subformulas of the
form Vza by Vz(Pxz —«). For open ¢ nothing happens, that is, ¢ = . A strict
definition of ¢ runs by induction: ¢° = ¢ if ¢ is a prime formula, (—@)? = —?,
(pAh)F = @ aAyP, and (Vop)? = Vo (Px — ¢F). This implies (Fxp)? = Iz (P a®)
as is easily confirmed. Here a formula equivalent to (3zp)® has been displayed to
show more clearly what relativation is intending to mean.

Example. (VzIdyy=9z)F = Vz(Pz —»Jy(Py ry=9Sz)) = Vz(Px — PSx). As re-
gards the second equivalence observe that Jy(Py A y=Sxz) = P Sz (cf. (12) in 2.4).

Definition. Ty C L is called interpretable in Ty C L1 (where for simplicity we
assume that Tj has finite signature) if there is a list A containing explicit definitions
legitimate in T} of the symbols of Ty not occurring in 7} and of a unary predicate
symbol P, so that T C T, Here generally X* := {® |a € X}, and T2 =T, + A
is a theory in ££ whose signature is Lo U Ly U {P} (L; is the signature of L£;).

This technically somewhat involved definition only expresses that all notions of Tj
“are understood” in Tj, and all that can be proven in T, can also be proven in 7.
Interpretability generalizes the notion of a subtheory: If Ty C T3 then Ty is trivially
interpretable in 71, with A = {Pz <> z==x}. In this case clearly o = @ modulo A.

Let CA be the set of the so-called closure azioms

dzPx, Pc, and VZ (A, Px; — P f7), for all ¢, f € L.

These sentences are equivalent to (Jxz=2z)F, (Jxz=c)®, and (VZIyy= f2)F, re-
spectively. Thus, CA is up to equivalence a set of the form F?® for some finite set
F C Taut,, and therefore CA C T¢ in any case. The sentences of CA guarantee that
for a given B E A there is a well-defined Ly-structure .4 whose domain is A = P5.
A’s relations and operations are the ones defined by A but restricted to A. This
structure A will be denoted by Ba. It is a substructure of the Lg-reduct of B whose
role will become clear in the next lemma. Examples will be given later.
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Lemma 6.1. Let BE CA. Then Ba E a < BE oF, for all sentences o € LY.
Proof. A := Ba is an Ly-structure. Claim: (A, w) F ¢ & (B,w) F ¢F, for any
w: Var — A. This proves the lemma since « is a sentence. We prove the claim by
induction on ¢ € Ly. It is clear for prime formulas « since o = a. The induction
steps for A, — proceed without difficulty, and the one for V is obtained as follows:
(Aw) EVzp & (A wt) Fpforallae A

< (B,w?)E¢® foralla € A (induction hypothesis)

& (B,w?)EPx - P foralla € B (because P5 = A)

< (B,w) EVz(Px —¢°) = (Vzp)?. 14

If Ty is axiomatized by X, then in the above definition it suffices to require just

XPU CA C TA instead of T§ C T2, This fact is highly important for applications
and follows immediately from

(x) SFa=SPUCA+® (Su{a} CLp).
For proving (x) let S F o and B E S* U CA. Then Ba E S by the lemma. Thus,
Ba E a since S+ a. Consequently B E of. Since B was arbitrary, S* U CA F oF.

Theorem 6.2. Let Ty be interpretable in Ty. If Ty is strongly undecidable so is T;.

Proof. Let T' C £; be compatible with 7;. Then T + T} is consistent and so is
(T +Ty)2. Now, S = {a € L} | a® € TA + CA} is a theory (consider () and
SP,CA C TR+ CA). Let BE (T +T)” (2 T? TA, CA). Then also B F T¢, S,
since 7% C TA. Thus, Ba F Ty, S by Lemma 6.1, hence S is compatible with Tj
and so undecidable. If T were decidable, then so would be T* (Exercise 3 in 6.5).
Hence also T2 + CA (Lemma 5.3), and so clearly S. This is a contradiction. [

Example. Q is interpretable in the theory Ty of discretely ordered rings, i.e., ordered
rings R = (R, 0, +, X, <) with a smallest positive element e, which need not be the
unit element of R. Ring multiplication is denoted by X, in order to distinguish it
from multiplication in Q. Choose the following definitions for P, S, - :
Prx>20arxXe=eXxz A VydzzXe=yXu,
y=Sr<y=zx+te z=z-yrzxe=rxXy v Vuluxe#Fx Xy z=1x).

Since z=e <+ 0 <z A Yy(0 <y — x < y), e is eliminable from all these formulas.
0, 4+ remain unaltered. With a somewhat patient calculation, all the axioms of Q
relativized to P can be proved in T2, as can all the closure axioms. Thus, Ty is
strongly undecidable according to Theorem 6.2.

While Q is not directly interpretable in the theory Tk of rings or in the theory Tr
of fields, it is in a certain finite extension of T (Julia Robinson), whereby 7% and
Tr are shown to be undecidable. The same also holds for the theory of groups Tg
as is shown in [TMR]. However, none of these theories is strongly undecidable.
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Q and also PA are interpretable in ZFC, as is nearly every other theory (some
exceptions are considered in 7.6). Let Pz <> zew, and define 8, +, - within ZFC such
that their restrictions to w coincide with the usual operations. In particular, S may
be defined by y =Sz <> y==xu{z}. This immediately yields the incompleteness and
the undecidability of ZFC, assuming of course its consistency. Q is also interpretable
in very weak subtheories of ZFC, for instance in the theory 7. with the following
three axioms.® Hence, like Q, the theory T. is strongly undecidable.

JaVyy¢x (0 exists),
VaVy(Vz(zex <> zey) »x=y) (extensionality),
VaVyIzVu(uez <> uex vu=y) (zufy} exists).

In particular, the set of tautologies in a binary relation is undecidable, indeed even
without identity in the language; for notice that = can conservatively be eliminated
from T, by means of the explicit definition z=y < Vz(zex ¢ zey).

Q is surely interpretable in Th A" and ThA in turn in Th Z with Z = (Z,0,1,+, ).
This is a consequence of Lagrange’s theorem. Hence, Th Z is strongly undecidable,
and thus every subtheory is undecidable, e.g., the theory of commutative rings.

ThN and Th Z have the same degree of complexity, because Th Z is (in various
ways) interpretable in ThN; for instance, let the even and odd numbers play the
role of nonnegative and negative integers, respectively. Highly interesting also is the
mutual interpretability of PA and ZFCg,. This is the theory of finite sets, resulting
from ZFC by replacing the axiom of infinity with the axiom “all sets are finite.”

We now describe a stricter notion of interpretability, though for simplicity we
omit some details. Let K, and K be nonempty classes of Ly- and L-structures,
respectively. Further, let A be a list of definitions of the Ly-symbols and a predicate
symbol P, and £2,CA and Ba for B E CA as above. A® denotes the expansion of
A € K in £? according to the definition list A (the A-expansion of A). For a fixed
sentence v € L2 set K., := {A* | A € K, A* E v}. For each sentence 8 € L2 we
can effectively construct, as in 2.6, a reduced formula 8¢ € £ such that

0) A3 & AEpY forall Ac K.

Definition. Call Ky (or Th Ky) model interpretable in K (Th K, respectively.) if
with respect to suitable A and v the following conditions hold:

(1) K,F CAand By € K forall Be K.,

(2) For every A € K| there is a B € K., such that A ~ Ba.

Theorem 6.3. Let K be model interpretable in K. If Th K is undecidable then
so too is Th K.

®Claimed in [TMR]. The very lengthy proof is presented in [Mo, pp. 283-290].
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Proof. It suffices to show (x) : KoF a & K F &, where & := (v —af)™, because
a decision procedure for Th K would by () also mean one for Th K. Let Ky F a,
A€ K, and A® F v so that AF 4™ and B := A* € K. By (1), Ba € Ky, thus
Ba E a, hence B F of by Lemma 6.1, and so A F (®)™. This proves A F & for all
A€ K, ie., KE & The «<-direction is easily proved by contraposition. [_J

Example. Let K be the class of all graphs (4, R) and K that of all simple graphs
(B, S), that is, S is irreflexive and symmetrical. The figure shows an A € K such

a O

Jo——e B: e—e—0—o—0

o ANV

that aRa, aRb, bRa, and bRc, and on the right the simple graph B corresponding
to A according to (2) with A ~ Ba, the “encoding structure” of A. Roughly put,
a set N of new points is adjoined to A so that A is completely described by B. In
B, whose domain is B = AU N, the edges are undirected, but we pay for this by
increasing the number of points for coding in B the directions of the edges in A. The
“old,” in the figure bold-printed points in A = P neighbor two or three endpoints.
These are points in which exactly one S-edge ends. Informally, the definition for R
in the structure B then reads “zRy iff 2,y € P? and either 2=y and z neighbors
three endpoints, or there exists exactly one new point z such that xSzSy, or there
exist precisely two new points u,v such that xSuSvSy and uSy.” v is rendered
informally into “dx Px and all new points are either endpoints or neighbor exactly
two old points or exactly one old and one new point.”

In the example, Th K is the logical theory of a binary relation, already established
as undecidable. Accordingly the theory of all simple graphs is undecidable. Now,
this can be used to show, e.g., that the theory SL of semilattices is undecidable.
By Theorem 5.4 the same then follows for the theory SG of semigroups, since SL is
a finite extension of SG. Similar to the last example, it suffices to provide for any
simple graph (A4,S), the encoding semilattice (B,o). The

z ﬁ ﬁ C.Z figure on the left shows the ordering diagram of B for
A = {a,b,c,d} and S = {{a,b}{ac}}, where S is under-

M/ stood as a set of edges; cf. 1.5. The old points are precisely
°« o the maximal points of B. By construction, B has a smallest

element 0 and is of length 3, i.e., there are at most three
°0 consecutive points in B with respect to <. This must now

be expressed by the sentence 7 required in the definition.
The theory of finite simple graphs with or without some additional feature (for
instance planarity) is undecidable; see e.g. [RZ]. The above construction shows
that the undecidable theory of finite simple graphs is model interpretable in the
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theory of finite semilattices which hence is undecidable. This clearly implies the
undecidability of the theory FSG of finite semigroups. Setting an element on top of
the maximal elements in the last figure results in the diagram of a finite lattice, so
that the theory of finite lattices turns out to be undecidable. The same holds for
the theory FPO of finite partial orders because for the description of (A, S) only the
partial order of B is relevant.

Remark. Somewhat more mathematics is required to prove the undecidability of the
theory FDL of all finite distributive lattices. The figure shows first of all that the theory
FPO of finite partial orders (g, <) is also undecidable. But FPO is model interpretable in
FDL, in that one identifies the elements of g with the n-irreducible elements of the lattice,
A say. Here we need to know that A’s structure is completely determined by the partial
order of its irreducible elements and that this order can arbitrarily be given.

Positive results are also transferable. For instance the (logical) theory of a unary
function is interpretable in the elementary theory of (undirected) trees ([KR]), and
with the latter the former is also decidable. The decidability of the theory of a
single unary function was first proved by Ehrenfeucht with a different method. Let
us mention that the theory of two or more unary functions is undecidable because
several undecidable theories are model interpretable in it.

Decidability of the theory of simple trees also follows from the decidability of
the second-order monadic theory of binary trees ([Ba, C3]), a very strong result
with an immense scope of applications. One of these applications is a relatively
simple proof of decidability of a variety of logical systems that expand two-valued
propositional logic (see for instance [Ga]), among them all the propositional modal
systems considered in Chapter 7.

Exercises

1. Show (informally) that PA is interpretable in ZFC. The axiom of choice is not
involved so that PA is interpretable in ZF as well. More difficult is the proof
that PA is interpretable in ZFCg,.

2. Prove that if T is model-interpretable in T5 then T} is (relatively) interpretable
in some finite extension of T5.

3. Show in detail that Th(Z,0,1,+,-,<) is interpretable in Th\.

4. Prove that FPO is model-interpretable in the theory FDL of all finite distribu-
tive lattices. Thus, ThFDL is undecidable. (Hint: identify the points of A
with the n-irreducible elements of B whose order can be given arbitrarily.)
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6.7 The Arithmetical Hierarchy

Finally, we would like to add a little more on the complexity of predicates of N, in
particular, of its subsets. The set of the Godel numbers of all sentences valid in N is
an example of a rather simply defined nonarithmetical subset of N; by Theorem 5.2
it has no definition in £,..¢ However, relatively simply defined arithmetical sets
and predicates may be recursion-theoretically highly complicated. It is useful to
classify these according to the complexity of the defining formulas. The result is the
arithmetical hierarchy, also called the first-order Kleene—Mostowski hierarchy. The
following definition builds upon the one in 6.3 of the X;- and II;-formulas and the
31-, II1-, and A;-predicates defined by these.

Definition. A ¥, -formula is a formula of the form IZa(Z,7), where « is a II,-
formula (€ L,); analogously, we call VZ3(Z, §) a II,41-formula if 3 is a 3,,-formula.
Here Z, §f are arbitrary tuples of variables. A 3, -predicate (resp. 11, -predicate) is an
arithmetical predicate P defined by a ¥,-formula (resp. II,-formula). If P is both
¥, and II, (ie., a ¥,- and II,-predicate) then we say that P is a A,-predicate,
or P is A, for short. We denote by %, I1,, and A, the sets of the ¥,-, II,- and
A, -predicates, respectively. In addition, ¥g := Iy := A,.

According to this definition, a ¥,-formula is a prenex formula ¢ with n alternating
blocks of quantifiers, the first of which is an 3-block. ¢’s kernel is Ag. Obviously,
A, C %,,II,. When considering the hierarchy it is convenient to have ¥,- and
I1,-formulas closed under equivalence in A'. Hence, we say that a is 3, or II, to
indicate that « is equivalent to an original ¥,- or Il,-formula, respectively. Note
that since I7p = VZp = ¢ in case varZNvarp = ), every Z,- or I,-formula is also
both ¥, and I1,,1. Therefore ¥, II,, C A, ;1. This yields the following inclusion
diagram, where all the inclusions, indicated by lines, are proper:

X X 23
/ NS NS
ANg— A Ay As
AN VRN /N
1T, 11, 113
We have already come across X1-, I1;-, and A;-predicates; for instance, the solv-
ability claims of Diophantine equations are Y1, and the unsolvability claims are II;.
Below we provide an example of a Ily-predicate. It is also convenient to say that
3.~ and IT,,-sentences define 0-ary 3,,- and I1,,-predicates, respectively. In this sense
the consistency of PA, for example, is a II;-predicate and the w-consistency is II3.

6 ThN is definable only in second-order arithmetic, which along with variables for numbers has
variables for sets of natural numbers. Exercise 3 gives an “approximate” elementary definition.
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Each formula ¢ is equivalent to a X,- or II,-formula for a suitable n, for ¢ can be
brought into prenex normal form and the quantifiers can be grouped into blocks of
the same quantifiers. The hierarchy serves various purposes. More recent investiga-
tions have considered also Ay- or X,,- or I1,,-induction. Here the induction schema IS
is restricted to the corresponding class of formulas, closed under equivalence modulo
some weak base theory. An example is the theory 1Ay mentioned on page 186.

As already shown in 6.4, the Y;-predicates are the recursively enumerable ones,
the IT;-predicates their complements, and the A;-predicates are exactly the recursive
predicates, which are the ones whose complements are r.e. as well. Thus, we are
provided with a purely recursion-theoretical way of regarding 1, IT;, and A;. This
underscores the importance of the arithmetical hierarchy, which is fairly stable with
respect to minor changes in the definition of Ay. In view of Theorem 5.6 one
could begin, for instance, with a Ag consisting of all polynomially (or equivalently,
quantifier-free) definable relations. In some presentations, a system of formulas is
effectively enumerated (and denoted by Ag), which define exactly the p.r. predicates
in . Section 7.1 will indicate how such a system can be defined. Between these
and the Ag-formulas (which themselves may still be classified) lie many r.e. sets
of formulas which are significant in both the theory and practice of computability,
for instance, the class of elementary functions mentioned in the introduction to
this chapter. However, by Remark 2 in 6.4 we know that there is no effectively
enumerable system of formulas in £, through which all recursive, or equivalently
all Aj-predicates, are defined, so that the definition of the arithmetical hierarchy
cannot start in a feasible manner with a representative “set of A;-formulas.”

Remark. It should be mentioned that the first-order arithmetical hierarchy considered
so far extends in a natural way to that of the the so-called second-order arithmetic. The
latter is based on a two-sorted language with variables for natural numbers and sets of
these. Also this extended hierarchy is closely related to recursion theory (see e.g. [Shoe]).
A treatment lies outside the scope of this book.

Similarly to the case n = 1, one readily shows that a conjunction or disjunction
of X,-formulas is equivalent to some other X,-formula; likewise for II,-formulas.
The negation of a ¥,-formula is equivalent to a II,,-formula, and vice versa; this is
certainly correct for n = 1, which initiates an easy induction on n. The complement
of a ¥,-predicate is therefore a II,-predicate, and vice versa. From this it easily
follows that A, is closed under all the mentioned operations, including negation.

By “compression of quantifiers,” the idea of which was illustrated in Exercise 1
in 6.3, one obtains a somewhat simpler presentation of the quantifier blocks. The
3- and V-blocks can each be collapsed into one quantifier. This procedure is fairly
easy, provided we are dealing with equivalence in A as is the case here, and not in
a possibly too weakly axiomatized theory over N (infact, PA would suffice):
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Theorem 7.1. Fach X, -predicate is defined by a formula 3z,Vas - - - Qua,, with «
a Ng-formula, where Q,, is either the Y- or 3-quantifier, depending on whether n is
even or odd. Similarly, a I, -predicate is defined by a formula Vax13xs - -+ Qurya.

Proof by (simultaneous) induction on n. Exercise 1 in 6.3 formulates the case for
31~ and for II;-predicates. Assume this is the case for n and let 3Za be the defining
formula of a X, i-predicate, where « defines a II,-predicate and 3% is a block of
length m > 1. Using the (defining Ag-formula of the) pairing function, 3% can
stepwise be compressed to a single 3-quantifier 3x. The case m = 0 can also be
included in the argument, using a “vacuous quantifier”3z (i.e., * ¢ vara). The
I1,,4+1-formulas are treated completely analogously. One may also use the fact that
both ¥, and II,, are closed under bounded quantification; Exercise 1. [

It is quite often a nontrivial task to determine a well-defined predicate’s exact po-
sition in the arithmetical hierarchy, or better, like every fastidious game, it requires
some training. In the example below, we consider a set that is neither recursive nor
r.e. For the sake of simplicity, we apply Church’s thesis in one place, although it can
be eliminated using a little recursion theory as was demonstrated previously in the
proof of Theorem 4.4. The example is also a good preparation for 7.5.

Example. Let £, denote the set of the o € £} that represent in Q the recursive
subsets of N. For instance, all Aj-formulas in £, belong to this set. Since N
and ) are recursive and £9,. C L1, all members of Q* := QU {a | ma € Q} also
belong to L,, because each a € Q trivially represents N, and each o with —a € Q
represents (). Conversely, each closed formula of £, belongs to Q*. Obviously then,
Q* =L, N L%,.. We now show that £, is arithmetical; more precisely, it is a proper

[15-set and therefore cannot be recursively enumerable. By definition,

a€ L, ac Ll & VnIP[P is a proof for a(n) or for —a(n)].
This equivalence readily yields a definition of £, by a II,-formula o(x). Let the p.r.
predicate ‘a € L’ be Xi-defined by A;(z). With sb = sh,,,, we then set

o(x) == M () A VyTulbewq(u, sb(x,y)) v bewq(u, Tsb(u,y))].

1
a

More precisely, ¢ should be the reduced in £, after eliminating the occurring p.r.
function terms using more 3-quantifiers inside the brackets. Thus, ¢ describes a
[Io-formula, that is ET is a Ilp-set. It is not X, because L, is not r.e. by Remark 2
in 6.4, nor is it Il;. Indeed, assume this were the case; then Q* = £,N LY, would also
be I, for £2, is A;. Now Q* is certainly r.e. and thus ¥y, and so by Theorem 4.5
Q* would be recursive. But then we obtain a decision procedure for Q (hence a
contradiction) as follows: let a € £9. be given. If @ ¢ Q* then also o ¢ Q; if
o € QF, we turn on the enumeration machine for Q and wait until either o or —a
appears, the former instance of which corresponds to the case a € Q.
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We end this section with a result useful for our purposes in 7.1. It will be proved
that the X;-predicates are definable without refer to Ag, using special ¥;-formulas.
To this end somewhat stronger axioms are considered than those of Q, namely the
axioms of the theory N presented in 6.3. All these axioms are provable in PA.
Definition. Special X;-formulas are defined as follows:

(a) Sx=y, x + y=2z, and x - y=z are special X;-formulas, where z,y, z denote

distinct variables (the special prime formula condition);

(b) if a, B are special ¥;-formulas then so too are an 3, a v 3, a2, and a ¥, where

x,y are distinct and not in bnda (prime-term substitution), as well as Jza
and (Ve<y)a for y ¢ vara.

Theorem 7.2. Every original ¥1-formula is equivalent to a special X1-formula in
the theory N, thus in PA and a fortiori in the standard model N.

Proof. It suffices to verify the claim for all Ag-formulas, since the set of special
Y;-formulas is closed under F-quantification. Since s=t¢ = Jx(z=srx=t) with
x ¢ vars,t, it is enough to consider prime formulas of the form z=t. For prime
terms ¢ this clearly follows from 2=0= (z=y) 3 and 2=y =y (v + z=y) 2, and
the induction steps on the operations S, +, « follow from z =S5t = Jy(r=Syry=t),
z=s+t=TFyIz(z=y+ zry=sarz=t), and similarly for -.

The claim holds for all literals because of s#t¢ = JyIz(x Fyrx=sry=t), and
rx#y =y Juz(Su=zAr(zr + 2=y v y + z=x)). By Exercise 4 in 6.3 we need
only carry out induction on A, v, (Vo<t) and (Jz<t). For a,v this is clear. For
the remainder note that (Vz<t)a and (Jz<t)a are N-equivalent respectively to

Jy(y=tr (Ve<y)arai)and JzIydz(z +y=zrz=tra). [J
Exercises

1. Show that ¥, II,,, and hence A,, are closed under bounded quantification.”

2. Confirm that Aqg C A; C X4, II;, which therefore shows that these four classes
of arithmetical predicates are distinct.

3. Let Tr, = {a € L), | N E a & qra < n}, so that ThN = J,cy T By
Theorem 5.2, ThN is itself not arithmetical. Prove that 77, is arithmetical,
more precisely, Tr, is A,41. In this sense, ThA is arithmetically approzimable.
(With more effort it can be shown that Tr, is at most A,,).

4. Prove that w-inconsistency is X3. Theorem 7.5.2 will show that this property
is properly Xs.

7 Again, we do not need here that the X,-formulas are closed under =y; it would be sufficient if
they are closed under =pa.



Chapter 7

On the Theory of Self-Reference

By self-reference we basically mean the possibility of talking inside a theory T" about
T itself or related theories. Here we can give merely a glimpse into this recently much
advanced area of research. We will prove Gédel’s second incompleteness theorem,
Lob’s theorem and many other results connected with self-reference, while further
results are discussed only and elucidated by means of applications. All this is of
great interest both for epistemology and the foundations of mathematics.

The mountain we first have to climb is the proof of the so-called derivability
conditions for PA and other theories in Section 7.1. But anyone contented with
leafing through 7.1 can begin straight away in 7.2; from then on we will just be
reaping in the fruits of our labor. However, one would forgo a real adventure in doing
so, namely the fusion of logic and elementary number theory in the metatheoretical
analysis of PA. Who wants to attain a comprehensive understanding of self-reference,
should study the material in 7.1 anyway.

Godel himself tried to interpret the notion “provable” using a modal operator in
the framework of the modal system S4. This attempt reflects some of his own results,
though not adequately. Only after 1970, when modal logic was sufficiently advanced,
could such a program be successfully carried out. A suitable instrument turned out
to be the modal logic denoted by G or GL. The Kripke semantics treated in 7.3 is an
excellent tool for confirming or refuting self-referential statements as demonstrated
in 7.4. Solovay’s completeness theorem, and the completeness theorem of Kripke
semantics for G are fortunately of the kind that allows application without knowing
the completeness proofs itself (which contain quite a number of technical tricks).

There are several extensions of G important for the analysis of other proof opera-
tors or a comparison of these, for example, the bimodal logic in 7.5. A comprehen-
sive survey can be found in [Bu, Chapter VII], see also [Vi]. In 7.6 we discuss some
questions regarding self-reference in axiomatic set theory.

209
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7.1 The Derivability Conditions

Put somewhat simply, Godel’s second incompleteness theorem states that 7 Conr
cannot hold for a sufficiently strong and consistent axiomatizable theory T. Here
Conr is a sentence in the language £ of T expressing the consistency of 7. In a
popular formulation: If the theory T is consistent, then its consistency is unprovable
i T. As was outlined by Gddel and will be verified in this chapter, the italicized
sentence is not only true but even provable in the framework of T'.

The easiest way to obtain Gddel’s theorem is first to prove the derivability con-
ditions, stated below. These conditions deserve some interest on their own. Their
formulation supposes the arithmetizability of T, which includes the distinguishing
of a sequence 0,1,... of ground terms; see page 194. Let bewr(y,z) be a formula
that is assumed to represent the recursive predicate bewr in T, exactly as in 6.4.
For buby(z) = Jybewr(y, z) we write O(z), and O« is to mean buby("a). We may
read Oa as “box a” or more suggestively “« is provable in T',” because it formalizes
the property Fr o within T. If O refers to some theory T” # T then [ has to be
indexed correspondingly. For instance, Uzpcp for ¢ € L. can easily expressed also
in PA. Note that Oa is always a sentence, even if a contains free variables.

Further, set Ca := —O-a for a € L. If « is a sentence, Oa may be read as « is
compatible with T, because it formalizes 7 —a’ which is, as we know, equivalent
to the consistency of T+ «a. First of all, we define Conr in a natural way by

Cony = =L (= —buby("L7)),

where L is a contradiction, 050 for instance. We shall see in a moment that Conyp
is independent modulo T of the choice of 1. The mentioned derivability conditions
then read as follows:

D1l: bFra =tp0Oa, D2 bpOanO(a— ) =08, D3: FrOa—0O0a.
Here a, 8 run through all sentences of £. Sometimes D2 is written in the equivalent
form O(a — 8) Fr O —0g, and D3 as Oa by O0a. These conditions are due to
Léb, but they were considered in a slightly different setting already in [HB].

A consequence of D1 and D2 is D0: a ¢ 8 = UOa Fr OF. This implication
holds since a b0 8 = Fra—f = by O(a—0) = by Oa—-0F. From DO it
clearly follows that a =r f = Oa =7 OG. In particular, the choice of L in Conp
is arbitrary as long as 1 =¢ 0%0.

Remark 1. Any operator 9: L — L satisfying the conditions d1: Fr o = Fp da and
d2: d(a —B) br 0a — B thus satisfies d0: « Fp 8 = Ja bp 0F. It also satisfies
dn: (anB) =r dandp, since anf Fr a, 3, and by d0, d(anB) Fr da, 88 Fr dandp.
Similarly, da A9 Fr O(an B) readily follows from « 7 3 — a8 by first applying d0 and
then d2. Clearly, dO implies d00: o =7 8 = da =1 03, for all o, 5 € L.
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Whereas D2 and D3 represent sentence schemas in T, D1 is of metatheoretical
nature and follows obviously from the representability of bewy in T. Thus, D1 holds
even for weak theories such as T = Q. On the other hand, the converse of D1,

D1*: bFr0Oa = bpa, forall a € L
may fail. Fortunately, it holds for all w-consistent axiomatic extensions T' 2O Q, for
instance 7' = PA. Indeed, ¥7 a implies Fr = bewr(n, ") for all n (Theorem 6.4.2).
Hence, ¥ Jybewr(y,"a”) = Do in view of the w-consistency of 7T'.

Unlike D1, the properties D2 and D3 are not so easily obtained. 7" must be able
to speak directly or indirectly (via arithmetization) about provability in 7. Note
that D3 is nothing else than condition D1 formalized within T, while D2 formalizes
(7) from page 178, meaning the closure under MP in arithmetical terms. Let us first
show that D2 holds provided it has been shown that

(1) bvewp(u,z)A bewr(v,z > y) Fr bewr(uxv* (y),y),
where the p.r. functions =, %, and y — (y) appearing in (1) must of course be
defined in T'. Generally speaking, f € F,, is called definable in T' (with respect to a
given sequence of terms (n),en) if there is a formula §(%, y) € £ such that

(A) (a) Frd(d, fa) forall @, (b) b V2 3yd(Z,y).
Clearly, f is then also represented by d(%,y). Because of (b), f may explicitly be
defined in T" by 0(Z,y) (see 2.6). We will no longer distinguish between T" and its
definitorial extensions and write simply Fr y= fZ¥ <> 6(Z,y). This and (a) easily
yield Fr fa= fd, for instance b+ a > b=a >b. With "™, 737 for x, y, we then

obtain from (1) in view of "o > 1 =a > =a>3="a1S747,

bewr(u,"a) A bewr(v,"a — 57) Fr bewp(ux v (T4, 757,

Particularization yields D2. But the real work, the proof of (1), still lies ahead.

In order to better keep track of things, we restrict our considerations to the theories
ZFC and PA, which are of central interest in nearly all foundational questions. ZFC
is only briefly discussed. Here the proofs of D2 and D3 are much easier than in
PA. Indeed, (1) and hence D2 are clear, because the naive proof of (1) above with
bewr = bewzgc can easily be formalized inside ZFC. This includes the definability of
all functions occurring in (1), for we did define them; for instance, the operation * on
page 174 (set axb = ) if not a, b € w). We arithmetize £. according to the pattern in
6.2, encoding formulas as in 6.2 based on prime number factorization,! so that £.-
formulas are encoded within ZFC by certain w-terms, defined in 3.5. L,-formulas
are identified with their w-relativized in L., called the arithmetical formulas of L.
Moreover, the arithmetical predicate bewzrc is certainly representable in ZFC by

L This is not actually necessary, since in ZFC one can talk directly about finite sequences and hence
about L.-formulas, but we do so in order to maintain coherence with the exposition in 6.2.
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Theorem 6.4.2, since this theorem can be viewed, just like every other theorem in
this book, as a theorem within ZFC. Thus, the naive proof of D1 based on this
theorem (up to Corollary 6.4.3) can as a whole be carried out in ZFC, and so D3 is
proved. Roughly speaking, D2 and D3 hold for ZFC because ordinary mathematics,
in particular the material in Chapter 6, is formalizable in ZFC.

In all of the above, no typically set-theoretical constructions like ordinal recur-
sion are needed. Only relatively simple combinatorial facts are required. Hence
there is some hope that the proofs of D2 and D3 can also be carried out in suffi-
ciently strong arithmetical theories like PA. This is indeed so and such a result is
considerably more interesting for a critical foundation of mathematics. We already
encoded L, -formulas and proofs within PA by their corresponding Gédel terms on
page 191. However, it is not obvious how to define in PA the functions appearing
in (1) and other relevant functions.? Hence, our first goal is to show that all occur-
ring p.r. functions are provably recursive in the following sense, which considerably
strengthens the definition (A) from the previous page:

Definition. An n-ary recursive function f is called 3;-definable in PA, or provably
recursive, if there is a Xy-formula §7(Z, y) such that

(2) (a) Fpadg(d, fa) for all @ € N*;  (b) Fpa V& Iyds (2, y).

Because of the ¥-completeness of PA, (a) is equivalent to N E 6;(d, fa) for all d.
We will prove stepwise that all p.r. functions are ¥;-definable, and derive also the
recursion equations belonging to them in PA. Thereafter we may treat all occurring
p.r. functions in PA as if they had been available in the language right from the
outset. Essentially this fundamental fact allows a treatment of elementary num-
ber theory and combinatorics within the boundaries of PA. D3 demands additional
preparation, and even good textbooks do not carry out all of the proof steps. How-
ever, all steps described here and not handled in detail can easily be completed
in full by the sufficiently assiduous reader. Life could be made easier through the
mutual interpretability of PA and ZFCg,, though this is itself not easy to prove.

The 3;-definability in PA of some functions, including the B-function, is straight-
forwardly verified; see Exercise 1. But in order to recognize as legitimate in PA, for
instance, the definition of the exponential function by d, in Remark 1 from 6.4,
Lemma 6.4.1, and hence also Euclid’s lemma and the Chinese remainder theorem
have to be proved within PA. As regards Euclid’s lemma, there is no problem. Just
follow the proof in 6.4. Clearly, some basic arithmetical laws are applied that must
be proven first, including those on the difference a — b for a > b.

2In [Go2], Godel presented a list of 45 p.r. functions, of which the last was X;,,,. Following [WR],
he considered a kind of higher-order arithmetical theory. That Gddel’s theorems also hold in
first-order arithmetic was probably first noticed in [HB.
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As for the Chinese remainder theorem, at present even its formalizability in £,
is not evident, because we quantify over finite sequences which can take place in PA
only after it has been shown that PA is capable of talking about such sequences.
In order to surmount this obstacle, we use c¢,d to denote for the time being unary
provably recursive functions, which may depend on further parameters. Each such
¢ determines for given n the sequence co,...,c,, with ¢, = c(v) for v < n. With
the Ag-definable relation L of coprimeness, the Chinese remainder theorem can
provisionally be stated as follows: for arbitrary c,d holds?®

(3) Fpa Vn[(Vr,i,j<n)(c,<d, A (i j —d; Ld;)) = 3a(Vv<n) rem(a : d,) =c,].
To convert the original proof of the remainder theorem to one for (3) we require,
for given provably recursive d, the term lem{d,|v<n}, the least common multiple
of dg,...,d,. Then f:n— lem{d,|v<n} is defined in PA by the X;-formula

Of(z,y) == (Vv<a)d, lya (Vz<y)(Fv<e) d, f 2.

More precisely, d;(z,y) describes a ¥q-formula in the original language, similarly as
does 8.4, on page 190. Since N E §(n,lem{d,|v<n}) for all n, 2(a) holds. With
the least-number schema (see Exercise 3 in 3.3) applied to B(z,y) := (Vv<z)d, |y,
we obtain Fpa 3lyds(z,y), provided it has been shown that Fpa JyB(z,y) (‘finitely
many numbers have a common multiple’). This follows by induction on . Clearly
Fepa Jy5(0,y), and the induction step has already been carried out in Example 1
from 2.5. We then obtain the proof of (3) by following the proof of the remainder
theorem in 6.2, and, writing Bst for 3(s, t), a suitable version of Lemma 6.4.1 about
the the basic property of the B-function:

(4)  Fpa YoTu(Vv<o) ¢, = Buv, for every provably recursive c.

Theorem 1.1. Fach p.r. function f is provably recursive. Moreover, the recursion
equations for f are provable in PA whenever f = Op(g, h).

Proof. For the initial functions and +, « the formulas vy =0, v; = Sv,, v,, = v, along
with vo =vo 4+ v1 and vy =g - v; are defining ¥;-formulas. (2) is here obvious. For
f =hlg1,...,gm], let 6¢(Z,y) be y=h(q:17, ..., gn®). In this case (2) is clear, be-
cause we might think of the symbols h, g1, . .., g, as having already been introduced
via explicit definition, so that the last formula simply belongs to the language. Only
the definition of ¢; for f = Op(g,h) requires some skill. In noting that formula
beta in 6.4 is just what we require concerning the B-function, let
(5) 04(Z,y, z) = Fu[ Bud=gZr (Vo<y)BuSv=h(Z,v, Buv) A Buy=z].
¥ (u,Ey,2)

0 is ¥1. Metainduction over b shows that N E 6;(d, b, f@) and hence 2(a). Unique-
ness in 2(b) follows with a glance at (5) from Fpa v(u, Ty, 2) Ay (W, T,y, ') = 2= 2/,

3 For suggestive reasons from now on also letters such as n, v, ... denote variables in £g,..
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obtained using induction on y. Also, Fpa 320¢(Z, y, z) is shown by induction on y.
For y = 0 consider Fpa JuBul = g according to (4). Choose there, for instance, the
provably recursive c: v — w defined by v=0rw=g¢Z v v#0rw=0. The less sim-
ple inductive step (x) : 3207(Z,y, z) Fpa 32'0;(Z, Sy, 2’) will be verified informally:
Suppose 3zvy(u, Z,y, z), or equivalently, v(u, Z, y, Buy). Then the ¥;-formula

ev,w,u, T,y) == v#ESyrw=Puv v v=S8yrw=h(Z,v, Buy)

defines in PA a function c:v — w with parameters u, &, y. So by (4) (taking Sy
for v) there is some ' with Bu'v=c,=Buw for all v < y and Bu'Sy=h(Z,y, Buy).
With this u' and 2’ = Bu/Sy we obtain (v, Z, Sy, ') and therefore 32/04(Z, Sy, 2’).
This proves (*) and hence 2(b). We finally also verify that
(a) FP/—\ f(f7 0) = gf7 (b) FPA f(f’ Sy) = h(fv Y, f(f y))

(a) follows from 2(b) since (5) readily yields tpa 6¢(, 0, gZ). For (b) show first
that y(u, Z,y, z) Fpa (Yo<y)f(Z,Sv)=BuSv using induction on y. From this one
easily infers y(u, Z,y, z) Fpa ¢ 1= (Yo<y) f(Z,Sv) = h(Z, y, f(Z,y)). Now, because of
Fpa J27y(u, Z,y, 2), we obtain Fpa ¢, which obviously includes (b). [

We thus have achieved our first goal. Now the properties of *,/,... stated in the
remark on page 178 along with the basic properties of bewpa and bwbpa stated on
the same page are also easily proved within PA. This is a little extra program that
includes the proof of the unique prime factorization; Exercise 3. Thus, (1) is indeed
provable for T'= PA. It implies D2 and, with [0 = bwbpa, moreover

(6) Oz >y) Fpa O(z) = O(y).4

Remark 2. The formalized equations of Exercise 4 in 6.4 are now also seen to be prov-
able in PA. For instance, (b) now reads Fpa sbz(T¢™, @)= sbz/ ("o, Z’) for ¢ = p(T),
where £/ C ¥ enumerates the free variables of ¢ and may be empty. To prove item (c),
consider a special case. Let ¢ be Sx=1y. Then sbyy (¢, z,5z) = sb,((¢ 3£)", x), formalized:
sbay ("¢, z,y) 3 = sb,(Tp 327, z). Following the example on page 193, one requires for
the proof of this equation in PA just Fpa cf Sz =S cf z, which holds by Theorem 1.1.

Now we are suitably equipped to prove D3. We first generalize the notation (.
Definition. For ¢ = ¢(Z) let O[] := O(sbz("¢ ™, ) (= bwbpa sbz (%) ).

By Remark 2, bpa sbz(T¢™, @)= sbz/ ("¢, Z’) whenever varZ’ = free. There-
fore, we may assume w.lo.g. free[y] = freep. Moreover, for a € L% we may
identify O[a] and Oa, because Fpa sbz("a™, Z) = sby(Ta™)="a™. By Fpa VZO[y],
the schema ‘pa (@) for all @ € N™ is expressed in PA as a single sentence.
Fpa VZO[g] reflects in PA the existence of a collection of proofs which, due to
the w-incompleteness of PA, can be less than Fpa Oy (or equivalently, Fpa OVZp).

4 0 may even denote bwby for any axiomatizable and arithmetizable theory T'.
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Example. Let p(z,y) be Sz =y. We prove ¢ Fpa O[g], or equivalently, Fpa O[] 3,
where w.l.o.g. z,y are not bounded in O(x). In view of Remark 2, we then obtain
O[] § = Osbay ("¢ 2, 9)) 8 = O(shay ("¢, 2, 8y)) =pa O(sbo (T 57, x)). Thus,
O] 57”” =pa O[Sz =Sz|. Hence, it suffices to verify Fpp O[Sz=Sx]. This reflects
in PA ‘for arbitrary n, Fpa Sn=8n". Let a(z) := Sz=Sx. We prove py O[] in
detail. Consider the p.r. function &:n — sb,(d,n) (the Gédel number of a(w). By
axiom A9, (&(n)) is for each n a simple arithmetized proof of length 1. Stated within

PA, Fpa bewpa ((&(x)), &(x)), which yields Fpa Jy bewpa(y, &) = O(&@) = O[a).

The following generalizations of D1, D2 for o = «(%) and = §(Z) hold:

(7) (a) Fpa @ = Fpa OJa; (b) Oa = F] Fea Ofa] = O[A].
To see this let Fpp «, so that also Fpy Oa. Just as in the above example, a proof
for « provides one for az(@) for every @ € N in a p.r. way, or btated within PA:
Fpa O(u) — O(sbz(u, Z)). Thus, choosing "a™ for u, Fpa O(sbz("a™, 7)) (= O[a]).
(b) follows from (6) with sbz("a™, Z),sbz(" 47, &) for z,y, taking into account that
Fea sbz(Ta — 47, &) = sbz("a™, &) = sbz("57,Z) (Exercise 3 in 6.4). Additionally,
item (c) of this exercise, provable in PA, yields

(8) Dla]t =paOlat] (t€{0,y.5y} and y ¢ buda).
Obviously, D3 is only a special case of the provable ¥1-completeness of PA:

(9) ¢ Fpa O[] (equivalently, Fpa ¢ —O[y]), for all X;-formulas .
To make D3 evident, choose in (9) for ¢ the ¥;-sentence O, for any given a € £9,
It follows that Qo Fpa O[0a] = OO, and D3 is proved. We obtain (9) by applying
the following theorem, because the operator 9: «a — O[] satisfies the conditions of
the theorem by (7), (8), and because free « = free[J[a] may be assumed.

Theorem 1.2. Let 0: L, — L4 be any operator with free da C free a satisfying
dl: Fpaa = Fpa da,
d2: 9(a—p) tpa 0o — 00,
ds: dat =pp0(ak) (t€{0,y,8y}, y ¢ bnda).

Then Fpa @ — 0p holds for all X1-formulas ¢ € L.

Proof. 0 satisfies also d0, d00, and dA; see Remark 1. Due to d00, it is enough to
carry out the proof for the special ¥;-formulas defined in 6.7. First let ¢ be Sz =1y.
¢ Fpa Op is equivalent to Fpa 899 , and this to Fpa 9Sx=S8x by ds, which is
obvious from d1. Similarly, y==z I—pA 8y= z, which we need in the inductive proof
of Fpa p = O for ¢ == x+y=zonz: v 2 Fpa y—z Fpa Oy=2Fpa O(02) Fpa O 2.
Thus, Fpa (p = d¢) 2. Note that 4,9%” =pp 22 and so Jy % =pa O 22 by d00,ds.
Then the 1nduct10n step Vyz(go —>8<p) Fpa Vyz(p — 0p)3E obviously follows from
Vyz(p »00) F o2 500 bpp 032 093 = (p »0p)EE. The formula z - y==z
is left to the reader. We now treat the logical connectives. The induction steps for
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A, v, 3 are simple: anf Fpa o, 8 Fpa Oandf Fpa d(anB) by da. For v observe
that a Fpa da Fpa 9(av3), and similarly for 3. Further, because ¢ Fpy Iz we
have ¢ Fpa Op Fpa 03z, and since x ¢ free I3z, it follows that Tz Fpa 0Tz,
The step for prime-term substitution (¢ is prime in %) runs also straightforwardly:
@ Fpa O vields o £ Fpa Op L Fpa O(pk).

It remains to show the step for bounded quantification. Suppose « Fpa Ocr and let
y ¢ vara. We show that ¢ := (Voz<y) a Fpa 9p by induction on y. The initial step
is clear: Fpa @ %, thus Fpa 8(4,0%) Fpa Op %, and a fortiori Fpa <p% —0p % Clearly,

@ S—Uy =pa pra ¥, Hence a bpa O yields o % Fpa O % Fpa O(a¥). That leads to

P A (0 —00) Fpa orat Al —0p) Fpa 0pnd(al) Fpa O(prak) Fpa ().
Thus ¢ —d¢ Fpa 3L — 0(p3L), which is equivalent to the inductive step. [J

D1-D3 are also provable for much weaker theories than PA, e.g., for so-called
elementary arithmetic EA = IAg + Voy3z0e,(x,y, z). Here we take dp to be a

Ap-formula according to Remark 1 in 6.3, with 1A likewise defined there. An
equivalent formulation of EA can be found in [FS].

It is noteworthy that the provable recursive functions in EA are precisely the
elementary ones (shown in [Si]). If EA is augmented by the IIy-induction schema
without parameters, then exactly the p.r. functions are provably recursive. This
beautiful result was proved in [Be4]. Further theories are discussed in [Ba, Part D].

Exercises

1. Prove in PA (using basic laws of arithmetic, e.g. the axioms of N page 86) the
definability of the pairing and remainder function: Vry3!z 2z = (z+y)*+3z+y
and Veydlz(Fve=y-v+zrz <yvy=z=0), and also Vzy3!z beta(z,y, z).

2. Prove in PA
(a) Euclid’s lemma (Vab>0)3zy ax + 1=by,
(b) (Va>1)Ip(primpapla),
(c) Fpa Yabp(primpaplab — pla v plb).

3. (Vk=2)Fudn(k=[],, P2 A Bun#0) can be viewed as a formalization of the
prime factorization.’ Prove this in PA, as well as its uniqueness.
4. Let T" =T + o and T satisfy D1-D4. Show that

(a) Fr Ope « Op(a — @) (the formalized deduction theorem),
(b) D1-D4 hold also for T".

5 There are several equivalent formalizations of the prime factorization in PA. Particularly nice is
(Yn>2)(3m>2)n =11, </, pgm)‘. Here m serves as a variable for the sequence of prime exponents.
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7.2 The Theorems of Godel and Lob

We are now in a position to harvest the yields of our efforts. As long as not
stated otherwise, let T" denote any arithmetizable axiomatic theory in a language L,
which satisfies the derivability conditions D1-D3 of 7.1 along with the fixed-point
lemma of 6.5. We direct attention straight away to the uniqueness statement of
Lemma 2.1(b) below. According to this claim, at most Oa — a can be the fixed-
point of the formula O(z) — a, up to equivalence in T. The proof of Theorem 2.2
will show that —0(z) too has only one fixed point modulo 7. Beneath all this lies,
as we shall see from Corollary 4.6, a completely general result.

Lemma 2.1. Let T be as arranged above, and o,y € L° such that v =r Oy —a.
Then hold (a) Oy =7 Oa and (b) v =7 Da —a.

Proof. The supposition yields Oy Fr O(0Ov - «) b 00y » Oa, by DO and D2.
Now, by D3, we clearly obtain Oy Fr OOy and so Oy 7 Oa. Since obviously
abFr Oy -a =7 v and so a b1 7, it follows by DO that Oa ¢ O. This, together
with the already verified Oy b7 O, proves (a). Using (a) we may replace Oy with
O« in v =7 Oy — o which results in (b). [

Theorem 2.2 (Second incompleteness theorem). PA satisfies alongside the
fized-point lemma also D1-D3. For every theory T with these properties,

(1) ¥ Cong provided T is consistent,

(2) kg Cony ——OCony.

Proof. D1-D3 were proved for PA in 7.1. (1) follows from (2). Assume bk Conr.
Then ¢ OCony by D1, as well as ¢ =0 Cony by (2). Thus, T is inconsistent. To
verify (2), let v be a fixed point of =0J(z), so that

(%) y=r -Oy=0y -1
By Lemma 2.1(b) with o« = 1, we obtain v =¢r 01 — 1 = =01 = Cony. Replacing
v in (%) with Conr gives Cony =¢ -0 Cony. Half of this is the claim (2). [J

Thus, by (1), no sufficiently strong consistent theory can prove its own consistency.
In particular, ¥pa Conpa since PA is assumed to be consistent. The proof shows that
Cony is the only fixed point of = bwby modulo 7T'. It shows also a bit more, namely

(3) Conr = —Cons.
This strengthens (2), but only by a little: =[] Cony b7 Conr is just a special case of
(4) —-UOa Fr Cony (equivalently, = Cony ¢ Oa), for every a € L.
This follows from L 7 « since = Cony = 0L F¢ Oa by D0. (4) reflects in T the
fact ‘If T is inconsistent then every formula is provable’. From (1) and (3) we get
Fpa = Conpa, although ‘Conpa is unprovable in PA’ is true according to (1).
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All these claims hold independently of the “truth content” of the a € T'. Namely,
a consequence of the second incompleteness theorem is the existence of consistent
arithmetical theories T D PA in which along with claims true in A/ also false ones
are provable, i.e., in which truth and untruth live in peaceful coexistence with each
other. Such “dream theories” are highly rich in content, for all of them include
ordinary number theory. An example is PA* := PA + —Conpa. This theory is
consistent because the consistency of PA* is equivalent to the unprovability of Conp
in PA. The italicized sentence is even provable in PA as (5) below will show. By the
reflection of the deduction theorem in PA (Exercise 4(a) in 7.1 with 7" = PA and
O =0pa), Oparal =pa O(a — 1) = O-a, hence ~Opatol =pa "0, and so

(5) Conpata =pa Oa  (in particular, Conpyr =pa <(—Conpa) = -~ Conpa).
Now, the special case under (5) and (3) clearly yield

(6) Conpa =pa Conpyr  (hence also Conpp =pp+ Conpa).
Put together, PA* contains ordinary number theory as known to us, but also proves
the indubitably false sentence bwbpa(T0%07). Moreover, because of Fpa1 =1 Conpa,
hence Fpyr —Conpyr by (6), PA* proves its own inconsistency, although PA* is
consistent. It claims to have a mysterious proof of 1. Thus, consistency of T" can
have a different meaning within 7" and seen from outside, similar as the meanings
of countable diverge, depending on whether one is situated in ZFC or is looking at
it from outside. One may even say that PA* is lying to us with the claim — Conpy..
However this phenomenum is paraphrased, we learn that for a consistent theory T,
the extension T + Cony need not be consistent. 7' = PA* is an example, and in fact
only one of many others. More will be said on this in Theorem 2.4.

We now discuss what is, along with (3), the most famous example of a self-
referential sentence. Clearly, a fixed point « of O(z) = bwby(z) claims just its
own provability, that is, = Oa. A trivial example is o = T, because by OT — T,
and since k¢ T, clearly Fp OT so that T =p 7. What is surprising here is that T
turns out to be the only fixed point of O(z) modulo T'. By D4° below, Fr Oa — «
implies 7 o and so @ =7 T (which confirms the uniqueness), although one might
perhaps expect Fr Oa — « for all o € £° because Ua — «v is intuitively true.

Theorem 2.3 (Lob’s theorem). Take T to satisfy D1-D3 and the fized-point
lemma. Then T has the properties
D4: FrO0a —a) »Oa, D4°: FrOa—a = Fra (€ L).

Proof. Let v be a fixed point of O(z) —» «, i.e., ¥ =r Oy - a. Then v =r Da -«
by Lemma 2.1(b). This and DO imply Oy =y O(0a —«). Lemma 2.1(a) states
Oy =7 O, hence Do =¢ O(Oa — «). Half of this is D4. Now suppose Fr Oa — a.
Then by D1, Fr O(0a — «). Using D4 results in by O, and by Oo — « finally
yields Fr «, thus proving D4°. [4§
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D4 is just D4°, formalized in T. One of many applications of Léb’s theorem is a
very easy proof of ¥pa Conpa. Indeed, Fpa Conpa (= 01 — 1) implies Fpa 1 by D4°.
That’s all. Similarly, D4 implies (2) for « = 1 by contraposition. Thus, Theorem 2.3
is stronger than Theorem 2.2, which is not obvious at the first glance.

Unlike PA*, PA+Conpa conforms to truth. Unfortunately it is not quite clear what
Conpa means in number-theoretical terms. This is clear, however, for an arithmetical
statement discovered by Paris and Harrington, which implies Conpa; this statement
is provable in ZFC but not in PA in view of (1). Since then, many such sentences
have been found, mostly of a combinatorial nature. A popular example is
Goodstein’s theorem. FEvery Goodstein sequence ends in 0.

A Goodstein sequence is a number sequence (a,),eny with arbitrary ag given in
advance, such that a,; is obtained from a, as follows: Let b, = n + 2, so that
by = 2, by = 3, etc. Expand a, in b-adic base for b := b, so that for suitable k,

(¥) an =2k bF=ic;, with 0 < ¢; < b.

Also the powers k—1 are represented in b-adic form, so too the powers of powers, and
so on. Now replace b everywhere with b+1 (= b,11) and subtract 1 from the output.
The result is a,+1. The table below gives an example beginning with ay = 11; already
as has the value 134217 728. As one sees from this example, a, initially increases
enormously, and it is hardly believable that the sequence ever starts to decrease and
ends in 0. But the proof of the theorem is not particularly difficult; one estimates
a, from above by the ordinal number \,, which, crudely put, results from a, if
replacing the basis b in (%) by w. With some ordinal arithmetic it can readily be
shown that A,4+1 < A, as long as A, # 0. Since there is no properly decreasing
infinite sequence of ordinal numbers (these are well-ordered), the sequence (a,)nen
must eventually end in 0. For more detailed information see for instance [HP)].

ap=11=22"139211 [2~3[314+3+1=285
a =84=23%143 3o 4| 44 44 = 1028
s =1027 =441 43 | 4~~5|5" +3=15628
a3 =15627 =51+ 2 |5~ 6| 651 42 =279938
g = 279937 =651 + 1|6~ 7| 7T +1 = 5764802

Many metatheoretical properties can be expressed using the provability operator
O in T, often using sentence schemas. The following are examples that facilitate a
better understanding of the meaning of = Cony within 7. By Theorem 6.5.1', none
of the following properties holds for a consistent 7" when seen from the outside:

(i) —Conr: Ot (provable inconsistency),
(ii) SyComp: OavO-a (syntactic completeness),
(iii) SeComp : a —Oa (semantic completeness),
(iv) w-Comp : VaO[p(z)] —»OVep(z) (w-completeness).
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Theorem 2.4. The properties (1)—(iv) are all equivalent in a theory T satisfying the
properties named at the beginning of this section.

Proof. By (4) (i)=(ii),(iii),(iv) are clear. (ii)=(i): By Rosser’s theorem formulated
in T (see 7.4), Conr Fr ~Oar—-O-a for some «. Thus, Oa v O-«a Fr —Conr.
(ii)=(i): For a := Cony, SeComp and Theorem 2.2 give o by O, =0a;, so b —a.
(iv)=(i): By (9) in 7.1 we obtain —~bewp(z, L") ¢y O[-bewur(z, L7)]. Therefore,
Cony = VYz-bewyp(z, L") Fp VazO[-bewp(z,"L7)]. From w-Comp and (2) easily
follows Cony Fp OVz—bew(z,”17) = OCony Fp = Cony. Hence ¢y = Cony. [

Remark. Conr is also equivalent in 7" to other properties, for example to the schema
Oa — « for IIj-formulas « (the local TIi-reflection principle) as well as the uniform II;-
reflection principle VzO[a(z)] = Vza(z) for II1-formulas «. Both the theorems of Paris—
Harrington and of Goodstein are equivalent in PA to the uniform X;-reflection, or equiva-
lently, to the consistency of PA plus all true IT;-sentences; see e.g. [Ba, D8|.

We define inductively 7° = T and T"*! = T™ + Congn. This n-times-iterated
consistency extension T™ can be written as T" = T'+—-["1 with O = bwby, 1% = «
and 0o = O0"«; Exercise 3. Thus, the consistency of T™ can be expressed by an
iterated consistency statement in the basis theory 7. Moreover, let T% :=J, ., T".
By definition, 7™ C T™*!. Thus, because of T = T + —=[0"1, the following three
items are equivalent:

(i) T* is consistent, (ii) 7™ is consistent for all n,  (iii) ¥ O"1 for all n.

Like PA! = PA + Conpa, also PA“ conforms to truth if one is looking at PA from
outside. When considered more closely, this means only that PA¥ is relatively con-
sistent with respect to ZFC. In other terms, Fzgc Conpaw. The argument (to be
formalized in ZFC) runs as follows: Fpaw 1 implies Fpan 1 for some n as was noticed
above, hence Fpa (0" 1. But this is impossible, as is shown by a repeated application
of D1* on PA (see page 211). Alternatively, one may apply Exercise 4.

Exercises

1. Prove D4° for T by applying Theorem 2.2 to 7" =T + —a.

2. Show by means of Lob’s theorem that Conpa — —[J—Conpa is unprovable in
PA, although this formula is true if seen from outside.

3. Let T" recursively be defined as in the text below. Prove that T" = T 4+ -"1
and Conpn =7 =01, where O is buby.

4. Show that Fzrc Opacx — v for every arithmetical sentence o from £2.
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7.3 The Provability Logic G

In 7.2 first-order logic was hardly required. It comes then as no surprise that many of
the results there can be obtained propositionally, more precisely, in a certain modal
propositional calculus. This calculus contains alongside A, — the falsum symbol 1,
and a further unary connective [J to be interpreted as the proof operator in L.,
which we denoted by O as well. First we define a propositional language 35, whose
formulas are denoted by H,G, F: (a) the propositional variables pi,ps,... and 1
belong to J; (b) if H,G € F5 then so too (HAG),—H,0H € J5. No other strings
belong to J5 in this context. H v G, H -G and H <> G are defined as in 1.1,
T:= 1. Further, O°H := H, O""'H := 00"H, and OH := -0O-H.

Let G be the set of those formulas in F; derivable using substitution in J5, modus
ponens MP and the rule MN: H/OH from the tautologies of two-valued propositional
logic augmented by the axioms

Op-q) -0Op—-0q¢, Op—-0O0p, OOp—p)—0p (Léd’s axiom).
Strictly speaking, the axiom [Op — OOp is not necessary; it is provable from the
remaining axioms; see [Boo] or [Ral]. For H € G we write k¢ H (read “H is
derivable in G”). MN obviously corresponds to condition D1. The first axiom of G
reflects D2, the middle D3, and the last D4, hence its name provability logic. The
connection between G and PA will be described in 7.4. Here we are concerned with
the formal system G and its semantics, known as Kripke semantics. For simplicity,
we restrict ourselves to finite Kripke frames, which is just another name for finite,
directed graphs. We begin without further ado with the following

Definition. A G-frame or Kripke frame for G is a finite strict partial order (g, <).
A waluation is a mapping w that assigns to every variable p a subset wp of g. The
relation P IF H, dependent on w, between points P € g and formulas H € 35 (read
“P accepts H”) is defined inductively by

PlFkp & Pewp, PWK¥., PFHANG & PIFH & PIFG,

Pl+-H & PW¥FH, PWFUOH & P IFHforall PP>P.

If PI-H for all P € g, all G-frames g, and all w, we write F¢ H and p  p,
say that H is G-valid. The G-frame on the right, consisting of two points ® —®

Py, P, with P, < P,, shows that #g p —Op. Indeed, Let wp = {P;}. Then P, I+ p,
but P, ¥ Op since P, ¥ p. Note also that P, ¥ Op — p because P; I+ Op.

One easily sees that P IF OH iff P' I+ H for some P’ > P. Let us write H =¢ H’
for F¢ H <> H’'. This relation is a congruence in J5 that conservatively extends
the logical equivalence of formulas without [J. Examples are -[JH =¢ ¢—H and
-OH =¢ O-H. Many more interesting examples are presented in the following.
These will later be translated into statements about self-reference.
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Examples. (a) Although always P ¥ 1, P IF 0L obviously holds iff P is maximal in
g, that is, if no P’ > P exists. Likewise, (=1 is accepted precisely at the maximal
points of g. Therefore, -1 =¢ 1, or =00-1 =g —[.1. This equivalence reflects
in G the second incompleteness theorem as will be seen in 7.4.

(b) Let {Py,...,P,} be the ordered G-frame with P, < --- < F. Induction on n
shows that P, IF ™1 for m > n, but P, ¥ ("1, and moreover P, ¥ "1 -7,
Hence, ¥g O™ 1 - O"1, and a fortiori #g 071 for all n.

(¢) Ec O(Op — p) —Op. For take an arbitrary g and P € g. If P ¥ Op then there is,
since g is finite, some @ > P with @ I —p and Q' I p for all @’ > Q. Thus @ I+ Op;
hence Q ¥ Op —p and so P ¥ O(Op —p). Consequently, P I+ O(Op —p) —Op,
which proves our claim, since g was an arbitrary G-frame.

(d) Fg -O"*'L » OR,, where R,, := A\'_,(Op; - p;). Indeed, suppose P I- =001,
P € g. Then there must be a chain P = Py < P < --- < P,y in g. Now, it is a
nice separate exercise to verify that each conjunct of R, fails to be accepted by at
most one of the n + 1 points Pj,..., P,11. Thus, at least one of these accepts all
conjuncts. In other words, P; I+ R,, for some i > 0, hence P I ¢ R,,. This nontrivial
example will essentially be used in the proof of Theorem 6.1.

It is easy to prove by induction on ¢ H that ¢ H = Eg H; example (¢) is a part
of the initial step. The induction step over the rule MN is verified by contraposition:
if P W OH then there must be some P’ > P in some G-frame with P’ ¥ H.

The converse, F¢ H = F¢ H, is not so easily shown. It is part of the following
theorem, used is the sequel without proof. It tells us that ¢ H can be confirmed
by showing that Fg H, and vice versa. The particular import of this theorem will
become clear only in Theorem 4.2. As for the relatively simple formulas considered
in the sequel, we check directly whether they are G-valid. For a proof of Theorem 3.1,
based on the finite model property of G, see e.g. [Bool, [Ral], or [CZ].

Theorem 3.1 (Completeness of Kripke semantics for G). ¢ H < F¢ H.

Both the formulas provable in G and those refutable there are obviously recursively
enumerable, thanks to the finite model property of Fg. Thus, in complete analogy
to Exercise 2 in 3.6, we obtain the following result:

Theorem 3.2. G is decidable.

Remark. Let 39 be the set of variable-free formulas of J5. An important fragment of
G is G° := GN3JY. The most interesting formulas in F9 are the -0"1 (=g ©"7T), for
these form a Boolean base in G°. One proves this statement most easily by showing that
GO is complete with respect to all (totally) ordered G-frames, including the infinite ones,
and applying the base theorem 5.2.3 accordingly: two ordered G-frames satisfying the
same “base formulas” (0”1 are either both finite and isomorphic, or both infinite and
indistinguishable by means of the formulas H € F39.
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7.4 The Modal Treatment of Self-Reference

Let T be a theory in £ as in 7.2. A mapping ¢:p; — a; (€ L°) will be called an
insertion. 1 assigns to every H an L-sentence H* by extending it to the whole of Jg
by 1" =1, (-nH) = -H', (HAG)" = H'AG", and (OH)* = OH". In other words,
H" results from H = H(ps,...,ps) by replacing the p, by the «,, denoted also by
H"= H(o,...,a,). Forinstance, (Opa—01)" = Oaa—-01 if p* = «. In particular,
(-01)* = =01 = Cony. The following lemma shows that k¢ is “sound” for k.
This already considerably simplifies proofs of self-referential statements.

Lemma 4.1. For every H such that =g H and every insertion v in L, - H".

Proof by induction on ¢ H. If H is a propositional tautology then H* € Tauty, C T.
If H is one of the modal axioms of G, then Fr H* by D2, D3, and D4. If ¢ H
and o: 95 — J5 is a substitution, then F, H°*, because H* = H” with ¢ : p — p°",
and Fp HY holds by the induction hypothesis. As regards the induction step over
MP, consider (F —G)* = F* —G*. If MN is applied, and 7 H* by the induction
hypothesis, then b OH* = (OH)*, due to D1. [

Example 1. We prove (3) of Theorem 2.2 with the calculus . By Lemma 4.1
and Theorem 3.1 it suffices to show that Fg -1 + —[0-01. But this holds by
Example (a) in 7.3. Next example: Fg O(p < Op) ——Op is easily confirmed.
Thus, (o + <a) - 0w is provable in PA. This formula tells us “a sentence
claiming its own consistency with PA is incompatible with PA”, which hardly seems
plausible. Even the converse is provable in PA since Fg =Op —O(p > Op).

We now explain certain facts that expand upon the reasoning of above. For PA
and related theories the converse of Lemma 4.1 holds as well. That is to say, the
derivability conditions and Lob’s theorem already contain everything worth knowing
about self-referential formulas or schemas. For the subtle proofs of Theorems 4.2,
4.4, and 4.5, the reader is referred to [Boo].

Theorem 4.2 (Solovay’s completeness theorem). For all formulas H € F:
Fe H (equivalently Fg H) if and only if Fpa H* for all insertions 1.

Example 2 (applications). (a) ¥pa 0" 1 — "1 because by Example (b) in 7.3,
e O »0O"1. In particular we get ¥pa Conpa (= 01 —1). (b) Fpa —O" L,
since Eg =011, (c) It is easily verified with the 2-point frame on page 221 that
Fc —~Up —O-0p, in particular ¥g =001 — O-01. Therefore, ¥pa Conpa — [JConpa.
(d) PA,, := PA+0"1 is consistent for n > 0 by (b), but is w-inconsistent. Otherwise,
by D1* (page 211), bpa, 0"L = Fpa, 0" 1L = -+ = Fpa, 1, contradicting Fpa, L.
Since Fpy "1 — O™ 1 by D3, we obtain PA, D PA, .1, and since PA, # PA,,; by
(a), it follows that PAgD PA; D -+ D PA. Observe that PA; is just PA™.
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Note also since ¥ Op — p, there must be some « € L%, with ¥pa Do — v (which
one?) The above examples point out that Theorem 4.2 and the decidability of G are
very efficient instruments in deciding the provability of self-referential statements.

Many other theories have the same provability logic as PA, where in general a
modal propositional logic H is the provability logic for T when the analogue of
Theorem 4.2 holds with respect to 7" and H. For some theories, the provability logic
may be a proper extension of G. For example, the w-inconsistent theory PA,, from
Example 2(d) has the provability logic G, := G + [O0"1, the smallest extension of
G closed under all rules of G with the additional axiom [J"1. This follows directly
from Theorem 4.2 (Exercise 1). By the following theorem (due to A. Visser), other
extensions of G to be considered as provability logics are out of the question.

Theorem 4.3. Let T be at least as strong as PA and T as on page 220. Then
(a) whenever T¥ is consistent, then G is the provability logic of T (proof in 7.6),
(b) if Frw L and n is minimal such that a1, then T’s provability logic is G,,.

The formulas H € 5 such that NV E H* for all insertions 2 in £, can also be
surprisingly easily characterized. All H € G are obviously included; but in addition
also Op — p, because obviously N F Oa — « for all o € £9,..

Let GS (2 G) be the set of all formulas in F; that can be obtained from those in
G U {Op — p} using substitution and modus ponens only. Induction in GS readily
yields H € GS = N E H* for all 2. Again, the converse holds as well:

Theorem 4.4 ([So]). H € GS if and only if N'E H* for all insertions 1.
GS is decidable as well. For it can be shown that H € GS & H* € G, where
H* = [ Nggesion (OG - G)] — H.

Here Sf P H is the set of subformulas of H of the form OJG. By Theorem 4.4, many
questions concerning the relations between provable and true are effectively decid-
able. For instance, H(p) := —-0(=01 - -0Opa—=O-p) € GS can straightforwardly
be verified. By Theorem 4.4 then N F —H(a) = O(-01 - —-Oar—-0O-a) for some
a € L0 . Translated into English: It is provable in PA: the consistency of PA implies
the independence of o for some sentence . This is exactly Rosser’s theorem which
in this way turns out to be provable in PA. As was shown in [Bel], the box in the
formulas H € GS in Theorem 4.4 may denote bwby for any axiomatizable T' O PA,
provided T'C ThN. However, if T proves false sentences (as does e.g. PA") then
GS has to be redefined in a feasible manner and is always decidable.

A variable p in H is called modalized in H if every occurrence of p is contained
within the scope of a [J, as is the case in =Op, =0O-p, and O(p — ¢). By contrast,
p is not modalized in Op — p. Another particularly interesting theorem is
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Theorem 4.5 (DeJongh—Sambin fixed-point theorem). Let p be modalized in
H(p,q1,---,qn), n = 0. Then there exist a formula F = F(q) from 35 such that

(a) F=¢ H(F,q), (b)Fe A_[(pi & Hpi, ) a0(pi <> Hpi, )] = (p1 <> pa2).
From this theorem we easily obtain a corresponding result for theories 7"

Corollary 4.6. If p is modalized in H = H(p,q) and T satisfies D1-D4, then there
is an F = F(q) € 35 with F(Q) =r H(F(Q),d) for all & = (a1,...,qn), oy € L.

For each & there is only one 3 € L° modulo T such that 8 =r H(B,d).

Proof. Choose F according to (a) of the theorem. Then F(&) = H(F(d),d) by
Lemma 4.1 (¢* = @). To prove uniqueness let 5; =r H(G;, @) for i = 1,2. By D1,
Fr (8 < H(6;,d)n0(8; < H(6;,d)). Inserting §; for p; and «; for ¢; in the
formula under (b) in the theorem then yields b §; <> B2 by Lemma 4.1. []

Example 3. For H = —-Op (n =0), F' = -0 is a “solution” of (a) in Theorem 4.5
because ~J1 =¢ —0O(=0L). According to Corollary 4.6, Cony (= —1) is modulo
T the only fixed point of =bwby. For H = Op — ¢ (here n equals 1), F' =g —q is
a solution of F' =¢ H(F,{). The corollary states that Ca: — «v is modulo T the only
fixed point of bwby(x) — «. This is exactly what was shown in Lemma 2.1.

Many special cases of the corollary represent older self-reference results from
Godel, Lob, Rogers, Jeroslow, and Kreisel which, stated in terms of modal logic,
concern fixed points of =Up, Op, =O-p, O-p, Op — ¢, and O(p — q) (these are, in
order, =1, 7, 1, 01, Og —¢, and Og). Incidentally, for the listed formulas one
gets fixed points according to a simple recipe. All listed formulas are of the form

H =GB (pnot modalized in G(p,q); H'(p,§) chosen appropriately).

Then FF=H @ is the fixed point of H, as can be seen after some calculation.
For H = -Op is G = —p. Hence, F = -0p 5 = -0-7 =¢ ~01. For H = Op —¢q

isG=p—q,and so F = (paq)m%_”]) =0(+ »q) - q =¢ Jq —q. For Kreisel’s
formula O(p — ¢) we have G = p. Therefore, F = pm =0(7 —»q) = Qg.

Exercises
1. Prove that the theory PA,, from Example 2(d) has the provability logic G,,.

2. Show that PAT := PA™ + —Conpa» equals PA + 00" i A=0"1 (O = Opa)
and has the provability logic G; = G + OL. Show the same for the theory
T =PA+ D(D Conpa v = COIlpA) A j(‘:l Conpa v = COIIPA).

3. Prove that the recipe given in the text above is correct.

4. (Mostowski’s theorem). Let T' D PA be axiomatizable and suppose T E N.
Show that there are two mutually independent ¥;-sentences «, 3 in T', that is,
o, "o, @ = [, a —--f, na — [, "a — 3 are unprovable in T
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7.5 A Bimodal Provability Logic for PA

Hilbert remarked jokingly that the incompleteness phenomenon can be forcefully
X F¢(n) for all n

X FVzp
po has infinitely many premises. It is an easy exercise to derive with the aid of p,

every sentence « valid in A from the axioms of PA, even from those of Q. Indeed,
all sentences can (up to equivalence) be obtained from variable-free literals with
A, v, V, 3, bypassing formulas with free variables. Due to the ¥;-completeness of Q,
all valid variable-free literals are derivable. The inductive steps for A, v, 3 are simple,
applying ¥;-completeness in the 3-step once again. Only in the V-step rule p, is
used. Clearly, the unrestricted use of the infinitistic rule p, contradicts Hilbert’s
own intention of giving mathematics a finitistic foundation. However, things look
different if we restrict p,, each time to a single application. In view of Remark 1
in 6.2, we no longer distinguish between ¢ and ¢, so that "™ = ¢. Let us define

1bwbpa(cr) == (3peL],,)[bwbpa(Vze — ) AVn bwbpa(p(n))].

removed from the world by use of the so-called w-rule p,, :

This predicate is arithmetical; more precisely, it is X3 because of the J-quantifier
hidden in bwbpp. We read 1bwbpa(cr) as “a is l-provable.” Let 1bwb(z) be the
Ys-formula in L, defining 1bwbps. Write o for 1bwb("a?) and ®a for —-a.
As we know, Oa for a € L%, can be read ‘PA + —a is inconsistent’, while Ea, by
Lemma 5.1, formalizes ‘PA + -« is w-inconsistent’. Therefore, 7 (= —[L) means
‘PA (= PA + —1) is w-consistent’. This explains the interest in the operator .

If bwbpa(v) then certainly 1bwbpa(a) (choose a for ). The italicized statement
is reflected in PA as ‘tpp Oa — o for every a € L£9°. The converse implication
fails, because we know, ¥pa Conpa, while Conpy is easily 1-provable. Indeed, with
©(x) := = bewpa(z, 1) holds Fpa ¢(n) for all n, and trivially Fpa Vap(z) — Conpa.

Define Q := {Vap | ¢ = p(z) & Fpa p(n) for all n}, and PA® := PA+Q. According
to its definition,  and hence also PA® are formally ¥5. As Theorem 5.2 will show,
PA® is properly 3, and therefore no longer recursively axiomatizable.

Lemma 5.1. The following properties are equivalent for o € L9, :
(1) Tbwbpa(a), (ii) Fpae o, (iil) PA + —a is w-inconsistent.

Proof. (i)=(ii) follows with a glance at the definitions (read (i) naively). (ii)=-(iii):
Let Fpae . Since Q is closed under conjunctions, there is some Vzp(z) € 2 with
Vry Fpa «, hence Fppy ma — Jz—p and so Fpai-o Jxp. Now, Vrp € €, therefore
Fpa ¢(n) and a fortiory Fpat-o @(n), for all n. Thus, PA + -« is w-inconsistent.
(ii))=(1): Let Fpat-a S(n) for all n, but Fpar—n Fz—5. Then Fpa Va5 —a. With
() := —a — B(z) clearly Fpa ¢(n) for all n. Now, Vzy = o v Vo[ Fpa a. Hence
Fpa Yz — . Thus, altogether 1bwbpa(a). [
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Theorem 5.2 (the 1-provable Y3;-completeness of PA). All true X3-sentences
are 1-provable. Moreover, for every 3 of this kind, bFpa 6 — 005.

Proof. Let N F 3 := JaVyy(x,y) where y(x,y) is 31. Then there is some m such
that N' F y(m,n) for all n. Therefore, Fpa v(m,n) for all n, because PA is ;-
complete. Hence, Vyy(m,y) € Q and so Fpae JzVyy, or equivalently, 1bwbpa(B) by
Lemma 5.1. Because of the provable ¥;-completeness of PA; this argumentation is
comprehensible in PA, so that also Fpa = 3. [4

D1-D4 are also valid for the operator il : L% — L . Indeed, D1 holds because
Fpa o = Fpa Oa = Fpa Ba, and D2 formalizes ‘Fppe o, = 8 = Fppa §7 in view
of Lemma 5.1. D3 is an application of Theorem 5.2 with § = [a. The proof of
D4 in 7.2 uses, along with the fixed-point lemma, only D1-D3; so D4 holds as
well. Therefore, nearly everything said in 7.2 on O applies also to [; in particular
Theorem 2.2, which now reads Fpa = @1 (= &1). To put it more concisely, although
the consistency of PA is provable with the extended means, w-consistency is not.
Hence, this property, which has a II3-Definition according to Exercise 4 in 6.7,
cannot be X3 by Theorem 5.2, and must therefore be properly I1;.

Alongside Oa — [, there are other noteworthy interactions between [0 and [,
in particular Fpa “Oa — [-0Oa. This formalizes ‘If pa o then =[Ja is 1-provable’.
To verify the latter notice that ¥pa « implies Fpa @(n) for all n, where () is
—bewpa(z, ™), and since Fpa Vzp —-Oa, we obtain Fpa -Oa. On the other
hand, Fpa “Oa — 0= is false in general; see Example 2(c) on page 223.

The language of the bimodal propositional logic GD now to be defined results from
95 by adding a further connective [ to J5, which is treated syntactically just as [J.
The axioms of GD are those of G both for O and [, augmented by the axioms

Up—Op and -Op— 0-Op.

The rules of GD are the same as those for G. Insertions z to £, are defined as in 7.4,
but with the addional clause (IH)" = MH* (= 1bwbpa("H'")). By the reasoning
above, all axioms and rules of GD are sound. This proves (the easier) half of the
following remarkable theorem from Dzhaparidze (1985):

Theorem 5.3. bgp H < bpa H for all insertions 1. Further, GD is decidable.

Thus, GD completely captures the interaction between bwbpa and 1bwbpa; also
Theorem 4.5 carries over. However, GD no longer has an adequate Kripke semantics,
which complicates the decision procedure. For further references see [Boo], [Be3] .

As an exercise, the reader should derive W(Op — p) from the axioms of GD. Thus,
Fpa D(Oa — a) for every a € L9, while Fpy O(Oa — «) does hold only if Fpa . In

other words, the local reflection principle {Oa —a | a € L2, } is 1-provable in PA.
Be careful: GD expands G conservatively, so that ¥gp Op — p.
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7.6 Modal Operators in ZFC

Considerations regarding self-reference in ZFC are technically more easy, but from
the foundational point of view more involved because there is no superordinate
theory. If ZFC is consistent as we assume it is, then Conzgc is a true arithmetical
statement but is not provable in ZFC. Thus, true arithmetical statements may even
be unprovable in ZFC. It makes sense, therefore, to consider ZFC" := ZFC + Congrc,
because after all, we want set theory to embrace as many facts about numbers and
sets as possible from which interesting consequences may result.

As 7.2 shows, the consistency assumption for ZFC alone does not guarantee that
ZFC* is consistent. The second incompleteness theorem excludes Fzrc Conzrc but
does not preclude the possibility Fzpc Conzrc — Congpc+. But then Fypc+ Congpc+,
and ZFCt would be inconsistent. From certain assumptions regarding the existence
of large cardinals, the consistency of ZFC" follows fairly easily. These assumptions
would then have to be jettisoned, and in the framework of ZFC the consistency of
ZFC would no longer have its external sense; although consistent, ZFC would then
prove along with true arithmetical facts also false ones. This sounds strange, but
there is no convincing argument that this cannot be so.

Even if ¥zpc = Congpc, it may still be that one of the sentences from the sequence
- Congzrc, 00— Congec, ... is provable in ZFC. We exclude the latter only if we
assume that the w-iterated consistency extension ZFC” is consistent, i.e., ¥zpc 00" 1L
for all n (see page 220), so that by Theorem 4.3 G would be the provability logic of
ZFC. In fact, (VneN) Fzec 01 is equivalent to G’s being the provability logic of
ZFC, by the general Theorem 6.1 below. Therein Rf; := {Oa —a|a € £°} denotes
the already encountered local reflection principle. Theorem 4.3 is also a corollary of
the theorem, since (VneN) ¥z 0" 1 is equivalent to the consistency of T%.

Theorem 6.1. For a sufficiently expressive theory T ¢ the following are equivalent:
(1) T¥ is consistent, (ii) T+ Rfy is consistent, (iii) G is the provability logic of T'.

Proof. (i)=-(ii) indirect: Suppose T+ Rf is inconsistent. Then there are ay, .. ., o,
such that Fr —¢, ¢ := A, (Ow; - ;). Hence Fr O-¢ =r -y, Now, because
Fre =01, by Example (d) in 7.3 and Lemma 4.1, we get Fro OR, (o} = ;).
Clearly, R}, = ¢ and so k7w Og. Since also Fre =Op, T is inconsistent. (ii)=-(iii):
The proof of Theorem 4.2 for PA, as presented in [Boo], runs nearly the same for
T, because PA is transgressed in one place only: one uses the fact that N'F Rfp,.
However, the existence of a corresponding T-model is ensured by (ii). (iii)=-(i):
Eq O L hence ¥p 0L =7 = Congn for all n, and so T is consistent. [

6By such a T we mean that the proof steps of Theorem 4.2 that do not transgress PA, can be
carried out in 7', which does not yet imply the provability of the theorem itself.
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The equivalence (i)<>(ii) is a purely proof-theoretical one and called Goryachev’s
Theorem;, see [Gor] or [Be2]. We obtained it using essentially some modal logic. For
T = ZFC, perhaps a bit more interesting than (i) or (ii) is the assumption

(*)  Fzrc (Frcw)p = Fzrc ~¢(n) for some n (p(z) € Le),
the w-consistency of ZFC. It implies D1* which in turn ensures ¥zgc 0" 1, that is,
(i) and hence all other conditions in Theorem 6.1 hold for ZFC.

Remark. It is worthwhile to notice that the consistency of ZFC + Rf,rc and thereby
the proof of Solovay’s completeness theorem for ZFC follows directly from (x), without
appealing to Goryachev’s theorem. What is needed to see this is the following

Lemma. If ZFC is w-consistent then there exists a model V E ZFC with V = Rf 7pc.

Proof. Let Q:= {(Vzew)a|a = a(z), Fzrc a(n) for all n}. Then ZFC + Q is consistent.
Otherwise Fzpc ~ (Vo e w)a = (Fr € w)—a for some (Vzew)a € Q because 2 is closed under
conjunction, in contradiction to (x). Any V F ZFC + Q satisfies the reflection principle
Rfzec as well, for if V ¥ o then Fzrc a and therefore Fzrc —bewzrc(n,"a™) for all n.
That means (Vy € w)-bewzrc(y, o) € Q, which clearly implies V ¥ Oa.

Now we interpret the modal operator [J no longer as provable in ZFC which is
equivalent to wvalid in all ZFC models, but rather as wvalid in particular classes of
ZFC-models. For the following undefined notions we refer to [Ku]. Particularly
interesting is a transitive model. This is a model V = (V, €¥) F ZFC, where the set
V is transitive (i.e., a € b € V = a € V). Then €Y is the usual €-relation restricted
to V, a set in our metatheory (which itself is essentially ZFC). We write V for V.
Like any set, V" has an ordinal rank, denoted by pV, and pU < pV whenever U € V.
To prove the soundness half of Theorem 6.3 we use the following

Lemma 6.2. ([JK]) Let V,W be transitive models such that pV < pW and suppose
V Ea. Then W E ‘there is a transitive model U with U E .7

Let Gi result from augmenting G by the axiom O(Op —Oq) v O(0g - p). In the
same sense that G is complete with respect to all finite partial orders, Gi is complete
with respect to all preference orders. This is a finite (strict) partial order (g, <) for
which there is some h:g — N with P < @ < hP < hQ, for all P,Q € g. As for G,
the finite model property ensures the decidability of Gi. The figure shows s
a partial order, which is easily seen not to be a preference order and *
in which the adjoined axiom is easily refuted choosing wp = {P} and *—e
wq = (. Thus, the additional axiom does not belong to G; hence Gi D G. We
mention that in [So] and [Boo] a somewhat more complex axiom is considered.

"In transitive models W the sentence in ¢ * (which with some encoding can be formulated in £.) is
absolute, and therefore equivalent to the existence of a transitive model U € W with U F «. The
latter is much stronger than the consistency assumption of ZFC, but for the direction in which
the proof of the theorem is to go the stronger assumption is not needed.
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We define insertions 2: J5 — L2 as in 7.4 with the clause (OH)" = OH", where Oa
for a« = H* € £ is now to mean ‘o is valid in all transitive models’, more precisely,
the formalization of this property in the language £.. Accordingly, ¢a = -O-«
states ‘it is not the case that in all transitive models holds —a’, or in equivalent
terms, ‘a holds in some transitive model’.

Theorem 6.3. g H iff Fzrc H® for all insertions 1.

We prove only the direction =, that is, soundness. As regards the axioms of Gi,
since (p — OOp is provable from the other axioms of G (see 7.3), it suffices to prove
(A) D(a —>ﬁ)/\[|0[ }_ZFC Dﬁ, (B) D(DO& —>0z) l_ZFC DO(,

(C) Fzrc O(0a -»0p) vO(OL » @), forall o, 5 € L2.

(A) is trivial, because the sentences valid in any class of models are closed under MP.
(B) is equivalent to (B') O—a Fzec &(Oan—a). Here is the proof: if a transitive
model exists in which —« holds, then there is also one with minimal rank, V' say.
We claim that V' E Oa. Otherwise V' E $—a, and hence there would be a transitive
model U € V with U E —a and pU < pV, contradicting our choice of V. This
proves V E O(Oaa—a) and verifies (B'). Finally, (C) is verified by contraposition:

suppose there are transitive models V, W and sentences «, 3 such that
(a) V E ‘a holds in all transitive models and in some transitive model holds =/,
(b) W E ‘B holds in all transitive models’, (c) W E —a.

From these assumptions it follows first of all that pI¥ < pV. For suppose by (a)
that U € V is a transitive model for =g8. If pV < pW then pU < pW. Hence,
by Lemma 6.2, W E ‘there is a transitive model for —f’, contradicting (b). Now,
since W E —=a by (c¢) and because of pIV < pV, in V holds ‘there is some transitive
model for —=a’ by Lemma 6.2, in contradiction to (a). This proves (C). For the
substitution rule, soundness follows as for G in 7.4. MN is trivially sound, because
if av is provable in ZFC then of course « is valid in all transitive models.

Another interesting model-theoretical interpretation of Oa is ‘ar is valid in all V..
Here k runs through all inaccessible cardinal numbers. The adequate modal logic
for this interpretation of 0 is Gj := G+ UO(Opap —¢) v O(dg — p) according to [So]
(provided there are sufficiently many inaccessibles). This logic, often denoted by G.3,
is complete with respect to all finite strict linear orders, which of course are also

o frames for Gi, so that Gi C Gj. The figure shows a Gi-frame on which the

.<}: additional axiom is easily refuted with wp = { P} and wq = (), hence it is

not a Gj-frame and so Gi C Gj. As usual, the finite model property of Gj

implies its decidability. This modal logic is sound for the above interpretation of U,

and we recommend that the advanced reader carry out the proof, which is similar

to that of Gi. All one needs to know besides Lemma 6.2 is that V, is a transitive
model and that V,, € V, or V), € V, for arbitrary inaccessible cardinals xk # .



Hints to the Exercises

Section 1.1
1. (a): Note that x; is a fictional variable in f iff a), = 0. (b): Because of the

uniqueness, 2" (= number of subsets of {0,...,n}) is the number sought.

2. Proof by formula induction on . Consider the property £: ‘€ is a prime formula
or there are a, f € F with { = ma or { = (anf) or £ = (av f) .

3. Verify by induction on ¢ the stronger property that no proper initial segment of

@ is a formula nor can ¢ be an initial segment of a formula. Let for instance

= -« (Exercise 2). A proper initial segment of -« is either the one-element
string — or a proper initial segment of a.

4. Assume (ao ) = (¢/ o' 3'), hence a0 f = o/ o' §'. Assume o # . Then «
is a proper initial segment of o’ or conversely. This is impossible according to
Exercise 3. Consequently o = o/, hence o = o’ and 5 = 3.

Section 1.2

2. p=p+1L 1=p+-ppergq=p+-gandp+qg=p< q.

3. Induction on « shows that a™ is monotonic; for if f, ¢ € B are monotonic then
sois @ — fdogd, o € {n, v }. Converse: Induction on the arity. If f € B,
is monotonic then also fi.:Z — f(Z, k) for k = 0,1. Let f; be represented by ay,
(k= 0,1, induction hypothesis). Then f is represented by cp v a1 Appy1.

4. A not representable f is not monotonic by Exercise 3. But then a suitable in-
stantiation of constants for all but one argument of ¢ easily yields negation.

Section 1.3

1. (a): MP easily yields p -q —7r, p—¢q, pE r. Apply (D) three times.

2. With the deduction theorem one easily verifies (o — 3) — (7 = a) — (v = 3).
5 XFXFa=XFa=acX. Thus, X is deductively closed.

Section 1.4

1. XU{~a|laeY}t 1= XU{-a,...,na,}F L for some ag,...,a, €Y. This
yields X F (A, ~ai) — 1, or equivalently, X -V, a;.

i<n

2. Supplement Lemma 4.4 by the proof of X Fa v & XFaor X G.

231



232 Hints to the Exercises

Let X ¥ ¢, X F ¢, say, and Y O XU{—¢} be maximally consistent in \-. Further
define o by p? = T for p € Y and p° = 1 otherwise. Simultaneous induction on
o, shows that « € Y = F o” and @ ¢ Y = F —a”. Hence b —¢”. Thus
F =7, and so X7 H —¢?. But X H ¢, therefore X° ' ¢°. Thus, X° FH « for
all & according to (—1). Hence F is inconsistent and so F is maximal.

There is a smallest consequence relation with the properties (A1) — (=), namely
the calculus - of this section. Since = C F and F is already maximal according
to Exercise 3, - and F must coincide.

Section 1.5

1.

2.

Add to the formulas in Example 1 the set of formulas {pa | a <o b}.

=: Assume M, N ¢ F. Then -M,-N € F; hence \(MUN)=\MN\N € F.
Therefore MUN ¢ F. <: M € F implies M UN € F by condition (b).

= Let U be trivial. Then E € U for some finite ¥ C I. Let £ = E; U {i}
for some i € E so that Ey € U or {i} € U (cf. Exercise 2). If {i} € U we are
done. Otherwise replace E by the smaller E; and repeat the argument. This
consideration leads to {ig} € U for some iy € I. <: proved already in the text.

Section 1.6

1.

First verify the deduction theorem, which holds for each calculus with MP as the
only rule and A1, A2 among the axioms; cf. Lemma 6.3. X is consistent iff X ¥ 1,
for X b 1 implies X F (o —1) -1 = ==« by Al, hence X + a by A3. Now
prove X F a— G iff X - a = X F B for maximally consistent X. This allows
you to proceed along the lines of Lemma 4.5 and Theorem 4.6.

Apply Zorn’s lemma on the partially ordered set H :={Y 2 X |Y ¥ a}.

(a): Such a X satifies (x): X F ¢ —»a for all a. For otherwise X, —a F ¢,
hence X F (¢ —a) — ¢, and so X F ¢ by Peirce’s axiom. Suppose a ¢ X. Then
X,at ¢, ¢ =8 by (%), and so X, « F 8. This confirms (a). (b): With (a) follows
XFta-giff XFa= XF (3. Proceed with an adaptation of Lemma 4.5.

Prove (m) by induction. For example, if o F af then ay F~ya Fyaf F afy.
Although by (4) and (5) no parantheses in a7 are needed, it is tricky to prove
a(Bv) F (afB)ys. (M) implies (x): X,a by & X, 5+~ = X, af F~, because
X,aby= X, a8 b6 F By and X, vy E vy b, therefore X, af F~. From (x)
follows (I) : XFaf e X Faor X FG, provided X is p-maximal, for note that
XFa&k XFii=Xatp& X, 0Fp= X, afFp = X F af. Having (I) one
may proceed with a slight modification of Lemma 4.5.
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Section 2.1

1. There are 10 essentially binary Boolean functions f. The corresponding algebras
({0,1}, f) split into 5 pairs of isomorphic ones, e.g. ({0,1}, A) =~ ({0,1},v).

4. Let r and f be unary. Then ra = ra; = rha, and hfa = h(fa;)ier = fa; = fha.

Section 2.2

1. A terminal segment of ft has the form t,ty,1 - - - t, (£, a terminal segment of ;).

2. (a): Define W(¢) = 1 if ¢ is a variable or constant, W(¢) =1 —n if ¢ is a n-ary
function symbol and expand W to all strings of symbols ¢ involved in building
terms by W(¢i -+ G,) = Yiy W(¢). Show by term induction that W(t) = 1 for
all terms ¢, so that W(ty ---t,) = n. (b): If not, ¢t would be a concatenation of at
least two terms by Exercise 1, which is impossible by (a). (c) derives from (b).
(d): t; # t] yields a contradiction to (b).

Section 2.3
1. Let M E ana¥ (¢ # d). Then for each a there is some b # a with M} E 4.
3. The Theorems 3.1 and 3.5 yield AF afa] © A F ala) & A" F a,(a).

4. (b): 3,a—3,, is for n < m equivalent to \/}-, 3=y, and for n > m to I_o(= 1).

Section 2.4

lLa=8=EVi(aef) = kFlaspf)i (=alepl).

4. Jz(Px —»VyPy) = VaPx —VyPy according to (10).

Section 2.5

2. Observe that SF p -8 < S, ¢ E (3, and (e) page 62.

3. Prove first T, = {§ € L°| T,a F 8} is a theory. Then show that T, = T + a.

Section 2.6

1. Follow the proof of T_»heorem 6.1 (observe that y= ft =7, §;(t,y)). Hint for the
“only if” part: y= ft =, 6;(t,y), and Ty F Va3lyy= f& — Vi3lyd(Z,y).

2. NEx=0 <+ Yyr#Sy. An elementary calculation confirms the (quantifier-free)

definition z + y=2 <> S(x - 2) - S(y - 2) =S(2% - S(x - y)), where 22 := 2 - 2.

3. Let ay=zz=¢ (o and F not written) and choose some y with yy'=e. Then
r=x(yy" )= (xy)y =y, hence yr=e. zz=e is proved analogously. This yields
y=ylzz)=(yx)z=ez=(zx)2=z2(v2)=z2e=12.

4. Were < definable then < would be invariant under automorphisms of (Z,0, +).
This is not the case for the automorphism n — —n (Padoa’s method).
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Section 3.1
1. Let X Fat. Then X,Vz-aF al,-al. Hence X,Vo—a - Jza. Certainly also
X, ~Vz-a b Jza (since Jxa = =Vaz—a). Thus X F Jza according to (—2).

2. Let o/ :== ¥, u ¢ vara, u # y. Then Vza - o' § (= o) by (V1). Hence we
obtain Vza F Vyo' (= Vya ) by (V2).

Section 3.2
1. Theorem 2.6 and Exercise 4 in 3.1.

2. First verify t* = t b)i induction on ¢t. Next prove by induction on a,-
() TEVIip & TFE oL forallt € T" (¢ open). Let M E X. Then clearly

MEX = {goi; |VZp € X, t € T"}. Finally prove M E ¢ < T E ¢, for all open
¢ (induction on ,=). Thus, ¥ E X and so T E X according to (x).

3. Theorem 2.7 and the finiteness theorem for F.

Section 3.3

1. Prove Vzx + (y+ 2) = (z+y) + 2 in PA by induction on z, then Vy x +Sy=Sz +y
and Yy + y=y + = by induction on y. Quantify free variables at the end.

2. Informally: = < y implies 328z + x=y. Therefore 3z z + Szr=1y. The converse
Sz < y —x <y is clear since Fpp ¢ < Sz. Connexity: The induction hypothesis
may be written as z < y vy < x. If ¢ < y then Sz <y, hence Sz <y vy < Sz
(induction claim). We get the same in case y < , since then also y < Sz.

3. (a): We have to prove that Vz(p —«) Fpa Vza, where ¢ = (Vy<z)a . By

Exercise 2, y<Sx =pa y<z. Thus, ¢, Vz(p = a) Fpa @nra Fpa (Vy<Sz)al = 3.
Therefore Va(p —a) Fpa Va(p — ©32). Trivially also Va(p —a) Fpa ¢ 2. This
vields Va(p =) Fpa Vo Fpa Vo 32 Fpa Vaza by IS. (b): Follows from (a)
by contraposition. (c): For ¢ = (Vy<z)3za — Ju(Vy<z)(Iz<u)a clearly holds
Fpa ¢ 2, and one readily shows that ¢ Fpa 0 52, This yields the claim by IS.

Section 3.4
1. X =T U{v;#v;|i# j} is satisfiable because each finite subset is.

2. X =ThAU{v,41 <wv,|n € N} has a model with an infinite descending chain.

4. Let u € Var. The following set (with symbols a for the a € V') is consistent:
Th(V,e¥)YU{aeb|a,beV, acVb}U{ag¢b|a,b eV, ag"blU{acu|ac V}.
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Section 3.5
1. feT & a—pF €T (deduction theorem).

2. TC({T" 2T |T complete} follows indirectly: @ ¢ T = T + -« is consistent.
Hence there is a completion 77 O T with a ¢ T” (it may be that 7" =1T).

3. According to Exercise 2, there is a bijection between the set of consistent exten-
sions of T (including T') and the set of nonempty subsets of {17, ...,T,} = set of
all completions of T'. This proves both (ii)=(i) and the “Moreover” part.

4. With T also the Lindenbaum completion is effectively enumerable, [TMR, p. 15].

Section 3.6

1. x=y FE Vxx=y. Hence the same holds for b in view of b C F.

2. (a): Let (¢n)nen and (Ay,)nen be effective enumerations of all sentences and of
all finite T-models (up to isomorphy). In step n write down all ¢; for ¢ < n with
A, ¥ ;. (b): Let (ap)nen and (B )nen be effective enumerations of sentences

provable or refutable in T, respectively. Each a € L° occurs in one of these
sequences. Exactly in the first case o belongs to T'.

3. Condition (ii) from Exercise 2 is then granted because the validity of only finitely
many axioms is tested in a finite structure.

Section 3.7
1. For H: Let h be a homomorphism. Put 2" := ha*. Then htA" = B For S:
(3) in 2.3. For P: Let B = [[;.; Ai. Then t5% = (t4:4),c; with 2% = (2)e;.

2. Qune ;= Oxx=uz is a sentence in £1Q such that A F ay,. & A is uncountable.
Formalize in L£;; ‘there is a continuous order without a greatest element’.

3. Informally: R is a continuously ordered set that has a countable dense subset.

4. Let xz be a variable not in P, Q. A possible definition is provided by the program
z:=0; WHILE anz=0D0 P; z:= S0 0D ; WHILEz=0D0Q; z:= S0QD.

Section 4.1

1. Prove first (a) (Viel)A; E 7 jw] < BE 7[w] (¥ = ();er) for prime formulas
m. Then prove (b) (Viel)A; F aw;] = BFE a [w] by induction over basic Horn
formulas a as in Theorem 1.3. (b) yields the induction steps over a,V, 3. Observe
that t5% = (t4%),.;. For the universal case apply Theorem 2.3.2.

2. A set of positive Horn formulas has the trivial, one-element model.
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Section 4.2

1. With wy E p1, p3, =p2 and wq E po, p3, =p; holds wy, we E P. Since w E P implies
w FE p3 and w E p; or w F po, there is no valuation w < wy, wy with w E P.

2. For arbitrary w E P, w E pyynmin follows inductively on n. Hence wg < weyp.

3. (a): resolution theorem. (b): wep ¥ py, i if k # n + m; hence P, =py, m.i .

Section 4.3

2. =i m €varty = af =1 £ = 27’ < 17 =t since 27 = z for all z € vart,.

3. Let w be an unifier of Ky U K;. Then Ky = KY. Put ¥ =z for x € var K}
’ U 2 ’
and 2*" = z* else. Then K{* = K§ *“ = K¢ (p*> =), and KY' = K¥.

Section 4.4

1. Let Ky, K be decomposed as in the definition of UR and let p be a separator of
Ky, K1, and o’ defined as in the hint to Exercise 3 in 4.3.

2. Join P, and P}, and add to the resulting program the rules r4(Z, 0, u) :— ry(Z, u)
and rf(i: S?J7 U) = rf(f7 Y, ’U)7 Th(f7 Y, v, u)

3. Add to the programs the rule ryZu — 15, Zy1, . . . , 15, TYm, HYU.

Section 5.1

3. Let a,b,c € R with 0 < a < b,c. There is a linear function that represents an
automorphism of the (closed) interval [a,b] onto the interval [a, c].

4. W.lo.g. let AN B = (). Tt suffices to show that D, AU D, B is consistent.

5. (a): {t* |t € Tg} is closed with respect to all f4 and exhausts the domain A.
(b): According to (a), choose for each a € A\G some t, € T with Fr a=1,.

Section 5.2

2. Tee F IS because (N,0,8) E IS and Ty, is complete. To prove the “no circle”
scheme from IS apply IS to a(x,) = Vo - - n1 (Ao, STi = Tit1 = Tn F To).

3. Let a € G F T and £ the element with n2 = a, and Z:a — m 2 for 2 € Q.
Then G becomes the vector group of a Q-vector space that is N;-categorical.

4. Each consistent extension T” of T' is the intersection of its completions in T

5. Each AF T has a countable elementary substructure (Theorem 1.5).
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Section 5.3

1.

For SOqq: In the first round player II may play arbitrarily, then according to the
winning strategies for models of SOg; or SO1g in the decomposed segments.

If player I starts with a € A and to the right and the left of a remain at least 27!
elements, player II should choose correspondingly. Otherwise he should answer
with the elements of the same distance from the left or right edge element.

For FO C SOq;: SO ¥ o = A FE « for a sufficiently large finite A F FO.

Prove first that SO U {3; |7 > 0} is complete.

Section 5.4

1.

Let h: A — B be a homomorphism, M = (A, w), M’ = (B,w') with 2" = ha®.
Show M E ¢ [d] = M’ E ¢ [hd] by induction on .

Let A be an ordered set. Replace each a € A by an exemplar of (Z, <) or (Q, <),
respectively. That results in a discrete or a dense order B O A, respectively.

Clearly T := Ty + T} is inductive since both Ty, 77 and hence T are V3-theories.
Let Ay E Ty. Choose A; with Ay € Ay F Ty, Ay with A; C Ay E Tj ete.
This results in a chain Ay C A; C Ay C -+ with Ay E Ty, Agii1 E T1. Then
A* = Ujen A2i = Ujen Azier F To, Th and so A* = T. Therefore Ty and T are
model compatible. Consequently also T} and T'.

The union S of a chain of inductive theories model compatible with 7" has again
these properties as is readily checked. By Zorn’s lemma there exists a maximal,
hence in view of Exercise 3 a largest theory of this kind.

Section 5.5

1.

2.

Let (¢,7) # (0,0). Then DO;; has models A C B with A £ B.

(a) Lindstréom’s criterion. 7' is Nj-categorical because a T-model can be under-
stood as a Q-vector space. (b) Each Ty-model G is embeddable in a T-Modell
H. One gains such H by defining a suitable equivalence relation on the set of all
pairs £ with a € G and n € Z\{0}.

Uniqueness follows similarly to uniqueness of the model completion.

The algebraic closure F, of the prime field F, is identical to U,51 Fpns where Fin
denotes the finite field of p™ elements. Moreover, a sentence true in all a.c. fields
with prime characteristic holds already in all a.c. fields.
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Section 5.6

1.

Let A, B E ZG, A C B. Then also A" C B’ for their ZGE expansions because m|
has in ZG both an V- and an 3-Definition. Thus A’ < B’ and hence A < B.

. Very similiar to quantifier elimination in ZGE but somewhat more simple.

. Inductively over quantifier-free ¢ = () follows: for each A F RCF® is ™ or

(=p)A finite. This is not the case for a(z).

. CS holds in the real closed field R, hence in each A € RCF. The proofs from CS

of (Vx>0)Jyz=1y -y, and that each polynomial of odd degree has a zero must be
carried out without a theory of continuous functions, which is very instructive.

Section 5.7

1.

If F is trivial then there is some iy € I with iq € J for each J € F' (Exercise 3
in 1.5). For a,b € [[;c; Ai then a =p b & iy € I,—y < a;, = b;,. This implies
er 1 Ai >~ A (can be shown directly or with the homomorphism theorem).

. w2l /F (v € A) is an embedding and moreover an elementary embedding.

. Let X Fg p and I, J, and F defined as in the proof of Theorem 7.3 and assume

that for each ¢ € I there is some A; € K and w;: PV — A; such that w,a € D4
for all a € i but wip ¢ D*. Put C := erl A; (€ K) and w = (w;);e;. Then
wX C D¢ and wy ¢ D€, hence X ¥¢ ¢, a contradiction to X Fg .

. Wlo.g. A= 2 and 2 C B C 27 for some I according to Stone’s representation

theorem quoted in 2.1. 2 F a = 27 F a = B F «a according to Theorem 7.5.

Section 6.1

1.

2.

beranf < (Ja<b)fa = b (this predicate is p.r. iff f is p.r.).

Put Sy, = ), 1. Injectivity: Let p(a,b) = p(a’,0'). Were a +b < a’ + b’ then
pla,b) < pla,b)+a+1=Sup+a+b+1=S1pr1 < Swsw < p(a, V). Thus
a+b=d+V. But thena = p(a,b)—S,1, = p(a’,b')—Say4y = ¢/, hence alsob = V.
Surjectivity: Since p(0,0) = 0 € ran g it suffices to prove p(a,b) + 1 € ranp, for
all a,b. Clear for b = 0 because p(a,0) +1 = So+a+1= S,41 = p(0,a +1).
In case b # 0 is p(a,b) + 1 = S,r10p-1 +a+ 1 =p(a+1,b—1). This proof also
confirms that the figure for o has been drawn correctly.

. =: Let M = {a € N|3bRab}, R recursive and ¢ € M fixed. Put fn =k in case

(Im<n)n = p(m, k) & Rmk, and fn = ¢ otherwise.

. san = (pk < n)[(3m < n)p(k,m) = n).
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Section 6.2

1. Let ap, a1, ... be a recursive enumeration of X and let 5, = apa ... rq,. By
—_——

n
Exercise 1 in 6.1, {3, | n € N} is recursive and axiomatizes T as well.

3. (a): Let @, = (¢o,-..,¢n) be a proof of ¢ = ¢, in T+ «. Suppose that proofs
. for a — @y, from ®; = (o, ..., ;) for all i < n have already been constructed.
Define a proof @, for ao — ¢ by p.r. case distinction according to the cases ¢ = «,
@ € XUA (X is an axiom system for T') and ¢; results from ¢y, and ¢, for some
k,m < i by applying MP. In other words, follow the proof of Lemma 1.6.3.

4. Prove this first for equations. Construct in a p.r. way for each ¢ a normal form
NE(t) = ag + Y cpen @y - 0y - -+ + v such that N & ¢ =1, iff Nf(t,) = Nf(t,).

Section 6.3

1. There are several proof methods. A natural way is to proceed stepwise over the
length n > 1 of &, using the function g which is Ay (Remark 2). It suffices
to notice that rIya =p Fz(z=p(z,y) ra) and VaVya =x Vz(z=p(z,y) = a),
where z ¢ vara. Note that for 3, also works 3Za =y Jz(Fx1<2) ... (Fz, <)
by Exercise 2. In all these equivalences =5 could be replaced by =pa.

2. (Vz<y)3za =pa Fu(Vz<y)(Fr<u)a (u ¢ vara, schema of bounds, see Exercise 3
in 3.3). From this it readily follows that (3z<y)Vza =pa Yu(Iz<y)(Ve<u)a.

Section 6.4

1. (a): pf a = alp = Jzyza+1=yp (Euclid’s lemma) = Jzyb=ypb—zab = p|b.
(b): Let m := lem{a,|v<n} = a,c, for suitable ¢,. Assume (Yv<n)pf a,. Then
(Vv<n)ple, by (a). Thus m = pm/ and ¢, = pc, for suitable m’, ¢/,. This leads to
contradition to the definition of m. (c) easily follows from (b).

2. Ju[betaud=2 r (Vv<z)(Jw,w’ <y)(betauvw betauSvw rw < w’
A primw A primw’ A (Vz<w')(prim z — z<w) A betauzy)].

3. (a): Prove this first for = instead of Z. (b): It suffices to show that sb,(¢) = ¢
for x ¢ free p. Observe that sb,((Vza)', z) = (Vxa)" for closed a.

Section 6.5
2. (ii)=-(i): If T is complete and 17" + T is consistent then 7" C T

3. Trivial if T+ A is inconsistent. Otherwise let s be the conjunction of all sentences
VZ Aya(Z, y), « running through all defining formulas for operations from A. If
T is decidable than so is T+ 2. Moreover Frya a < Fry,, o™



240 Hints to the Exercises

4. fa=0biff ® is a proof in Q and ® = @ and (®) . = b, or else b= 0.

Section 6.7
2. Ay is r.e. but not A; (Remark 2 in 6.4). Q is X; but not A;.
3. The functions A, =, ‘5’, sh, as well as e.g. L, are p.r. and hence A;. The same
holds for Try by Exercise 4 in 6.2. Clearly
€T & o€ TrnVEaa, 8,2 < ¢)Vnjp =Vra & a.(n) € Tr,
Vo=anrf & a,f€ Tr,Vo=-a & a ¢ Tn).

Section 7.1
1. For @: Prove Fpa 32(22=(z + y)? + 37 + y) by induction on y.

2. (a): Follow the proof of the lemma in 6.4. (b): <-induction. (c): Use (a).

4. (a): For Oryqp Fr Or(a — @) use Exercise 3b in 6.2.

Section 7.2

1. br Oa - a = b =Oa = b Congv, since by (5) Conyr = ~O-—a =7 —Oa.
Thus, 7" is inconsistent by (1), hence Fr «.

3. Clearifn = 0. Let T™ = T+—-"1 and Cong» =7 =" 1 (induction hypothesis).
Since 0" b7 Oy by D2, T = (T + —0"1) + -0 = T + -0+,
Further, by (5), Congnt1 = —O-(=0"1 1) = 00" F21.

4. For any (not formalized) arithmetical sentence A the statement ‘If A is provable
in PA then A is true in A/’ is provable in ZFC. Formalized: Fzrc Opac — o, where
a formalizes A.

Section 7.4
1. Prove first G, = {H € 35| O"L — H}. We then obtain

Fe, H ©Fc 0"l - H & Fpa (0" — H)* for all ¢ (Theorem 4.2)
S bFpa 0"t — H' for alle  (property of 2)
< Fpa, H* for all e (PA, = PA+0mM1).

2. Put PAZ := PA"™ 4+ — Conpan. By (6) in 7.2, COIlpAﬁ =pa Conpar = —0O"1L. Thus,
PAT = (PA + —[0"1) + O, This theory is consistent (Fpy CI"F1i —[0"1).
Therefore PA" has the provability logic G; (Theorem 4.3). As regards T note that
[ Conpa v [0-Conpa =pa 0L v (021 =pp (%1, hence T = PA+ 031 A -2 = PA?.

4. Ve =[=0O(p = q) r=0O(=p = ¢) A=0(p = —¢) A—0O(—p — —¢)] and Theorem 4.4.
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a.c. (algebraically closed), 38
V-formula, V-sentence, 54
V-theory, 66
Vd-sentence, V3-theory, 148
abelian group, 38

divisible, 81

torsion-free, 82
absorption laws, 39
algebra, 34
algebraic, 38
almost all, 48, 163
alphabet, XviI
antisymmetric, 36
arithmetical, 184
arithmetical hierarchy, 205
Artin, 147
associative, 37
automated theorem proving, 94
automorphism, 40
axiom

of extensionality, 88

of choice, 90

of continuity, 85

of foundation, 90

of infinity, 90

of power set, 89

of replacement, 89

of union, 89
axiom system

logical, 29, 95

of a theory, 65

B

C
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axiomatizable, 81
finitely, recursively, 81

B-function, 189
basis theorem
for formulas, 160
for sentences, 140
Behmann, 98
Birkhoff rules, 99
Boolean algebra, 39
atomless, 156
of sets, 39
Boolean basis
for £in T, 160
for £°in T, 140
Boolean combination, 45
Boolean function, 2
dual, self-dual, 12
linear, 8
monotonic, 13
Boolean matrix, 40
Boolean signature, 4

cardinal number, 134
cardinality, 134

of a structure, 135
chain, 37

of structures, 148

elementary, 148

of theories, 80
characteristic, 39
Church’s thesis, 171
clause, 112, 118
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definite, positive, negative, 112 continuum hypothesis, 135
closed under MP, 30 contradiction, 14
closure contraposition, 17

deductive, 16 converse implication, 3

of a formula, 51 coprime, 185

of a model in T', 152 course-of-values recursion, 174
closure axioms, 200 cut rule, 20
cofinite, 28 D

A-elementary class, 139
Ag-formula, 185
é-function, 170
Davis, 199
decidable, 81
(recursively) decidable, 169
Deduction theorem, 17, 31
deductively closed, 16, 64
definable, 53

explicitly, 53, 69

implicitly, 69

in a structure, 53

in theories, 211

with parameters, 85
DeJongh, 225
derivability conditions, 210
derivable, 18, 19, 29
diagram, 132

elementary, 133

universal, 149

collision of variables, 55
collision-free, 56
commutative, 37
Compactness theorem, 24, 82
compatible, 65
Completeness theorem, 80, 96, 97
Birkhoft’s, 100
propositional, 23
completion, 93
inductive, 150
composition, XVI, 169
computable, 169
concatenation, XVII
arithmetical, 174
congruence, 41
in £, 58
congruence classes, 41
conjunction, 2
connective, 3

connex, 36 . direct power, 42
consequence relation, 16, 17 disjunction, 2
finitary, 16 exclusive, 2

local, global, 63
predicate logical, 51

distributive laws, 39
domain, XvI, 34

propositional, 15 E
consistency extension, 220 J-formula, 54
consistent, 75, 123 simple, 158
constant, XVII Ehrenfeucht game, 142
constant expansion, 76 elementary class, 139
constant-quantification, 76 elementary equivalent, 55

continuity schema, 86 elementary type, 139
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embedding, 40

elementary, 136
end extension, 84, 186
enumerable

effectively or recursively, 92, 174
equation, 45

Diophantine, 184, 198
equipotent, 87
equivalence, 3
equivalence class, 41
equivalence relation, 36
equivalent, 9, 50

in (or modulo) T', 65

in a structure, 59

logically or semantically, 9, 50
Euclid’s lemma, 189
existentially (or 3-)closed, 149
existentially closed, 155
expansion, 36, 62
explicit definition, 68
extension, 36, 64

conservative, 52, 67

definitorial, 68

elementary, 133

finite, 65

immediate, 152

of a language, 62

of a theory, 64

transcendental, 138

f-closed, 35
factor structure, 41
falsum, 4
family (of sets), XVI
Fermat’s conjecture, 199
Fibonacci sequence, 174
fictional argument, 8
field, 38
algebraically closed, 38
of algebraic numbers, 134

of characteristic 0 or p, 39
ordered, 39
real closed, 153
filter, 27
proper, principal, 28
finitary, 16
finite model property, 97
Finiteness theorem, 21, 23, 73, 81
Fixed-point lemma, 194
formula, 45
Boolean, 4
closed, 47
defining, 67
dual, 12
first-order, 45
open (quantifier-free), 45
prenex, 61
representing, 8, 184
universal, 54
formula algebra, 34
formula induction, 5, 46
Four-colour theorem, 26
Frege, 60
function, XVI
bijective, XVI
characteristic, 169
identical, XVI
injective, surjective, XVI
partial, 138
primitive recursive, 169
recursive (= p-recursive), 169
functional complete, 12

Godel number, 173
of a number sequence, 173
of a proof, 177
of a string, 176

Godel term, 191

gap, 37

generalization, 62
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anteriour, posterior, 62 identity, 99
generalized of a formula, 51 immediate predecessor, 37
generally valid, 50 immediate successor, 37
(finitely) generated, 36 implication, 3
Gentzen calculus, 18 Incompleteness theorem
goal clause, 123 first, 194
graph, 37 second, 217
k-colorable, 25 inconsistent, 22, 75
of an operation, XVII independent (of T'), 65
planar, simple, 25 individual variables, 43
ground (or constant) term, 44 <-induction, 86
ground instance, 107 induction
group, 38 on ¢, 7, 46
ordered, 38 ont, 44
groupoid, 38 Ap-induction, 206
induction axiom, 84
H-resolution, 116 induction hypothesis, 83
Harrington, 219 induction schema, 83
Henkin set, 77 induction step, 83
Herbrand model, 108 infimum, 39
minimal, 111 infinitesimal, 86
Herbrand universe, 108 instance, 107, 123
Hilbert calculus, 29, 95 integral domain, 38
homomorphism, 40 (relatively) interpretable, 200
canonical, 41 interpretation, 49
strong, 40 Invariance theorem, 55
Homomorphism theorem, 41 invertible, 37
Horn clause, 116 irreflexive, 36
Horn formula, 109 isomorphism, 40
basic, 109 partial, 138
positive, negative, 109 J
universal, 109 t-term, 68
Horn resolution, 117 Jeroslow, 225
Horn sentence, 109 jump, 37
Horn theory, 109 K
universal, nontrivial, 110 Konig’s lemma, 26
hyperexponentiation, 186 kernel (of a prenex formula), 61
Kleene, 169, 205
I-tuple, XVI1 Kreisel, 199, 225

idempotent, 37 Kripke semantics, 221
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L model interpretable, 202

L-formula, 46 modus ponens, 15, 29

L-model, 49 monotonicity rule, 18
Lob’s axiom, 221 Mostowski, 168
Lob’s theorem, 218 N
L-structure (= L-structure), 35 n-tuple, XVII
language negation, 2
arithmetizable, 177 neighbor, 25
first-order (= elementary), 43 nonstandard analysis, 85
of equations, 99 nonstandard model, 83
second-order, 102 nonstandard number, 84
lattice, 39 normal form
distributive, 39 canonical, 12
of sets, 39 disjunctive, conjunctive, 10
legitimate, 68 prenex, 61
Lindstrém’s criterion, 156 Skolem, 70
literal, 10, 45 O
logic program, 122 w-consistent, 195
logical matrix, 40 w-rule, 226
logically valid, 14, 50 w-incomplete, 196
M w-term, 90
p-operation, 169 operation, XVII
bounded, 172 essentially n-ary, 8
mapping (see function), XvI order, 37
Matiyasevich, 198 continuous, 37
p-maximal, 32 dense, 37, 137
maximal element, 37 linear, partial, 37
maximally consistent, 22, 75 ordered pair, 89
metainduction, X111, 183 P
metatheory, XIII IT;-formula, 184
model pair set, 89
free, 110 pairing function, 172
minimal, 117 parameter definable, 85
of a theory, 64 Paris, 219
predicate logical, 49 partial order, 37
propositional, 7 irreflexive, reflexive, 37
model companion, 157 particularization, 62
model compatible, 150 anterior, posterior, 62
model complete, 151 persistent, 147

model completion, 155 Polish (prefix) notation, 6
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(monic) polynomial, 82
power set, XVI
predecessor function, 83
predicate, XVII
arithmetical, 184
Diophantine, 184
(primitive) recursive, 169
recursively enumerable, 175
preference order, 229
prefix, 45
premise, 18
Presburger, 159
p.r. (= primitive recursive), 169
prime field, 39
prime formula, 4, 45
prime model, 133
elementary, 133
primitive recursive, 169
principle of bivalence, 2
principle of extentionality, 2
product
direct, 42
reduced, 163
programming language, 103
projection, 42
projection function, 169
PROLOG, 122
proof (formal), 29, 95
propositional variables, 3
provable, 18, 29
provably recursive, 212
Putnam, 199

quantification

bounded, 171, 185
quantifier, 33
quantifier compression, 188
quantifier elimination, 157
quantifier rank, 46
quasi-identity, quasi-variety, 100

query, 122
quotient field, 145

Rabin, 200
range, XVI
rank (of a formula), 6, 46
r.e. (recursively enumerable), 174
recursion equations, 169
reduced formula, 67, 68
reduct, 36, 62
reductio ad absurdum, 19
reflection principle, 220
reflexive, 36
refutable, 65
relation, XVvI1
P-relativised, 200
renaming, 60, 119

bound, free, 60
Replacement theorem, 10, 59
representability

of functions, 187

of predicates, 184
Representability theorem, 191
resolution calculus, 113
resolution closure, 113
resolution rule, 113
Resolution theorem, 115
resolution tree, 113
resolvent, 113
restriction, 35
ring, 38

ordered, 39
Abraham Robinson, 85
Julia Robinson, 199
Rogers, 225
rule, 18, 72

basic, 18, 72

derivable (provable), 18

Gentzen-style, 20

Hilbert-style, 95
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of Horn resolution, 116
sound, 21, 72
rule induction, 21, 73

>1-completeness, 186
provable, 215
Yi-formula, 184
special, 208
S-invariant, 145
Sambin, 225
satisfiability relation, 14, 49
satisfiable, 14, 50, 65, 112
satisfiably equivalent, 69
scope (of a prefix), 46
segment, XVII
initial, terminal, XviI, 37
semigroup, 38
free, 38
ordered, 38
regular, 38
semilattice, 39
semiring, 39
ordered, 39
sentence, 47
separator, 121
sequence, XVI
sequent, 18
initial, 18
set
countable, uncountable, 87
densely ordered, 137
discretely ordered, 142
finite, 87
ordered, 37
well-ordered, 37
Sheffer function, 2
signature
algebraic, 45
extralogical, 34
logical, 4

signum function, 170
singleton, 119
Skolem function, 69
Skolem’s paradox, 91
SLD-resolution, 126
solution, 123
soundness, 21, 73
string, XVII
structure, 34
algebraic, relational, 34
subformula, 6, 46
substitution, 47
global, 47
identical, 47
propositional, 15, 16
simple, 47
simultaneous, 47
substitution invariance, 99
Substitution theorem, 56
substring, XVII
substructure, 36
(finitely) generated, 36
elementary, 133
substructure complete, 160
subterm, 44
subtheory, 64
successor function, 83
supremum, 39
symbol, XVII
symmetric, 36

T-model, 64

Tarski, 16, 131, 168
tautologically equivalent, 61
tautology, 14, 50

term, 44

term algebra, 44, 106

term equivalent, 12

term function, 53

term induction, 44



254

Index of Terms and Names

term model, 106

tertium non datur, 14

theorem
Cantor’s, 87
Cantor—Bernstein, 135
Dzhaparidze’s, 227
Goodstein’s, 219
Goryachev’s, 229
Herbrand’s, 108
Léwenheim—Skolem, 87
Lagrange’s, 198
Lindenbaum’s, 22
Lindstrém’s, 101
Lo$’s, 164
Morley’s, 139
Mostowski’s, 225
Rosser’s, 195
Shelah’s, 164
Solovay’s, 223
Steinitz’s, 153
Trachtenbrot’s, 98
Visser’s, 224

theory, 64
(finitely) axiomatizable, 81
arithmetizable, 194
complete, 82, 137
consistent (satisfiable), 65
countable, 87
decidable, 93, 177

elementary or first-order, 64

equational, 99
inconsistent, 65
inductive, 148
k-categorical, 137
undecidable, 93
universal, 66
transcendental, 38
transitive, 36, 229
truth function, 2

truth table, 2

truth value, 2

truth, true, 196
Turing machine, 171

U-resolution, 126
U-resolvent, 125
UH-resolution, 126
ultrafilter, 28

nontrivial, 28
Ultrafilter theorem, 28
ultrapower, 164
ultraproduct, 164
undecidable, 81

strongly, hereditarily, 197
unifiable, 119
unification algorithm, 119
unifier, 119

generic, 119
unit element, 38
universal closure, 51
universal part, 145
universe, 89
urelement, 88

valuation, 7, 49
variable, 43

free, bound, 46
variety, 99
Vaught, 139
verum, 4

A%

w.l.o.g., XVII
word (over A), XVII
word semigroup, 38

Z-group, 159
Zorn’s lemma, 37



N, Z, Q R
Ni, Q, Ry
BM, 0
UF, NF
f:M—N
x> t(x)
1dar

dom f, ran f
NM (a;)ier
a

Pd, —-Pa
graph f

<, =&,V
B,

Ny V,T1

F, PV

=, >, T, L
Sfa, rke
wa, F,

a™

a=p
DNF, CNF
wFa, Fa
XEa, XEY
ct, C

MP, ~

PA A A
ACB
char,

2

XVI
XVI
XVI
XVI
XVI
XVI
XVI
XVI
XVI
XVII
XVII
XVII
XVII

© 00 N O W N

10
14

A~B

a/~

Hie[ A;
HieIAi7 Al
Var, V, =
T (=T)
var, vart
3, v, #

L, Lo, Lo
tko, qre
free p, bnd g
L°, Lk, Vary,
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AE ¢|d]
tA(a@), t4

QD'A

d,, 3., T, L
A=B

MO‘

3!

=4, =K
PNF
(Va<t)a
(Fax<t)a

| (divides)
XE ®

T, MdT
Taut

T+oa T+S
=p, ~p
Th A, ThK
KFEFa

SNF

l_

mon, fin
Le, LC

Fr, X Fra
ACF, ACF,
N, s, Pd
Lo, IS, TA
PA

n (= 8"0)
M~N
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ZFC, ZF 88 SO, SOy, ... 142 YL I, A, 185
{zex |} 89 [w(A,B), ~ 142 1 (coprime) 185
{a,b}, (a,b) 89 = 143 IA, 186
w, AC 90 T 145 rem(a : b) 189
MP, MQ, ~ 95 Ty, Tr 146 B, beta 189
A, A1—A10 95 Cee, Dy A 149 T T TR 191
Tautfin 97 RCF 153 bewr, buby 191
LF~y 99 ZG, ZGE 159 of 193
L, Lo 102 ~p, a/F 163 sby,sbz,sby 193
F, FX 106 [T, A 163 az(@) 193
Frey FiX 107 w/F, IY 163 prov 196
GI(X) 107 F, 169 of, XP 200
Cy, Cr 111 hlgi,...,gm] 169 X2, Ba 200
0 112 Plgr,...,gm] 169 ZFCsn 202
KXKEH 112 Oc, Op, Op 169 Yo, I, A, 205
XA K 113 f=0p(g,h) 169 Ox) 210
RR, F% Re 113 ", Xp 169 Oa, Oa 210
HR, F™" 116 =, 8, sg 170 Cony 210
Vo, wy, p, 117 prim, pn, 171 D0-D3 210
P, — 122 pkP(a, k) 172 , do, ... 210
P, GI(K) 123 pk<ml[---] 172 D1* 211
UR, H" 125 o(a,b) 172 O[] 214
UHR, H™ 125 {ay,...,a,) 173 PA* 218
U,R, U,HR 125 GN 173 D4, D4° 218
A, B, 132 (@), (W) 173 T, 7%, O"a 220
DA 132 14 173 O, o, o 221
D A 133 *x, Oq 174 G, F¢ 221
A<B 133 Sc & ¢, 1 176 PIFH 221
|M]| 134 SRS 178 Fe, = 221
No, Ny, 2% 135 bewp, bwbp 178 G,, GS 224
CH 135 =v,S§,... 179 o, @, GD 226
DO 137 Lprim 179 Rf ¢ 228
L,R 138 [m]* 180 Gi, Gj 229
DOy, . . . 138 Q, N 182

(X), = 140 Ao 185
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