
Universitext
Editorial Board

(North America):

S. Axler
K.A. Ribet

Universitext

Editors (North America): S. Axler and K.A. Ribet

Aguilar/Gitler/Prieto: Algebraic Topology from a Homotopical Viewpoint
Aksoy/Khamsi: Nonstandard Methods in Fixed Point Theory
Andersson: Topics in Complex Analysis
Aupetit: A Primer on Spectral Theory
Bachman/Narici/Beckenstein: Fourier and Wavelet Analysis
Badescu: Algebraic Surfaces
Balakrishnan/Ranganathan: A Textbook of Graph Theory
Balser: Formal Power Series and Linear Systems of Meromorphic Ordinary
Differential Equations
Bapat: Linear Algebra and Linear Models (2nd ed.)
Berberian: Fundamentals of Real Analysis
Blyth: Lattices and Ordered Algebraic Structures
Boltyanskii/Efremovich: Intuitive Combinatorial Topology. (Shenitzer, trans.)
Booss/Bleecker: Topology and Analysis
Borkar: Probability Theory: An Advanced Course
Böttcher/Silbermann: Introduction to Large Truncated Toeplitz Matrices
Carleson/Gamelin: Complex Dynamics
Cecil: Lie Sphere Geometry: With Applications to Submanifolds
Chae: Lebesgue Integration (2nd ed.)
Charlap: Bieberbach Groups and Flat Manifolds
Chern: Complex Manifolds Without Potential Theory
Cohn: A Classical Invitation to Algebraic Numbers and Class Fields
Curtis: Abstract Linear Algebra
Curtis: Matrix Groups
Debarre: Higher-Dimensional Algebraic Geometry
Deitmar: A First Course in Harmonic Analysis (2nd ed.)
DiBenedetto: Degenerate Parabolic Equations
Dimca: Singularities and Topology of Hypersurfaces
Edwards: A Formal Background to Mathematics I a/b
Edwards: A Formal Background to Mathematics II a/b
Farenick: Algebras of Linear Transformations
Foulds: Graph Theory Applications
Friedman: Algebraic Surfaces and Holomorphic Vector Bundles
Fuhrmann: A Polynomial Approach to Linear Algebra
Gardiner: A First Course in Group Theory
Gårding/Tambour: Algebra for Computer Science
Goldblatt: Orthogonality and Spacetime Geometry
Gustafson/Rao: Numerical Range: The Field of Values of Linear Operators and
Matrices
Hahn: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups
Heinonen: Lectures on Analysis on Metric Spaces
Holmgren: A First Course in Discrete Dynamical Systems
Howe/Tan: Non-Abelian Harmonic Analysis: Applications of SL (2, R)
Howes: Modern Analysis and Topology
Hsieh/Sibuya: Basic Theory of Ordinary Differential Equations
Humi/Miller: Second Course in Ordinary Differential Equations
Hurwitz/Kritikos: Lectures on Number Theory
Jennings: Modern Geometry with Applications

(continued after index)

Wolfgang Rautenberg

A Concise Introduction
to Mathematical Logic

Wolfgang Rautenberg
FB Mathematik und Informatik Inst.
Mathematik II
Freie Universität Berlin
14195 Berlin
Germany
raut@math.fu-berlin.de

Editorial Board
(North America):

S. Axler K. A. Ribet
Mathematics Department Mathematics Department
San Francisco State University University of California at Berkeley
San Francisco, CA 94132 Berkeley, CA 94720-3840
USA USA
axler@sfsu.edu ribet@math.berkeley.edu

Mathematics Subject Classification (2000): 03-XX 68N17

Library of Congress Control Number: 2005937016

ISBN-10: 0-387-30294-8
ISBN-13: 978-0387-30294-2

Printed on acid-free paper.

©2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York,
NY 10013, USA), except for brief excepts in connection with reviews or scholarly analysis. Use in con-
nection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed in the United States of America. (SBA)

9 8 7 6 5 4 3 2

springer.com

Wolfgang Rautenberg

A Concise Introduction

to
Mathematical Logic

Textbook

Typeset and layout: The author
Version from December 2005

Foreword
by Lev Beklemishev, Utrecht

The field of mathematical logic—evolving around the notions of logical validity,
provability, and computation—was created in the first half of the previous century
by a cohort of brilliant mathematicians and philosophers such as Frege, Hilbert,
Gödel, Turing, Tarski, Malcev, Gentzen, and some others. The development of this
discipline is arguably among the highest achievements of science in the twentieth
century: it expanded mathematics into a novel area of applications, subjected logical
reasoning and computability to rigorous analysis, and eventually led to the creation
of computers.

The textbook by Professor Wolfgang Rautenberg is a well-written introduction to
this beautiful and coherent subject. It contains classical material such as logical
calculi, beginnings of model theory, and Gödel’s incompleteness theorems, as well
as some topics motivated by applications, such as a chapter on logic programming.
The author has taken great care to make the exposition readable and concise; each
section is accompanied by a good selection of exercises.

A special word of praise is due for the author’s presentation of Gödel’s second
incompleteness theorem in which the author has succeeded in giving an accurate
and simple proof of the derivability conditions and the provable Σ1-completeness, a
technically difficult point that is usually omitted in textbooks of comparable level.
This textbook can be recommended to all students who want to learn the foundations
of mathematical logic.

V

Preface
This book is based on the second edition of my Einführung in die Mathematische
Logik whose favorable reception facilitated the preparation of this English version.
The book is aimed at students of mathematics, computer science, or linguistics. Be-
cause of the epistemological applications of Gödel’s incompleteness theorems, this
book may also be of interest to students of philosophy with an adequate mathemati-
cal background. Although the book is primarily designed to accompany lectures on a
graduate level, most of the first three chapters are also readable by undergraduates.
These first hundred pages cover sufficient material for an undergraduate course on
mathematical logic, combined with a due portion of set theory. Some of the sections
of Chapter 3 are partly descriptive, providing a perspective on decision problems,
automated theorem proving, nonstandard models, and related topics.

Using this book for independent and individual study depends less on the reader’s
mathematical background than on his (or her) ambition to master the technical
details. Suitable examples accompany the theorems and new notions throughout.
To support a private study, the indexes have been prepared carefully. We always
try to portray simple things simply and concisely and to avoid excessive notation,
which could divert the reader’s mind from the essentials. Linebreaks in formulas
have been avoided. A special section at the end provides solution hints to most
exercises, and complete solutions of exercises that are relevant for the text.

Starting from Chapter 4, the demands on the reader begin to grow. The challenge
can best be met by attempting to solve the exercises without recourse to the hints.
The density of information in the text is pretty high; a newcomer may need one hour
for one page. Make sure to have paper and pencil at hand when reading the text.
Apart from a sufficient training in logical (or mathematical) deduction, additional
prerequisites are assumed only for parts of Chapter 5, namely some knowledge of
classical algebra, and at the very end of the last chapter some acquaintance with
models of axiomatic set theory.

On top of the material for a one-semester lecture course on mathematical logic,
basic material for a course in logic for computer scientists is included in Chapter 4
on logic programming. An effort has been made to capture some of the interesting
aspects of this discipline’s logical foundations. The resolution theorem is proved
constructively. Since all recursive functions are computable in PROLOG, it is not
hard to get the undecidability of the existence problem for successful resolutions.

Chapter 5 concerns applications of mathematical logic in various methods of model
construction and contains enough material for an introductory course on model
theory. It presents in particular a proof of quantifier eliminability in the theory of
real closed fields, a basic result with a broad range of applications.

VII

VIII Preface

A special aspect of the book is the thorough treatment of Gödel’s incompleteness
theorems. Since these require a closer look at recursive predicates, Chapter 6 starts
with basic recursion theory. One also needs it for solving questions about decidability
and undecidability. Defining formulas for arithmetical predicates are classified early,
in order to elucidate the close relationship between logic and recursion theory. Along
these lines, in 6.4 we obtain in one sweep Gödel’s first incompleteness theorem,
the undecidability of the tautology problem by Church, and Tarski’s result on the
nondefinability of truth. Decidability and undecidability are dealt with in 6.5, and
6.6 includes a sketch of the solution to Hilbert’s tenth problem.

Chapter 7 is devoted exclusively to Gödel’s second incompleteness theorem and
some of its generalizations. Of particular interest thereby is the fact that questions
about self-referential arithmetical statements are algorithmically decidable due to
Solovay’s completeness theorem. Here and elsewhere, Peano arithmetic PA plays a
key role, a basic theory for the foundations of mathematics and computer science,
introduced already in 3.3. The chapter includes some of the latest results in the
area of self-reference not yet covered by other textbooks.

Remarks in small print refer occasionally to notions that are undefined or will be
introduced later, or direct the reader toward the bibliography, which represents an
incomplete selection only. It lists most English textbooks on mathematical logic
and, in addition, some original papers, mainly for historical reasons. This book
contains only material that will remain the subject of lectures in the future. The
material is treated in a rather streamlined fashion, which has allowed us to cover
many different topics. Nonetheless, the book provides only a selection of results and
can at most accentuate certain topics. This concerns above all the Chapters 4, 5,
6, and 7, which go a step beyond the elementary. Philosophical and foundational
problems of mathematics are not systematically discussed within the constraints of
this book, but are to some extent considered when appropriate.

The seven chapters of the book consist of numbered sections. A reference like
Theorem 5.4 is to mean Theorem 4 in Section 5 of a given chapter. In cross-
referencing from another chapter, the chapter number will be adjoined. For instance,
Theorem 6.5.4 is Theorem 5.4 in Chapter 6. You may find additional information
about the book or contact me on my website www.math.fu-berlin.de/∼raut .

I would like to thank the colleagues who offered me helpful criticism along the way;
their names are too numerous to list here. Particularly useful for Chapter 7 were
hints from Lev Beklemishev (Moscow) and Wilfried Buchholz (Munich). Thanks
also to the publisher, in particular Martin Peters, Mark Spencer, and David Kramer.

Wolfgang Rautenberg
December 2005

Contents

Introduction XIII

Notation XVI

1 Propositional Logic 1
1.1 Boolean Functions and Formulas . 2
1.2 Semantic Equivalence and Normal Forms 9
1.3 Tautologies and Logical Consequence 14
1.4 A Complete Calculus for � . 18
1.5 Applications of the Compactness Theorem 25
1.6 Hilbert Calculi . 29

2 Predicate Logic 33
2.1 Mathematical Structures . 34
2.2 Syntax of Elementary Languages . 43
2.3 Semantics of Elementary Languages 49
2.4 General Validity and Logical Equivalence 58
2.5 Logical Consequence and Theories . 62
2.6 Explicit Definitions—Expanding Languages 67

3 Gödel’s Completeness Theorem 71
3.1 A Calculus of Natural Deduction . 72
3.2 The Completeness Proof . 76
3.3 First Applications—Nonstandard Models 81
3.4 ZFC and Skolem’s Paradox . 87
3.5 Enumerability and Decidability . 92
3.6 Complete Hilbert Calculi . 95
3.7 First-Order Fragments and Extensions 99

IX

X Contents

4 The Foundations of Logic Programming 105
4.1 Term Models and Horn Formulas . 106
4.2 Propositional Resolution . 112
4.3 Unification . 119
4.4 Logic Programming . 122
4.5 Proof of the Main Theorem . 129

5 Elements of Model Theory 131
5.1 Elementary Extensions . 132
5.2 Complete and κ-Categorical Theories 137
5.3 Ehrenfeucht’s game . 142
5.4 Embedding and Characterization Theorems 145
5.5 Model Completeness . 151
5.6 Quantifier Elimination . 157
5.7 Reduced Products and Ultraproducts 163

6 Incompleteness and Undecidability 167
6.1 Recursive and Primitive Recursive Functions 169
6.2 Arithmetization . 176
6.3 Representability of Arithmetical Predicates 182
6.4 The Representability Theorem . 189
6.5 The Theorems of Gödel, Tarski, Church 194
6.6 Transfer by Interpretation . 200
6.7 The Arithmetical Hierarchy . 205

7 On the Theory of Self-Reference 209
7.1 The Derivability Conditions . 210
7.2 The Theorems of Gödel and Löb . 217
7.3 The Provability Logic G . 221
7.4 The Modal Treatment of Self-Reference 223
7.5 A Bimodal Provability Logic for PA 226
7.6 Modal Operators in ZFC . 228

Hints to the Exercises 231

Literature 241

Contents XI

Index of Terms and Names 247

Index of Symbols 255

Introduction
Traditional logic as a part of philosophy is one of the oldest scientific disciplines. It
can be traced back to the Stoics and to Aristotle.1 It is one of the roots of what
is nowadays called philosophical logic. Mathematical logic, however, is a relatively
young discipline, having arisen from the endeavors of Peano, Frege and Russell to
reduce mathematics entirely to logic. It steadily developed during the twentieth
century into a broad discipline with several subareas and numerous applications in
mathematics, computer science, linguistics, and philosophy.

One of the features of modern logic is a clear distinction between object language
and metalanguage. The latter is normally a kind of a colloquial language, although
it differs from author to author and depends also on the audience the author has in
mind. In any case, it is mixed up with semiformal elements, most of which have their
origin in set theory. The amount of set theory involved depends on one’s objectives.
General semantics and model theory use stronger set-theoretical tools than does
proof theory. But on average, little more is assumed than knowledge of the most
common set-theoretical terminology, presented in almost every mathematical course
for beginners. Much of it is used only as a façon de parler.

Since this book concerns mathematical logic, its language is similar to the language
common to all mathematical disciplines. There is one essential difference though. In
mathematics, metalanguage and object language strongly interact with each other
and the latter is semiformalized in the best of cases. This method has proved
successful. Separating object language and metalanguage is relevant only in special
context, for example in axiomatic set theory, where formalization is needed to specify
how certain axioms look like. Strictly formal languages are met more often in
computer science. In analysing complex software or a programming language, like
in logic, formal linguistic entities are the objects of consideration.

The way of arguing about formal languages and theories is traditionally called the
metatheory. An important task of a metatheoretical analysis is to specify procedures
of logical inference by so-called logical calculi, which operate purely syntactical.
There are many different logical calculi. The choice may depend on the formalized
language, on the logical basis, and on certain aims of the formalization. Basic
metatheoretical tools are in any case the naive natural numbers and inductive proof
procedures. We will sometimes call them proofs by metainduction, in particular
when talking about formalized theories that may speak about natural numbers and
induction themselves. Induction can likewise be carried out on certain sets of strings
over a fixed alphabet, or on the system of rules of a logical calculus.
1 The Aristotelian syllogisms are useful examples for inferences in a first-order language with unary
predicate symbols. One of these serves as an example in Section 4.4 on logic programming.

XIII

XIV Introduction

The logical means of the metatheory are sometimes allowed or even explicitly
required to be different from those of the object language. But in this book the logic
of object languages, as well as that of the metalanguage, are classical, two-valued
logic. There are good reasons to argue that classical logic is the logic of common
sense. Mathematicians, computer scientists, linguists, philosophers, physicists, and
others are using it as a common platform for communication.

It should be noticed that logic used in the sciences differs essentially from logic used
in everyday language, where logic is more an art than a serious task of saying what
follows from what. In everyday life, nearly every utterance depends on the context.
In most cases logical relations are only alluded to and rarely explicitly expressed.
Some basic assumptions of two-valued logic mostly fail, for instance, a context-
free use of the logical connectives. Problems of this type are not dealt with in this
book. To some extent, many-valued logic or Kripke semantics can help to clarify the
situation, and sometimes intrinsic mathematical methods must be used in order to
analyze and solve such problems. We shall use Kripke semantics here for a different
goal though, the analysis of self-referential sentences in Chapter 7.

Let us add some historical remarks, which, of course, a newcomer may find easier to
understand after and not before reading at least parts of this book. In the relatively
short period of development of modern mathematical logic in the last century, some
highlights may be distinguished, of which we mention just a few.

The first was the axiomatization of set theory in various ways. The most impor-
tant approaches are the ones of Zermelo (improved by Fraenkel and von Neumann)
and the theory of types by Whitehead and Russell. The latter was to become the
sole remnant of Frege’s attempt to reduce mathematics to logic. Instead it turned
out that mathematics can be based entirely on set theory as a first-order theory. Ac-
tually, this became more salient after the rest of the hidden assumptions by Russell
and others were removed from axiomatic set theory2 around 1915; see [Hej].

Right after these axiomatizations were completed, Skolem discovered that there
are countable models of the set-theoretic axioms, a drawback for the hope for an
axiomatic definition of a set. Just then, two distinguished mathematicians, Hilbert
and Brouwer, entered the scene and started their famous quarrel on the foundations
of mathematics. It is described in an excellent manner in [Kl2, Chapter IV] and
need therefore not be repeated here.

As a next highlight, Gödel proved the completeness of Hilbert’s rules for predicate
logic, presented in the first modern textbook on mathematical logic, [HA]. Thus, to
some extent, a dream of Leibniz became real, namely to create an ars inveniendi for
mathematical truth. Meanwhile, Hilbert had developed his view on a foundation of

2 For instance, the notion of an ordered pair is indeed a set-theoretical and not a logical one.

Introduction XV

mathematics into a program. It aimed at proving the consistency of arithmetic and
perhaps the whole of mathematics including its nonfinitistic set-theoretic methods
by finitary means. But Gödel showed by his incompleteness theorems in 1931 that
Hilbert’s original program fails or at least needs thorough revision.

Many logicians consider these theorems to be the top highlights of mathematical
logic in the twentieth century. A consequence of these theorems is the existence of
consistent extensions of Peano arithmetic in which true and false sentences live in
peaceful coexistence with each other, called “dream theories” in Section 7.2. It is an
intellectual adventure of holistic beauty to see wisdoms from number theory known
for ages, like the Chinese remainder theorem, or simple properties of prime num-
bers and Euclid’s characterization of coprimeness (page 193) unexpectedly assuming
pivotal positions within the architecture of Gödel’s proofs.

The methods Gödel developed in his paper were also basic for the creation of
recursion theory around 1936. Church’s proof of the undecidability of the tautology
problem marks another distinctive achievement. After having collected sufficient
evidence by his own investigations and by those of Turing, Kleene, and some others,
Church formulated his famous thesis (Section 6.1), although in 1936 no computers
in the modern sense existed nor was it foreseeable that computability would ever
play the basic role it does today.

As already mentioned, Hilbert’s program had to be revised. A decisive step was
undertaken by Gentzen, considered to be another groundbreaking achievement of
mathematical logic and the starting point of contemporary proof theory. The logical
calculi in 1.2 and 3.1 are akin to Gentzen’s calculi of natural deduction.

We further mention Gödel’s discovery that it is not the axiom of choice (AC) that
creates the consistency problem in set theory. Set theory with AC and the continuum
hypothesis (CH) is consistent provided set theory without AC and CH is. This is a
basic result of mathematical logic that would not have been obtained without the
use of strictly formal methods. The same applies to the independence proof of AC
and CH from the axioms of set theory by P. Cohen in 1963.

The above indicates that mathematical logic is closely connected with the aim of
giving mathematics a solid foundation. Nonetheless, we confine ourself to logic and
its fascinating interaction with mathematics. History shows that it is impossible
to establish a programmatic view on the foundations of mathematics that pleases
everybody in the mathematical community. Mathematical logic is the right tool for
treating the technical problems of the foundations of mathematics, but it cannot
solve its epistemological problems.

Notation
We assume that the reader is familiar with basic mathematical terminology and
notation, in particular with the elementary set-theoretical operations of union,
intersection, complemention, and cross product, denoted by ∪, ∩, \ , and ×,
respectively. Here we summarize only some notation that may differ slightly from
author to author, or is specific for this book.

N, Z, Q, R denote the sets of natural numbers including 0, integers, rational, and
real numbers, respectively. n,m, i, j, k denote always natural numbers unless stated
otherwise. Hence, extended notation like n ∈ N is mostly omitted. N+, Q+, R+

denote the sets of positive members of the corresponding sets.
The ordered pair of elements a, b is denoted by (a, b). It should not be mixed

up with the pair set {a, b}. Set inclusion is denoted by M ⊆ N , while M ⊂ N

means proper inclusion (i.e., M ⊆ N and M �= N). We write M ⊂ N only if the
circumstance M �= N has to be emphasized. If M is fixed in a consideration and
N varies over subsets of M , then M \N may also be denoted by \N or ¬N . The
power set (= set of all subsets) of M is denoted PM . ∅ denotes the empty set.

If one wants to emphasize that all elements of a set F are sets, F is also called a
family or system of sets.

⋃
F denotes the union of a set family F , that is, the set of

elements belonging to at least one M ∈ F , and
⋂

F stands for the intersection of
F (�= ∅), which is the set of elements belonging to all M ∈ F . If F = {Mi | i ∈ I}
then

⋃
F and

⋂
F are mostly denoted by

⋃
i∈I Mi and

⋂
i∈I Mi, respectively.

A relation between M and N is a subset of M ×N . Such a relation, call it f , is
said to be a function (or mapping) from M to N if for each a ∈M there is precisely
one b ∈ N with (a, b) ∈ f . This b is denoted by f(a) or fa or af and called the value
of f at a. We denote such an f also by f : M → N , or by f : x
→ t(x) provided
f(x) = t(x) for some term t (terms are defined in 2.2). idM : x
→ x denotes the
identical function on M . ran f = {fx | x ∈ M} is called the range of f , while
dom f = M is called its domain. f : M → N is injective if fx = fy ⇒ x = y, for all
x, y ∈ M , surjective if ran f = N , and bijective if f is both injective and surjective.
The reader should basically be familiar with this terminology.

The set of all functions from M to N is denoted by NM . The phrase “let f be
a function from M to N” is sometimes shortened to “let f : M → N .” If f, g are
mappings with ran g ⊆ dom f then h : x
→ f(g(x)) is called their composition. It is
sometimes denoted by h = f ◦ g, but other notation is used as well.

Let I and M be sets, f : I → M , and call I the index set. Then f will often be
denoted by (ai)i∈I and is named, depending on the context, a family, an I-tuple,
or a sequence. If 0 is identified with ∅ and n > 0 with {0, 1, . . . , n − 1}, as is
common in set theory, then Mn can be understood as the set of finite sequences or

XVI

Notation XVII

n-tuples (ai)i<n = (a0, . . . , an−1) of length n whose members are elements of M . In
concatenating finite sequences which has an obvious meaning, the empty sequence
(the only member of M0 = {∅}), plays the role of a neutral element. A sequence of
the form (a1, . . . , an) will frequently be denoted by �a. This is for n = 0 the empty
sequence, similar to {a1, . . . , an} for n = 0 being always the empty set.

If A is an alphabet, i.e., if the elements of A are symbols or at least called symbols,
then the sequence (a1, . . . , an) is written as a1 · · · an and called a string or a word
over the alphabet A. The empty sequence is then called the empty string or the
empty word. Let ξη denote the concatenation of the strings ξ and η. If ξ = ξ1ηξ2

for some strings ξ1, ξ2 and η �= ∅ then η is called a substring or segment of ξ. If, in
addition, ξ1 = ∅ then η is called an initial, and if ξ2 = ∅, a terminal segment of ξ.

Subsets P, Q, R, . . . ⊆ Mn are called n-ary predicates of M or n-ary relations. A
unary predicate will be identified with the corresponding subset of M . We may
write P�a instead of �a ∈ P , and ¬P�a instead of �a /∈ P . Metatheoretical predicates
(or properties) cast in words will often be distinguished from the surrounding text
by single quotes, for instance, if we speak of the syntactic predicate ‘The variable
x occurs in the formula α’. We can do so since quotes inside quotes will not occur.
Single quoted predicates are often used in induction principles, or they are reflected
in a theory, while ordinary (“double”) quotes have a stylistic function only.

An n-ary operation of M is a function f : Mn →M . Almost everywhere f�a will be
written instead of f(a1, . . . , an). Since M0 = {∅}, a 0-ary operation of M is of the
form {(∅, c)} with c ∈ M ; it is denoted by c for short and called a constant. Each
operation f : Mn →M is uniquely described by the graph of f ,

graph f := {(a1, . . . , an+1) ∈Mn+1 | f(a1, . . . , an) = an+1}.

Both f and graph f are essentially the same, but in most situations it is more
convenient to distinguish between f and graph f .

If A, B are expressions of our metalanguage, A⇔ B stands for “A iff B,” that is,
“A if and only if B.” Similarly, A ⇒ B, A & B, and A ∨∨∨ B mean “if A then B,”
“A and B,” and “A or B,” respectively. This notation does not aim at formalizing
the metalanguage but serves improved organization of metatheoretic statements.
We agree that ⇒ , ⇔, . . . separate stronger than linguistic binding particles like
“there is” or “for all.” Hence, in T � α⇔ α ∈ T , for all α ∈ L0 (definition page 64)
the comma should not be omitted; otherwise some serious misunderstanding may
arise, since ‘α ∈ T for all α ∈ L0 ’ has the meaning ‘the theory T is inconsistent’.

A :⇔ B means that the expression A is defined by B. Similarly, s := t means
that the term s is defined by the term t, or whenever s is a variable, the allocation
of the value of t to s. W.l.o.g. or w.l.o.g. abbreviates “Without loss of generality.”

Chapter 1

Propositional Logic

Propositional logic, by which we here mean two-valued propositional logic, arises
from analyzing connections of given sentences A, B, such as

A and B, A or B, not A, if A then B.
These connection operations can be approximately described by two-valued logic.
There are other connections that have temporal or local features, for instance, first
A then B or here A there B, as well as unary modal operators like it is necessarily
true that, whose analysis goes beyond the scope of two-valued logic. These opera-
tors are the subject of temporal, modal, or other subdisciplines of many-valued or
nonclassical logic. Furthermore, the connections that we began with may have a
meaning in other versions of logic that two-valued logic only incompletely captures.
This pertains in particular to their meaning in natural or everyday language, where
meaning may strongly depend on context.

In two-valued propositional logic such phenomena are set aside. This approach
not only considerably simplifies matters, but has the advantage of presenting many
concepts, for instance those of consequence, rule induction, or resolution, on a sim-
pler and more perspicuous level. This will in turn save a lot of writing in Chapter 2
when we consider the corresponding concepts in the framework of predicate logic.

We will not consider everything that would make sense in the framework of two-
valued propositional logic, such as two-valued fragments and problems of definability
and interpolation. The reader is referred instead to [KK] or [Ra1]. We will concen-
trate our attention more on propositional calculi. While there exist a multitude of
applications of propositional logic, we will not consider technical applications such
as the designing of Boolean circuits and problems of optimization. These topics have
meanwhile been integrated into computer science. Rather, some useful applications
of the propositional compactness theorem are described comprehensively.

1

2 1 Propositional Logic

1.1 Boolean Functions and Formulas

Two-valued logic is based on two foundational principles: the principle of bivalence,
which allows only two truth values, namely true and false, and the principle of
extentionality, according to which the truth value of a connected sentence depends
only on the truth values of its parts, not on their meaning. Clearly, these principles
form only an idealization of the actual relationships.

Questions regarding degrees of truth or the sense-content of sentences are ignored
in two-valued logic. Despite this simplification, or indeed because of it, such a
method is scientifically successful. One does not even have to know exactly what
the truth values true and false actually are. Indeed, in what follows we will identify
them with the two symbols 1 and 0. Of course, one could have chosen any other
apt symbols such as � and ⊥ or t and f. The advantage here is that all conceivable
interpretations of true and false remain open, including those of a purely technical
nature, for instance the two states of a gate in a Boolean circuit.

According to the meaning of the word and, the conjunction A and B of sentences
A, B, in formalized languages written as A∧B or A & B, is true if and only if A, B

are both true and is false otherwise. So conjunction corresponds to a binary function
or operation over the set {0, 1} of truth values, named the ∧ -function and denoted

by ∧ . It is given by its value matrix
(

1 0
0 0

)
, where, in general,

(
1◦1 1◦0
0◦1 0◦0

)
represents

the value matrix or truth table of a binary function ◦ with arguments and values in
{0, 1}. The delimiters of these small matrices will usually be omitted.

A function f : {0, 1}n → {0, 1} is called an n-ary Boolean or truth function. Since
there are 2n n-tuples of 0, 1, it is easy to see that the number of n-ary Boolean
functions is 22n . We denote their totality by Bn. While B2 has 24 = 16 members,
there are only four unary Boolean functions. One of these is negation, denoted by
¬ and defined by ¬1 = 0 and ¬0 = 1. B0 consists just of the constants 0 and 1.

The first column of the table on the opposite page contains the common binary
connections with examples of their instantiation in English. The second column lists
some of its traditional symbols, which also denote the corresponding truth function,
and the third its truth table. Disjunction is the inclusive or and is to be distinguished
from the exclusive disjunction. The latter corresponds to addition modulo 2 and got
therefore the symbol +. In Boolean circuits the functions +, ↓, ↑ are often denoted
by xor, nor, and nand; the latter is also known as the Sheffer function.

A connected sentence and its corresponding truth function need not be denoted
by the same symbol; for example one might take ∧ for conjunction and et as the
truth function. But in doing so one would only be creating extra notation, but no
new insights. The meaning of a symbol will always be clear from the context: if α, β

1.1 Boolean Functions and Formulas 3

are sentences of a formal language, then α∧β denotes their conjunction. If on the
other hand, a, b are truth values, then a∧ b just denotes a truth value. Occasionally,
we may want to refer to the symbols ∧ , ∨ ,¬, . . . themselves, setting their meaning
temporarily aside. Then we talk of the connectives or truth functors ∧ , ∨ ,¬, . . .

compound sentence symbol truth table
conjunction

A and B; A as well as B
∧ , &

1 0
0 0

disjunction
A or B

∨ , ∨ 1 1
1 0

implication
if A then B; B if A

→, ⇒ 1 0
1 1

equivalence (biconditional)
A if and only if B; A iff B

↔, ⇔ 1 0
0 1

exclusive disjunction
either A or B but not both

+
0 1
1 0

nihilition
neither A nor B

↓ 0 0
0 1

incompatibility
not at once A and B

↑ 0 1
1 1

Sentences formed using connectives given in the table are said to be logically
equivalent if their corresponding truth tables are identical. This is the case, for
example, for the sentences

A if B, A or not B, B only if A,
which represent the converse implication, denoted by A ← B. It does not appear
in the table since it arises by swapping A, B in the implication. This and similar
reasons explain why only a few of the sixteen binary Boolean functions require
notation. Amazingly, converse implication is used in the programming language
PROLOG, dealt with in 4.4. Recall our agreement in the section Notation that the
symbols &, ∨, ⇒ , and ⇔ will be used only on the metatheoretic level.

In order to recognize and describe logical equivalence of compound sentences it
is useful to create a suitable formalism or a formal language. The idea is basically
the same as in arithmetic, where general statements are more clearly expressed by
means of certain formulas. As with arithmetical terms, we consider propositional
formulas as strings of signs built in given ways from basic symbols. Among these
basic symbols are variables, for our purposes called propositional variables, the set
of which is denoted by PV. Traditionally, these signs are symbolized by p0, p1, . . .

However, our numbering of the variables below begins with p1 rather than with p0,

4 1 Propositional Logic

enabling us later on to represent Boolean functions more conveniently. Further,
we use certain logical signs such as ∧ , ∨ ,¬, . . . , similar to the signs +, ·, . . . of
arithmetic. Finally, the parentheses (,) will serve as technical aids, although these
two symbols are dispensable as will be seen later on.

Each time a propositional language is in question, the set of its logical symbols,
called the logical signature, and the set of its variables must be given in advance. For
instance, it is crucial in some applications of propositional logic in Section 1.5, for
PV to be an arbitrary set, and not a countably infinite one as indicated previously.
Put concretely, we define a propositional language F built up from the symbols
(,) , ∧ , ∨ ,¬ , p1, p2, . . . inductively as follows:

(F1) The one-element strings p1, p2, . . . are formulas, called prime formulas.
(F2) If the strings α, β are formulas, then so too are (α∧β), (α ∨ β), and ¬α.

This is an inductive definition in the set of strings on the alphabet of the mentioned
symbols, that is, only those strings gained using (F1) or (F2) are in this context
formulas. Stated set-theoretically, F is the smallest (that is, the intersection) of all
sets of strings S built from the aforementioned symbols with the properties

(f1) p1, p2, · · · ∈ S, (f2) α, β ∈ S ⇒ (α∧β), (α ∨ β),¬α ∈ S.1

Example. (p1 ∧ (p2 ∨ ¬p1)) is a formula. On the other hand, its initial segment
(p1 ∧ (p2 ∨ ¬p1) is not, because a closing parenthesis is missing. It is intuitively clear
and will later be rigorously proved, that the number of left parentheses occurring in
a formula coincides with the number of its right parentheses. Every proper initial
segment of the example formula obviously fails to meet this condition.

The formulas so defined are called Boolean formulas, because they are obtained
using the Boolean signature {∧ , ∨ ,¬}. It should be noticed that in the definition
parentheses are needed only for binary connectives, not if a formula starts with the
unary operator ¬. Should further connectives belong to the logical signature, for
example → or ↔, (F2) of the above definition must be augmented accordingly.
But unless stated otherwise, α → β and α ↔ β are here just abbreviations; namely
α → β := ¬(α∧¬β) and α↔ β := (α → β)∧ (β → α).

Occasionally, it is useful to have symbols in the logical signature for always true
and always false, ⊥ and � respectively, say, called falsum and verum and sometimes
also denoted by 0 and 1. These are to be regarded as supplementary prime formulas,
and clause (F1) should be altered accordingly. In the Boolean signature, ⊥ and �

are used as abbreviations for the formulas p1 ∧¬p1 and p1 ∨ ¬p1, respectively.
1 This is a set-theoretical translation of the above inductive definition. Some authors like to add
a third condition to (F1), (F2), namely (F3): No other strings than those obtained by (F1) and
(F2) are formulas in this context. But this at most underlines that (F1),(F2) are the only formula
building rules; (F3) follows from our definition as its set-theoretical translation shows.

1.1 Boolean Functions and Formulas 5

For the time being we let F be the set of all Boolean formulas, although in what fol-
lows, everything said about F holds correspondingly for any propositional language.
Propositional variables will henceforth be denoted by the letters p, q, . . . , formulas
by α, β, γ, δ, ϕ, . . . , prime formulas also by π, and sets of formulas by X,Y, Z, where
these letters may also be indexed.

In order not to have to write down too many parentheses in formulas, we set some
conventions similar to those used in writing arithmetical terms.

1. The outermost parentheses in a formula may be omitted (if there are any).
For example, (p ∨ q)∧¬p may be written in place of ((p ∨ q)∧¬p). Note that
(p ∨ q)∧¬p is not itself a formula but denotes the formula ((p ∨ q)∧¬p).

2. In the order ¬, ∧ , ∨ , → ,↔, each connective binds more strongly than those
following it. Thus, one may even write p ∨ q ∧¬p instead of (p ∨ (q ∧¬p)).

3. By the multiple use of → we associate to the right. So p → q → p is to mean
p → (q → p). Multiple occurrences of other binary connectives are associated
to the left, for instance, p∧q ∧¬p means (p∧q)∧¬p. In place of α0 ∧ · · · ∧αn

and α0∨ · · · ∨αn we may write
∧

i�n αi and
∨

i�n αi, respectively.

Also, in arithmetic, one normally associates to the left. An exception is xyz where
traditionally association to the right is used, (that is, xyz equals x(yz)). Association
to the right has some advantages in the writing of tautologies in which → plays a
main role; for instance, in the logical axioms listed in 1.3.

The above conventions are based on a reliable syntax in the framework of which
intuitively clear facts, such as the identical number of left and right parentheses
in a formula, are rigorously provable. These proofs are generally carried out using
induction on the construction of a formula. To make this clearer we denote by Eϕ
that a property E holds for a string ϕ. For example, let E mean the property ‘ϕ is a
formula with equally many right- and left-hand parentheses’. Obviously, E is valid
for prime formulas, and if Eα, Eβ then clearly also E(α∧β), E(α ∨ β), and E¬α.
From this one may conclude that E applies to all formulas, our reasoning being a
particularly simple instance of the following
Induction principle for formulas. Let E be a property of strings such that

(o) Eπ for all prime formulas π,
(s) Eα, Eβ ⇒ E(α∧β), E(α ∨ β), E¬α, for all α, β ∈ F.

Then Eϕ holds for all formulas ϕ.
The justification of this principle is straightforward. The set S of all strings with

the property E satisfies, thanks to (o) and (s), the conditions (f1) and (f2) of page 4.
But F is the smallest such set. Consequently, F ⊆ S. In other words, E applies to
all formulas ϕ.

6 1 Propositional Logic

It is intuitively clear that a compound formula ϕ (i.e., ϕ is not a prime formula) can
be decomposed uniquely. For instance, a formula α∧β (outer parentheses omitted)
cannot at the same time be written α′ ∨ β′ with perhaps different formulas α′, β′.
Speaking more generally, compound formulas have the following basic property the
proof of which is not as trivial as might be expected. Nonetheless, it is left as an
exercise (Exercise 4) in order to maintain the flow of things.
Unique reconstruction property. Each compound formula ϕ ∈ F is of the form
¬α or (α ◦ β), where α, β ∈ F and ◦ ∈ {∧ , ∨} are uniquely determined by ϕ.

It may be a surprise to the novice that for a unique reconstruction, parentheses
are dispensable throughout. Indeed, propositional formulas, like arithmetical terms,
can be written without any parentheses; this is realized in Polish Notation (= PN),
also called prefix notation, once widely used in the logic literature. The idea consists
in altering (F2) as follows: if α, β are formulas then so too are ∧αβ, ∨αβ, and ¬α.

Remark 1. Similar to PN is RPN (Reverse Polish Notation). It is used in some pro-
gramming languages. RPN differs from PN only in that the connectives are placed after
the arguments. For instance, (p∧ (q ∨ ¬p)) is written in RPN as pqp¬∨ ∧ . Reading PN or
RPN requires more effort due to the high density of information; but by the same token
it can be processed very fast by a computer or a (high-tech) printer which gets its jobs as
RPN-based PostScript-programs. The only advantage of the parenthesized version is that
optical decoding is somewhat easier through the dilution of information.

Intuitively it is clear what a subformula of a formula ϕ is; for example, (q ∧¬p) is
a subformula of (p ∨ (q ∧¬p)). All the same, for some purposes it is convenient to
characterize the set Sf ϕ of all subformulas of ϕ inductively:

Sf π = {π} for prime formulas π; Sf ¬α = Sf α ∪ {¬α},
Sf(α ◦ β) = Sf α ∪ Sf β ∪ {(α ◦ β)} for a binary connective ◦.

Thus, a formula is always regarded as a subformula of itself. The above is a typical
example of a recursive definition on the construction of formulas. Another example
of such a definition is the rank of a formula ϕ, rk ϕ, which provides a sometimes
more convenient measure of the complexity of ϕ than its length as a string and
occasionally simplifies inductive arguments. Intuitively, rkϕ is the highest number
of nested pairs of parentheses or nested negation signs occurring in a formula ϕ. Let
rk π = 0 for prime formulas π, and if rk α and rk β are given, then

rk¬α = rk α + 1, rk(α ◦ β) = max{rk α, rk β}+ 1 for a binary connective ◦.
We will not give a general formulation of this definition procedure because it is

so intuitive, and has been made sufficiently clear by the preceding examples. Its
justification is essentially based on the unique reconstruction property, in contrast
to justifying proofs by induction on formulas that immediately derive from the
definition of formulas. The theoretical background of all this is that F forms an
absolutely free algebra; see for instance [RS] for details.

1.1 Boolean Functions and Formulas 7

If a property is to be proved by induction on the construction of formulas ϕ, we
will say that it is a proof by induction on ϕ. Similarly, the recursive construction of
a function f on F will generally be referred to as defining f recursively on ϕ, often
not quite correctly paraphrased as defining f by induction. rk is an example.

Since the truth value of a connected sentence depends only on the truth values
of its constituent parts, we may assign to every propositional variable of α a truth
value rather than a sentence, thereby evaluating α, i.e., calculating a truth value.
Similarly, terms are evaluated in, say, the arithmetic of real numbers, whose value
is then a real (= real number). An arithmetical term t in the variables x1, . . . , xn

describes an n-ary function whose arguments and values are reals, while a formula
ϕ in p1, . . . , pn describes an n-ary Boolean function.

To be more precise, a propositional valuation, or alternatively a realization or
(propositional) model, is a mapping w : PV→ {0, 1}. We can extend this to a map-
ping from the whole of F to {0, 1} (also denoted by w) according to the stipulations

(∗) w(α∧β) = wα∧wβ; w(α ∨ β) = wα ∨ wβ; w¬α = ¬wα.2

By the value wϕ of a formula ϕ under the valuation of variables we mean the
value given by this extension. We could denote the extended mapping by ŵ, say,
but it is in fact not necessary to distinguish it symbolically from w : PV → {0, 1}.
Similarly, we keep the same symbol if an operation in N is extended to a larger
domain. If the logical signature contains further connectives, for example → , the
conditions (∗) must be supplemented accordingly, with w(α → β) = wα → wβ in
our example. However, if → is defined as in the Boolean case, then this equation
must be provable. Indeed, it is provable, because from our definition of α → β we
get w(α → β) = w¬(α ∧ ¬β) = ¬w(α ∧ ¬β) = ¬(wα ∧ ¬wβ) = wα → wβ, for every
w. A corresponding remark could be made with respect to ↔. Similarly, always
w� = 1 and w⊥ = 0 by our definition of �, ⊥, in accordance with the meaning of
these symbols. However, if these or corresponding symbols belong to the logical
signature, then the last two equations must be added to the definition of w.

Let Fn denote the set of all formulas of F in which at most the variables p1, . . . , pn

occur, n > 0. Then it can easily be seen that for α ∈ Fn, wα depends only on the
truth values of the variables p1, . . . , pn. In other words,

(�) wα = w′α whenever wpi = w′pi for i = 1, . . . , n.

The simple proof follows from induction on the construction of formulas in Fn: the
property (�) holds for p ∈ Fn, and if (�) is valid for α, β ∈ Fn, then also for ¬α, α∧β,
and α ∨ β. It is then intuitively clear that a given ϕ ∈ Fn defines or represents an
n-ary Boolean function according to the following definition.
2 We often use (∗) or (�) as a temporary label for a condition (or property) that we refer back to
in the text following the labeled condition.

8 1 Propositional Logic

Definition. A formula α ∈ Fn represents the n-ary Boolean function f (or f is
represented by α) if wα = fw�p for all valuations w, where w�p := (wp1, . . . , wpn).

Because wα for α ∈ Fn is uniquely determined by wp1, . . . , wpn, α represents pre-
cisely one function f ∈ Bn, sometimes written as α(n). For instance, both p1 ∧p2

and ¬(¬p1 ∨ ¬p2) represent the ∧ -function, as can easily be illustrated using a
table. Similarly, ¬p1 ∨ p2 and ¬(p1 ∧¬p2) represent the → -function, and p1 ∨ p2,
¬(¬p1 ∧¬p2), (p1 → p2) → p2 all represent the ∨-function. Incidentally, the last for-
mula shows that the ∨-connective can be expressed using implication alone.

There is a caveat though: since α = p1 ∨ p2, say, belongs not only to F2 but to
F3 as well, α also represents the Boolean function f : (x1, x2, x3)
→ x1∨x2. However,
the third argument is only “fictional,” or put another way, the function f is not
essentially ternary.

In general we say that an operation f : Mn → M is essentially n-ary if f has no
fictional arguments, where the ith argument of f is called fictional whenever

f(x1, . . . , xi, . . . , xn) = f(x1, . . . , x
′
i, . . . , xn),

for all x1, . . . , xi, . . . , xn, x
′
i ∈ M . Identity and the ¬-function are the essentially

unary Boolean functions, and out of the sixteen binary functions, only ten are es-
sentially binary, as is seen in scrutinizing the possible truth tables.

Remark 2. If an denotes temporarily the number of all n-ary Boolean functions and en

the number of all essentially n-ary Boolean functions, it is not particularly difficult to prove
that an =

∑
i�n

(
n
i

)
ei. Solving for en results in en =

∑
i�n(−1)n−i

(
n
i

)
ai. However, we

will not make use of these equations, which become important only in a more specialized
study of Boolean functions; see any good textbook on discrete mathematics.

Exercises

1. f ∈ Bn is called linear if f(x1, . . . , xn) = a0 + a1x1 + · · · + anxn for suitable
coefficients a0, . . . , an ∈ {0, 1}. Here + denotes exclusive disjunction (addition
modulo 2) and the not written multiplication is conjunction (aixi = xi for
ai = 1 and aixi = 0 for ai = 0). (a) Show that the above representation
of f is unique, (b) Determine the number of n-ary linear Boolean functions,
(c) Prove that each formula α in ¬, + (that is, α is a formula of the logical
signature {¬, +}) represents a linear Boolean function.

2. Show that a compound Boolean formula ϕ is of the form ϕ = ¬α or ϕ = (α∧β)
or ϕ = (α ∨ β) for some α, β ∈ F. Hence, if ξ is any string over the alphabet
of F then ¬ξ ∈ F ⇔ ξ ∈ F. Similarly, (ξ1 ∧ξ2) ∈ F ⇔ ξ1, ξ2 ∈ F, etc.

3. Prove that a proper initial segment of a formula ϕ is never a formula.

4. Prove (with Exercise 2 and 3) the unique reconstruction property.

1.2 Semantic Equivalence and Normal Forms 9

1.2 Semantic Equivalence and Normal Forms

Throughout this chapter w will always denote a propositional valuation. Formulas
α, β are called (logically or semantically) equivalent, and we write α ≡ β, when
wα = wβ for all valuations w. For example α ≡ ¬¬α. Obviously, α ≡ β iff for any
n such that α, β ∈ Fn, both formulas represent the same n-ary Boolean function. It
follows that at most 22n formulas in Fn can be pairwise inequivalent, since there are
no more than 22n

n-ary Boolean functions.
In arithmetics one writes simply s = t to express the fact that the terms s, t

represent the same function. For example, (x + y)2 = x2 + 2xy + y2 expresses the
equalitiy of values of the left- and right-hand terms for all values of x, y. This way
of writing is permissible because formal syntax plays a minor role in arithmetics.
In formal logic, however, as is always the case when syntactic considerations are to
the fore, one uses the equality sign in α = β only for the syntactic identity of the
strings α and β. Therefore, the equivalence of formulas must be denoted differently.
Clearly, for all formulas α, β, γ the following equivalences hold:

α∧ (β ∧γ) ≡ α∧β ∧γ, α ∨ (β ∨ γ) ≡ α ∨ β ∨ γ (associativity);
α∧β ≡ β ∧α, α ∨ β ≡ β ∨ α (commutativity);
α∧α ≡ α, α ∨ α ≡ α (idempotency);

α∧ (α∨β) ≡ α, α ∨ α∧β ≡ α (absorption);
α∧ (β∨γ) ≡ α∧β ∨ α∧γ, α ∨ β ∧γ ≡ (α∨β)∧ (α∨γ) (distributivity);
¬(α∧β) ≡ ¬α ∨ ¬β, ¬(α ∨ β) ≡ ¬α∧¬β (de Morgan rules).

Furthermore, α ∨ ¬α ≡ �, α∧¬α ≡ ⊥, and α∧ � ≡ α ∨ ⊥ ≡ α. It is also useful to list
certain equivalences for formulas containing → , for example the frequently used

α → β ≡ ¬α ∨ β; α → β → γ ≡ α∧β → γ ≡ β → α → γ.

To generalize: α1 → · · · → αn ≡ α1 ∧ · · · ∧αn−1 → αn. Further, we mention the “left
distributivity” of implication with respect to ∧ and ∨, namely

α → β ∧γ ≡ (α → β)∧ (α → γ); α → β ∨ γ ≡ (α → β) ∨ (α → γ).
Should the symbol → lie to the right, then the following are valid:

α∧β → γ ≡ (α → γ) ∨ (β → γ); α ∨ β → γ ≡ (α → γ)∧ (β → γ).

Remark 1. These last two equivalences are responsible for a curious phenomenon in
everyday language. For example, the two sentences

A: Students and pensioners pay half price, B: Students or pensioners pay half price
evidently have the same meaning. How do we explain this? Let the subjects student and
pensioner be abbreviated by S, P , respectively, and pay half price by H. Then

α : (S → H)∧ (P → H), β : (S ∨ P) → H

express somewhat more precisely the factual content of A and B, respectively. Now,
according to our truth tables, the formulas α and β are simply logically equivalent. The

10 1 Propositional Logic

everyday-language statements A and B of α and β obscure the structural difference of α
and β through an apparently synonymous use of and and or.

Obviously, ≡ is an equivalence relation, that is,
α ≡ α (reflexivity),

α ≡ β ⇒ β ≡ α (symmetry),
α ≡ β, β ≡ γ ⇒ α ≡ γ (transitivity).

Moreover, ≡ is a congruence relation3 on F. This is to mean that for all α, α′, β, β′,
α ≡ α′, β ≡ β′ ⇒ α ◦ β ≡ α′ ◦ β′,¬α ≡ ¬α′ (◦ ∈ {∧ , ∨ }).

For this reason the so-called replacement theorem holds: α ≡ α′ ⇒ ϕ ≡ ϕ′, where
ϕ′ is obtained from ϕ by replacing one or several of the possible occurrences of the
subformula α in ϕ by α′. For instance, by replacing the subformula ¬p ∨ ¬q by the
equivalent formula ¬(p∧q) in ϕ = (¬p ∨ ¬q)∧ (p ∨ q) we obtain ϕ′ = ¬(p∧q)∧ (p ∨ q),
which is equivalent to ϕ. A similar replacement theorem also holds for arithmetical
terms and is constantly used in their manipulation. This procedure mostly goes
unnoticed, because = is written instead of ≡, and the replacement is, consciously
or not, usually correctly applied. The simple inductive proof of the replacement
theorem will be given in a somewhat broader context in 2.4.

Furnished with the equivalences ¬(α∧β) ≡ ¬α ∨ ¬β, ¬(α ∨ β) ≡ ¬α∧¬β and
¬¬α ≡ α, and using the replacement theorem, it is easy to construct for each formula
ϕ an equivalent formula in which the negation sign stands only immediately in front
of variables. For example, ¬(p∧q ∨ r) ≡ ¬(p∧q)∧¬r ≡ (¬p ∨ ¬q)∧¬r is obtained
in this way. Such manipulations lead also purely syntactically to conjunctive and
disjunctive normal forms, considered below.

It is always something of a surprise to the newcomer that independent of its arity,
every Boolean function can be represented by a Boolean formula. While this can be
proved in various ways, we take the opportunity to introduce certain normal forms
and therefore begin with the following

Definition. Prime formulas and negations of prime formulas are called literals.
A disjunction α1∨ · · · ∨αn, where each αi is a conjunction of literals, is called a
disjunctive normal form, a DNF for short (also called an alternative normal form).
A conjunction β1 ∧ · · · ∧βn, where every βi is a disjunction of literals, is called a
conjunctive normal form, a CNF for short.

Example 1. The formula p ∨ (q ∧¬p) is a DNF; p ∨ q is at once a DNF and a CNF;
p ∨ ¬(q ∧¬p) is neither a DNF nor a CNF.

3 This concept, stemming originally from geometry, is meaningfully defined in every algebraic
structure and is one of the most important mathematical concepts; see 2.1. The definition is
equivalent to the condition α ≡ α′ ⇒ α ◦ β ≡ α′ ◦ β, β ◦ α ≡ β ◦ α′,¬α ≡ ¬α′, for all α, α′, β.

1.2 Semantic Equivalence and Normal Forms 11

Theorem 2.1 states that every Boolean function is represented by a Boolean for-
mula, indeed by a DNF, and also by a CNF. It would suffice to show that for given n

there are at least 22n pairwise inequivalent DNFs (resp. CNFs). However, we present
instead a constructive proof whereby for a Boolean function given in tabular form a
representing DNF (resp. CNF) can explicitly be written down. In the formulation
of Theorem 2.1 we temporarily use the following notation: p1 := p and p0 := ¬p.
With this stipulation, w(px1

1 ∧px2
2) = 1 iff wp1 = x1 and wp2 = x2. More generally,

induction on n � 1 easily shows that for all x1, . . . , xn ∈ {0, 1},
(∗) w(px1

1 ∧ · · · ∧pxn
n) = 1 ⇔ w�p = �x (i.e., wp1 = x1, . . . , wpn = xn).

Theorem 2.1. Every Boolean function f with f ∈ Bn (n > 0) is representable by
a DNF, namely by

αf :=
∨

f�x=1
px1

1 ∧ · · · ∧pxn
n .4

At the same time, f is representable by the CNF
βf :=

∧
f�x=0

p¬x1
1 ∨ · · · ∨ p¬xn

n .

Proof. By the definition of αf , the following holds for an arbitrary valuation w:
wαf = 1 ⇔ there is an �x with f�x = 1 and w(px1

1 ∧ · · · ∧pxn
n) = 1

⇔ there is an �x with f�x = 1 and w�p = �x
(
by (∗)

)
⇔ fw�p = 1 (replace �x by w�p).

Thus, wαf = 1⇔ fw�p = 1. From this equivalence, and because there are only two
truth values, wαf = fw�p follows immediately. The representability proof of f by
βf runs analogously; alternatively, Theorem 2.3 below may be used.

Example 2. For the exclusive-or function +, the construction procedure of Theo-
rem 2.1 gives the representing DNF p1 ∧¬p2 ∨ ¬p1 ∧p2, because (1, 0), (0, 1) are the
only pairs for which + has the value 1. The CNF given by the theorem, on the other
hand, is (p1 ∨ p2)∧ (¬p1 ∨ ¬p2); the equivalent formula (p1 ∨ p2)∧¬(p1 ∧p2) makes
the meaning of the exclusive-or compound particularly intuitive.

The DNF for the Boolean function → given by Theorem 2.1 is

p1 ∧p2 ∨ ¬p1 ∧p2 ∨ ¬p1 ∧¬p2.

It is longer than the formula ¬p1 ∨ p2, which is also a representing DNF. But the
former is distinctive in that each of its disjuncts contains each variable occurring in

4 The disjuncts of αf can be ordered, for instance according to the lexicographical order of the
n-tuples (x1, . . . , xn) ∈ {0, 1}n. If the disjunction is empty, in other words, if f does not take
the value 1, define αf to be ⊥ (= p1 ∧¬p1); similarly set the empty conjunction as � (= ¬⊥).
These conventions correspond to those in arithmetic, where the empty sum has the value 0 and
the empty product the value 1.

12 1 Propositional Logic

the formula exactly once. A DNF of n variables with the analogous property is called
canonical. The notion of canonical CNF is correspondingly explained. For instance,
the ↔-function is represented by the canonical CNF (¬p1∨p2)∧ (p1∨¬p2) according
to Theorem 2.1. As a matter of fact, this theorem always provides canonical normal
forms as representing formulas.

Functional completeness. A logical signature is called functional complete if
every Boolean function is representable by a formula in this signature. Theorem 2.1
shows that {¬, ∧ , ∨ } is functional complete. Because of p ∨ q ≡ ¬(¬p∧¬q) and
p∧q ≡ ¬(¬p ∨ ¬q), one can further leave aside ∨, or alternatively ∧ . This observation
is the content of
Corollary 2.2. Both {¬, ∧} and {¬, ∨} are functional complete.

Therefore, to show that a logical signature L is functional complete, it is enough
to represent ¬, ∧ or else ¬, ∨ by formulas in L. For example, because ¬p ≡ p → 0
and p∧q ≡ ¬(p →¬q), the signature { → , 0} is functional complete. On the other
hand, { → , ∧ , ∨ }, and a fortiori { → }, are not. Indeed, wϕ = 1 for any formula ϕ

in → , ∧ , ∨ and any valuation w such that wp = 1 for all p. This can readily be
confirmed by induction on ϕ. Thus, never ¬p ≡ ϕ for any such formula ϕ.

It is noteworthy that the signature containing only ↓ is functional complete: from
the truth table for ↓ we get ¬p ≡ p ↓p as well as p∧q ≡ ¬p ↓¬q. Likewise for { ↑},
because ¬p ≡ p ↑p and p ∨ q ≡ ¬p ↑¬q. That { ↑} must necessarily be functional
complete once we know that { ↓} is, will become obvious in the discussion of the
duality theorem below. Even up to term equivalence, there exist still infinitely
many signatures. Here signatures are called term equivalent if the formulas of these
signatures represent the same Boolean functions as in Exercise 2, for instance.

Define inductively on the formulas from F a mapping δ : F → F by
pδ = p, (¬α)δ = ¬αδ, (α∧β)δ = αδ ∨ βδ, (α ∨ β)δ = αδ ∧βδ.

αδ is called the dual formula of α and is obtained from α simply by interchanging
∧ and ∨. Obviously, for a DNF α, αδ is a CNF, and vice versa. Define the dual of
f ∈ Bn by f δ�x := ¬f¬�x with ¬�x := (¬x1, . . . ,¬xn). Clearly f δ2 := (f δ)δ = f since
(f δ)δ�x = ¬¬f¬¬�x = f�x. Note that ∧ δ = ∨, ∨δ = ∧ , ↔δ= +, ↓ δ = ↑ , but ¬δ = ¬.
In other words, ¬ is self-dual. One may check by going through all truth tables that
essentially binary self-dual Boolean functions do not exist. But it was Dedekind who
discovered the ternary self-dual function d3 : (x1, x2, x3)
→ x1 ∧x2 ∨ x1 ∧x3 ∨ x2 ∧x3.
The above notions of duality are combined in the following

Theorem 2.3 (The duality principle for two-valued logic). If α represents
the function f then the dual formula αδ represents the dual function f δ.

Proof by induction on α. Trivial for α = p. Let α, β represent f1, f2, respectively.
Then α∧β represents f : �x
→ f1�x∧f2�x and, in view of the induction hypothesis,

1.2 Semantic Equivalence and Normal Forms 13

(α∧β)δ = αδ ∨ βδ represents g : �x
→ f δ
1�x ∨ f δ

2�x. This is just the dual of f because

f δ�x = ¬f¬�x = ¬(f1¬�x∧f2¬�x) = ¬f1¬�x ∨ ¬f2¬�x = f δ
1�x ∨ f δ

2�x = g�x.

The induction step for ∨ is similar. Now let α represent f . Then ¬α represents
¬f : �x
→ ¬f�x. By the induction hypothesis, αδ represents f δ. Thus (¬α)δ = ¬αδ

represents ¬f δ which coincides with (¬f)δ as is readily confirmed.

We know, for example, that ↔ is represented by p∧q ∨ ¬p∧¬q, hence + (= ↔δ)
by (p ∨ q)∧ (¬p ∨ ¬q). More generally, if f ∈ Bn is represented by a canonical DNF
α, then by the theorem, f δ is represented by the canonical CNF αδ. Thus, if every
f ∈ Bn is representable by a DNF then every f must necessarily be representable
by a CNF, because f
→ f δ constitutes a bijection of Bn, as follows directly from
f δ2 = f . Note also that Dedekind’s ternary self-dual function d3 defined above
shows that p∧q ∨ p∧r ∨ q ∧r ≡ (p ∨ q)∧ (p ∨ r)∧ (q ∨ r) in view of Theorem 2.3.

Remark 2. {∧ , ∨, 0, 1} is maximally functional incomplete, that is, if f is any Boolean
function not representable by a formula in ∧ , ∨, 0, 1, then {∧ , ∨, 0, 1, f} is functional com-
plete (Exercise 4). As was shown by E. Post (1920), there are up to term equivalence only
five maximally functional incomplete logical signatures: besides {∧ , ∨, 0, 1} only { → , ∧},
the dual of this, {↔,¬}, and {d3,¬}. The formulas of the last one represent just the
self-dual Boolean functions. Since ¬p ≡ 1 + p, the signature {0, 1, +, ·} is functional com-
plete, where · is written in place of ∧ . The deeper reason is that {0, 1, +, ·} is also the
extralogical signature of fields (see 2.1). Functional completeness in the two-valued case
just derives from the fact that for a finite field, each operation on its domain is repre-
sented by a suitable polynomial. We mention also that for any finite set M of truth values
considered in many-valued logics there is a generalized two-argument Sheffer function, by
which every operation on M can be obtained, similarly to ↑ in the two-valued case.

Exercises

1. Verify the logical equivalences

(p → q1)∧ (¬p → q2) ≡ p∧q1 ∨ ¬p∧q2, p1 ∧q1 → p2 ∨ q2 ≡ (p1 → p2) ∨ (q1 → q2).

2. Show that the signatures {+, 1}, {+,¬}, {↔, 0}, and {↔,¬} are all term
equivalent. The formulas of each of these signatures represent precisely the
linear Boolean functions.

3. Set 0 � 0, 0 � 1, and 1 � 1 as usual. Show that the formulas in ∧ , ∨, 0, 1
represent exactly the monotonic Boolean functions. These are the constants
from B0 and for n > 0 the f ∈ Bn such that for i = 1, . . . , n,

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) � f(x1, . . . , xi−1, 1, xi+1, . . . , xn).

4. Show that the signature {∧ , ∨, 0, 1} is maximally functional incomplete.

14 1 Propositional Logic

1.3 Tautologies and Logical Consequence

Instead of wα = 1 we prefer from now on to write w � α and read this w satisfies α.
Further, if X is a set of formulas, we write w � X if w � α for all α ∈ X and say
that w is a (propositional) model for X. A given α (resp. X) is called satisfiable if
there is some w with w � α (resp. w � X). The relation �, called the satisfiability
relation, evidently has the following properties:

w � p ⇔ wp = 1 (p ∈ PV); w � ¬α ⇔ w � α;
w � α∧β ⇔ w � α and w � β; w � α ∨ β ⇔ w � α or w � β.

One can define the satisfiability relation w � α for a given w : PV → {0, 1} also
inductively on α, according to the clauses just given. This approach is particularly
useful for extending the satisfiability conditions in 2.3.

It is obvious that w : PV → {0, 1} will be uniquely determined by setting down
in advance for which variables w � p should be valid. Likewise the notation w � α

for α ∈ Fn is already meaningful when w is defined only for p1 . . . , pn. One could
extend such a w to a global valuation by setting, for example, wp = 0 for all not
mentioned variables p.

For formulas containing other connectives the satisfaction conditions are to be
formulated accordingly. For example, we would expect that

w � α → β ⇔ if w � α then w � β.
If → is taken to be a primitive connective, this clause is required. However, we
defined → in such a way that this satisfaction clause is provable.

Definition. α is called logically valid or a (two-valued) tautology, in short � α, if
w � α for all w. A formula not satisfiable at all is called a contradiction.

Examples. p ∨ ¬p is a tautology and so is α ∨ ¬α for every formula α, the so-called
law of the excluded middle or the tertium non datur. On the other hand, α∧¬α and
α ↔ ¬α are always contradictions. The following tautologies in → are mentioned
in most textbooks on logic (association to the right is applied only to some extend,
to keep these formulas more easily in mind):

p → p,

(p → q) → (q → r) → (p → r),
(p → q → r) → (q → p → r),
p → q → p (premise charge),
(p → q → r) → (p → q) → (p → r) (Frege’s formula),
((p → q) → p) → p (Peirce’s formula).

It will later turn out that all tautologies in → alone are derivable (in a sense still
to be explained) from the last three named formulas.

1.3 Tautologies and Logical Consequence 15

Clearly, it is decidable whether a formula α is a tautology, in that one tries out the
valuations of the variables of α. Unfortunately, no essentially more efficient method
is known; such a method exists only for formulas of a certain form. We will have
a somewhat closer look at this problem in 4.2. Various questions like checking the
equivalence of formulas can be reduced to a decision about whether a formula is a
tautology. Observe, in particular, that α ≡ β ⇔ � α↔ β.

Definition. α is a logical consequence of X, written X � α, if w � α for every model
w of X. In short, w � X ⇒ w � α, for all w.

While we use � both as the symbol for logical consequence (which is a relation
between sets of formulas X and formulas α) and the satisfiability property, it will
always be clear from the context what � actually means. Evidently, α is a tautology
iff ∅ � α, so that � α can be regarded as an abbreviation for ∅ � α.

In this book, X � α, β will always mean ‘X � α and X � β’. More generally,
X � Y is always to mean ‘X � β for all β ∈ Y ’. We also write α1, . . . , αn � β in
place of {α1, . . . , αn} � β, and more briefly, X,α � β in place of X ∪ {α} � β.

Before giving examples, we note the following obvious properties:

(R) α ∈ X ⇒ X � α (reflexivity),

(M) X � α & X ⊆ X ′ ⇒ X ′ � α (monotonicity),

(T) X � Y & Y � α ⇒ X � α (transitivity).

Examples of logical consequence. (a) α, β � α∧β and α∧β � α, β. This is
evident from the truth table of ∧ . In view of (T), property (a) can also be stated
as X � α, β ⇔ X � α∧β. (b) α, α → β � β, because 1 → x = 1 ⇒ x = 1 according
to the truth table of → . (c) X � ⊥ ⇒ X � α for each α, because X � ⊥ = p1 ∧¬p1

clearly means that X is unsatisfiable (has no model). X = {p,¬p} is an example.
(d) X,α � β & X,¬α � β ⇒ X � β. Indeed, let w � X. If w � α then X,α � β

and hence w � β; but if w � ¬α then w � β follows from X,¬α � β. Note that (d)
reflects our case distinction made in the metatheory.

The property exemplified by (b) is also called modus ponens when formulated as
a rule of inference, as will be done in 1.6. Example (d) is another formulation of
the often-used procedure of proof by cases: In order to conclude a sentence β from
a set of premises X it suffices to show it to be a logical consequence both under an
additional supposition and under its negation. This is generalized in Exercise 3.

Useful for many purposes is the closure of the logical consequence relation under
substitution, which is a generalization of the fact that from p ∨ ¬p all tautologies of
the form α ∨ ¬α arise from substituting α for p.

Definition. A (propositional) substitution is a mapping σ : PV → F that can be
extended in a natural way to a mapping σ : F → F as follows:

16 1 Propositional Logic

(α∧β)σ = ασ ∧βσ, (α ∨ β)σ = ασ ∨ βσ, (¬α)σ = ¬ασ.

Like valuations, substitutions can be considered as operating on the whole of F. For
example, if pσ = α for some fixed p and qσ = q otherwise, then ϕσ arises from ϕ by
substituting α for p at all occurrences of p in ϕ. For X ⊆ F let Xσ := {ϕσ | ϕ ∈ X}.
The observation � ϕ ⇒ � ϕσ turns out to be the special instance X = ∅ of the
interesting property

(S) X � α ⇒ Xσ � ασ (substitution invariance).
In order to verify (S), let wσ for a given valuation w be defined by wσp = wpσ.

We first need to prove by induction on α that
(∗) w � ασ ⇔ wσ � α.

With α a prime formula, (∗) certainly holds. Further,

w � (α∧β)σ ⇔ w � ασ ∧βσ ⇔ w � ασ, βσ

⇔ wσ � α, β (induction hypothesis)

⇔ wσ � α∧β.

The reasoning for ∨ and ¬ is analogous and so (∗) holds. To prove (S), let X � α

and w � Xσ. By (∗), we get wσ � X. Thus wσ � α, and again by (∗), w � ασ.
Another property of �, important for applications, will be proved in 1.4, namely

(F) X � α ⇒ X0 � α for some finite subset X0 ⊆ X.
� shares the properties (R), (M), (T), and (S) with almost all classical and non-

classical (many-valued) logical systems. A relation � between sets of formulas and
formulas of an arbitrary propositional language F is called a (propositional) con-
sequence relation if � has the properties corresponding to (R), (M), (T), and (S).
These properties are the starting point for a general and strong theory of logical sys-
tems created by Tarski, which underpins nearly all the logical systems considered in
the literature. Should � satisfy the correspondingly formulated property (F) (which
is not supposed, in general), then � is called finitary.

Remark. Notions such as tautology, consistency, maximal consistency (to be considered
in 1.4), and so on can be used with reference to any consequence relation �. For instance,
a set of formulas X is called consistent in � whenever X � α for some α, and � itself
is consistent when � α for some α. If F contains ¬ then the consistency of X is often
defined by X � α,¬α for no α. But the aforementioned definition has the advantage of
being completely independent on any assumption concerning the occurring connectives.
Another example of a general definition is this: A formula set X is called deductively
closed in � provided X � α ⇒ α ∈ X, for all α ∈ F. Because of (R), this condition can
be replaced by X � α ⇔ α ∈ X. Examples in � are the set of all tautologies and the
whole of F. The intersection of a family of deductively closed sets is again deductively
closed. Hence, each X ⊆ F is contained in a smallest deductively closed set, called the
deductive closure of X. The notion of a consequence relation can also be defined in terms

1.3 Tautologies and Logical Consequence 17

of properties of the deductive closure. We mention that (F) holds not just for our � which
is given by a two-valued matrix, but for the consequence relation of any finite logical
matrix in any propositional language. This is stated and at once essentially generalized
in Exercise 3 from 5.7 as an application of the ultraproduct theorem.

A special property of �, easily provable, is
(D) X,α � β ⇒ X � α → β.

called the (semantic) deduction theorem for propositional logic. To see this suppose
X,α � β and let w be a model for X. If w � α then by the supposition w � β. If
w � α then w � α → β as well. This proves w � α → β and hence (D).

As is immediately seen, the converse of (D) holds as well, that is, one may replace
⇒ in (D) by ⇔. Iterated application of this simple observation yields

α1, . . . , αn � β ⇔ � α1 → α2 → · · · → αn → β ⇔ � α1 ∧α2 ∧ · · · ∧αn → β.

In this way, β’s being a logical consequence of a finite set of premises is transformed
into a tautology. Using (D) it is easy to obtain tautologies. For instance, to prove
� p → q → p, it is enough to verify p � q → p, for which it in turn suffices to show
that p, q � p, and this is trivial. By some simple applications of (D) each of the
tautologies in the examples on page 14 can be obtained, except the formula of Peirce.
As we shall see in Chapter 2, all properties of � derived above and in the exercises
will carry over to the consequence relation of a first-order language.

Exercises

1. Use the deduction theorem similar to its application in the text to prove

(a) � (p → q → r) → (p → q) → (p → r) (b) � (p → q) → (q → r) → (p → r).

2. Suppose that X � α → β. Prove that X � (γ → α) → (γ → β).

3. Verify the (rule of) disjunctive case distinction: if X,α � γ and X, β � γ then
X,α ∨ β � γ. This implication is written more suggestively as

X,α � γ X, β � γ

X, α ∨ β � γ
.

4. Verify the following rules of contraposition:
X,α � β

X,¬β � ¬α
and

X,¬β � ¬α

X,α � β
.

5. Let � be a consequence relation in F and X̄ := {α ∈ F |X � α}. Show that
X̄ is the smallest deductively closed set of formula containing X.

18 1 Propositional Logic

1.4 A Complete Calculus for �
We will now define a derivability relation � by means of a calculus operating solely
with some structural rules. � turns out to be identical to the consequence relation �.
The calculus � is of the so-called Gentzen type and its rules are given with respect
to pairs (X,α) of sets of formulas X and formulas α. Another calculus for �, of the
Hilbert type, will be considered in 1.6. In distinction to [Ge], we do not require
that X be finite; our particular goals here make such a restriction dispensable. If
� applies on the pair (X,α) then we write X � α and say that α is derivable or
provable from X (made precise below); otherwise we write X � α.

Following [Kl1], Gentzen’s name for (X,α), Sequenz, is translated as sequent. The
calculus is formulated in terms of ∧ ,¬ and encompasses the following six rules, called
the basic rules. Other rules derived from these are called provable or derivable. The
choice of {∧ ,¬} as the basic signature is a matter of convenience and justified by
its functional completeness. The other standard connectives are introduced by the
definitions α ∨ β := ¬(¬α∧¬β), α → β := ¬(α∧¬β), α↔ β := (α → β)∧ (β → α).

Of course, one could choose any other functional complete signature and change
or adapt the basic rules correspondingly. But it should be observed that a complete
calculus in ¬, ∧ , ∨, → , say, must also include basic rules concerning ∨ and → , which
makes induction arguments on the basic rules of the calculus more lengthy.

Each of the basic rules below has certain premises and a conclusion. Only (IS)
has no premises. It allows the derivation of all sequents α � α. These are called the
initial sequents, because each derivation must start with these. We mention that
each of the six basic rules is really needed for proving the completeness of �.

(IS)
α � α

(initial sequent) (MR)
X � α

X ′ � α
(X ′ ⊇ X, monotonicity)

(∧1)
X � α, β

X � α∧β
(∧2)

X � α∧β

X � α, β

(¬1)
X � α,¬α

X � β
(¬2)

X,α � β X,¬α � β

X � β

Here and in the following X � α, β is to mean X � α and X � β. This convention is
important since X � α, β has another meaning in Gentzen calculi, which are given
with respect to pairs of sets of formulas and which play a role in proof-theoretical
investigations. Thus, the rules (∧1) and (¬1) actually have two premises, just like
(¬2). Note further that (∧2) really consists of two subrules corresponding to the
conclusions X � α and X � β. In (¬2), X,α stands for X∪{α}, and this abbreviated
form will always be used when there is no risk of misunderstanding.

1.4 A Complete Calculus for � 19

α1, . . . , αn � β stands for {α1, . . . , αn} � β; in particular α � β for {α} � β and
� α for ∅ � α, just as with �. The rule (MR) becomes provable if all (X,α) with
α ∈ X are called initial sequents, that is, if (IS) is strengthened to

X � α
(α ∈ X).

X � α (read “X derivable α”) is to mean that the sequent (X,α) can be obtained
though a stepwise application of the basic rules. We can make this idea of “stepwise
application” of the basic rules rigorous and formally precise (intelligible to a com-
puter, so to speak) in the following way: a derivation is to mean a finite sequence
(S0; . . . ; Sn) of sequents such that every Si is either an initial sequent or is obtained
through the application of some basic rule to preceding elements in the sequence.
So α is derivable from X when there is a derivation (S0; . . . ; Sn) with Sn = (X,α).
An example with the end sequent α, β � α∧β is the derivation

(α � α; α, β � α; β � β; α, β � β; α, β � α∧β).

More interesting is the derivation of additional rules, which we will illustrate with
the examples to follow. The second example, a generalization of the first, is the
often-used proof method reductio ad absurdum: α is proved from X by showing
that the assumption ¬α leads to a contradiction. The other examples are given
with respect to the defined → -connective. Hence, for instance, the → -elimination

mentioned below runs in the original language
X � ¬(α∧¬β)

X,α � β
.

Examples of provable rules

X,¬α � α

X � α
proof applied

(¬-elimination) 1 X,α � α (IS), (MR)
2 X,¬α � α supposition
3 X � α (¬2)

X,¬α � β,¬β

X � α
(reductio ad absurdum) 1 X,¬α � β,¬β supposition

2 X,¬α � α (¬1)
3 X � α ¬-elimination

X � α → β

X, α � β
(→ -elimination) 1 X,α,¬β � α,¬β (IS), (MR)

2 X,α,¬β � α∧¬β (∧1)
3 X � ¬(α∧¬β) (= α → β) supposition
4 X,α,¬β � ¬(α∧¬β) (MR)
5 X,α,¬β � β (¬1) on 2 and 4
6 X,α � β ¬-elimination

20 1 Propositional Logic

X � α X,α � β

X � β
proof applied

(cut rule) 1 X,¬α � α supposition, (MR)
2 X,¬α � ¬α (IS), (MR)
3 X,¬α � β (¬1)
4 X,α � β supposition
5 X � β (¬2) on 4 and 3

X,α � β

X � α → β
(→ -introduction) 1 X,α∧¬β, α � β supposition, (MR)

2 X,α∧¬β � α (IS), (MR), (∧2)
3 X,α∧¬β � β Cut rule
4 X,α∧¬β � ¬β (IS), (MR), (∧2)
5 X,α∧¬β � α → β (¬1)
6 X,¬(α∧¬β) � α → β (IS), (MR)
7 X � α → β (¬2) on 5 and 6

The example of → -introduction is nothing other than the syntactic form of the
deduction theorem that was semantically formulated in the previous section.

Remark 1. The deduction theorem also holds for intuitionistic logic. However, it is
not in general true for all logical systems dealing with implication, thus indicating that
the deduction theorem is not an inherent property of every meaningful conception of
implication. For instance, it is not valid for certain formal systems of relevance logic that
attempt to model implication as a cause-and-effect relation.

A simple consequence of → -elimination and the cut rule is the detachment rule
X � α, α → β

X � β
.

For notice that the premise X � α → β yields X,α � β by → -elimination, and since
X � α, the cut rule yields X � β. Applying detachment on X = {α, α → β}, we
obtain α, α → β � β. This collection of sequents is known as modus ponens, which
will be more closely considered in 1.6.

Many properties of � are proved through rule induction, which we describe after
introducing some convenient terminology. We identify a property E of sequents with
the set of all pairs (X,α) to which E applies. In this sense the logical consequence
relation � is the property applying to all pairs (X,α) with X � α.

All the rules considered here are of the form

R :
X1 � α1 · · · Xn � αn

X � α

and are referred to as Gentzen-style rules. We say that E is closed under R when
E(X1, α1), . . . , E(Xn, αn) implies E(X,α). For a rule without premises, i.e., n = 0,

1.4 A Complete Calculus for � 21

this is just to mean E(X,α). For instance, consider the property E : X � α. Each
basic rule of � is closed under E . In detail this means

α � α, X � α ⇒ X ′ � α for X ′ ⊇ X, X � α, β ⇒ X � α∧β, etc.
From the latter it will follow that E applies to all provable sequents; in other words,
� is (semantically) sound. What we need here is the following easily justifiable

Principle of rule induction. Let E (⊆ PF × F) be a property closed under all
basic rules of �. Then X � α implies E(X,α).

Proof by induction on the length of a derivation of the sequent S = (X,α). If the
length is 1, ES holds since S must be an initial sequent. Now let (S0; . . . ; Sn) be
a derivation of the sequent S := Sn. By the induction hypothesis we have ESi for
all i < n. If S is an initial sequent then ES holds by assumption. Otherwise S has
been obtained by the application of a basic rule on some of the Si for i < n. But
then ES holds, because E is closed under all basic rules.

As already remarked, the property X � α is closed under all basic rules. Therefore,
the principle of rule induction immediately yields the soundness of the calculus, that
is, � ⊆ �. More explicitly, X � α ⇒ X � α, for all X,α.

There are several equivalent definitions of �. One that is purely set-theoretical is
the following: � is the smallest of all relations ⊆ PF × F that are closed under all
basic rules. The equivalence proofs of such definitions are wordy but not particularly
contentful. We therefore do not elaborate further, especially because we henceforth
only use rule induction and not the lengthy definition of �. Using rule induction
one can also prove X � α ⇒ Xσ � ασ, and in particular the following theorem, for
which the soundness of � is completely irrelevant.

Theorem 4.1 (Finiteness theorem for �). If X � α then there is a finite subset
X0 ⊆ X with X0 � α.

Proof. Let E(X,α) be the property ‘X0 � α for some finite X0 ⊆ X’. Certainly,
E(X,α) holds for X = {α}, with X0 = X. If X has a finite subset X0 such that
X0 � α, then so too does every set X ′ such that X ′ ⊇ X. Hence E is closed under
(MR). Let E(X,α), E(X, β), with, say, X1 � α, X2 � β for finite X1, X2 ⊆ X. Then
we also have X0 � α, β for X0 = X1 ∪X2 by (MR). Hence X0 � α∧β by (∧1). Thus
E(X,α∧β) holds, and E is closed under (∧1). Analogously one shows the same for
all remaining basic rules of �. The claim then follows by rule induction.

Of great significance is the notion of formal consistency. It fully determines the
derivability relation, as the lemma to come shows. It will turn out that “consistent”
formalizes adequately the notion “satisfiable.” The proof of this adequacy is the
clue to the completeness problem.

22 1 Propositional Logic

Definition. X ⊆ F is called inconsistent (in our calculus �) if X � α for all α ∈ F,
and otherwise consistent. X is called maximally consistent if X is consistent but
each Y ⊃ X is inconsistent, or equivalently, α /∈ X ⇒ X,α � β for all β.

The inconsistency of X can be identified by the derivability of a single formula,
namely ⊥ (= p1 ∧¬p1). This is so because X � ⊥ implies X � p1,¬p1 by (∧2), hence
X � α for all α by (¬1). Conversely, when X is inconsistent then in particular X � ⊥.
Thus, X � ⊥ may be read as “X is inconsistent,” and X � ⊥ as “X is consistent.”
The most important is resumed by the following lemma in the properties C+ and
C−, which can also each be understood as a pair of provable rules.

Lemma 4.2. The derivability relation � has the properties
C+ : X � α ⇔ X,¬α � ⊥, C− : X � ¬α ⇔ X,α � ⊥.

Proof. If X � α holds then so too does X,¬α � α. Since certainly X,¬α � ¬α, we
have X,¬α � β for all β by (¬1), in particular X,¬α � ⊥. Conversely, let X,¬α � ⊥

be the case, so that in particular X,¬α � α, and thus X � α by ¬-elimination on
page 19. C− is proved completely analogously.

The claim � ⊆ �, not yet proved, is equivalent to X � α ⇒ X � α, for all X

and α. But so formulated it becomes apparent what needs to be done to obtain the
proof. Since X � α is by C+ equivalent to the consistency of X ′ := X ∪ {¬α}, and
likewise X � α to the satisfiability of X ′, we need only show that consistent sets
are satisfiable. To this end we state the following lemma whose proof, exceptionally,
jumps ahead of matters in that it uses Zorn’s Lemma from 2.1 page 37.

Lemma 4.3 (Lindenbaum’s theorem). Every consistent set X can be extended
to a maximally consistent set X ′ ⊇ X.

Proof. Let H be the set of all consistent Y ⊇ X, partially ordered with respect to⊆.
H �= ∅, because X ∈ H. Let K ⊆ H be a chain, i.e., Y ⊆ Z or Z ⊆ Y , for all
Y, Z ∈ K. Then U =

⋃
K is an upper bound for K. Indeed, Y ∈ K ⇒ Y ⊆ U .

Moreover, and this is here the point, U is consistent, so that U ∈ H. Assume U � ⊥.
Then U0 � ⊥ for some finite U0 = {α0, . . . , αn} ⊆ U . If, say, αi ∈ Yi ∈ K, and Y

is the biggest of the sets Y0, . . . , Yn, then αi ∈ Y for all i � n, hence also Y � ⊥

by (MR). This contradicts Y ∈ H. By Zorn’s lemma, H therefore has a maximal
element X ′, which is necessarily a maximally consistent extension of X.

Remark 2. The advantage of this proof is that it is free of assumptions regarding the
cardinality of the language. Lindenbaum’s original construction was based, however, on
countable languages F and runs as follows: Let X0 := X ⊆ F be consistent and α0, α1, . . .
be an enumeration of F. Set Xn+1 = Xn ∪ {αn} if this set is consistent and Xn+1 = Xn

otherwise. Then Y =
⋃

n∈ω Xn is a maximally consistent extension of X, as can be easily
verified. Here Zorn’s lemma, which is equivalent to the axiom of choice, is not required.

1.4 A Complete Calculus for � 23

Lemma 4.4. A maximally consistent set X has the property
[¬] X � ¬α ⇔ X � α, for arbitrary α.

Proof. If X � ¬α, then X � α cannot hold due to the consistency of X. If on
the other hand X � α, then X,¬α is by C+ a consistent extension of X. But then
¬α ∈ X, because X is maximally consistent. Consequently X � ¬α.

Only property [¬] from Lemma 4.4 and property [∧] X � α∧β ⇔ X � α, β are
used in the simple model construction for maximally consistent sets in the following
lemma, which reveals the requirements for proposional model construction in the
logical base {∧ ,¬}. If this base is changed, we need corresponding properties.

Lemma 4.5. A maximally consistent set X is satisfiable.

Proof. Define w by w � p ⇔ X � p. We are going to show that for all α,
(∗) X � α ⇔ w � α.

For prime formulas this is trivial. Further:
X � α∧β ⇔ X � α, β (rules (∧1), (∧2))

⇔ w � α, β (induction hypothesis)
⇔ w � α∧β (definition)

X � ¬α ⇔ X � α (Lemma 4.4)
⇔ w � α (induction hypothesis)
⇔ w � ¬α (definition).

By (∗), w is a model for X, thereby completing the proof.

The above shows the equivalence of the consistency and satisfiability of a set of
formulas. From this fact we easily obtain the main result of the present section.

Theorem 4.6 (Completeness theorem). X � α ⇔ X � α, for all X,α.

Proof. The direction ⇒ is the soundness of �. Conversely, X � α implies that
X,¬α is consistent. Let Y be a maximally consistent extension of X,¬α, Lemma 4.3.
By Lemma 4.5, Y is satisfiable, hence also X,¬α. Therefore X � α.

An immediate consequence of Theorem 4.6 is the finiteness property (F) mentioned
already in 1.3, which is almost trivial for � but not for �:

Theorem 4.7 (Finiteness theorem for �). If X � α, then so too X0 � α for
some finite subset X0 of X.

This is clear because the finiteness theorem holds for � (Theorem 4.1). A further
very important consequence of the completeness theorem is the following

Theorem 4.8 (Compactness theorem). A set X is satisfiable provided each
finite subset of X is satisfiable.

24 1 Propositional Logic

This theorem holds because if X is unsatisfiable, i.e., X � ⊥, then by Theorem 4.7 we
also know that X0 � ⊥ for some finite X0 ⊆ X, thus proving the claim. Conversely,
one can easily obtain Theorem 4.7 from Theorem 4.8; that is, both theorems are
directly derivable from one another.

Because Theorem 4.6 makes no assumptions regarding the cardinality of the set
of variables, the compactness theorem following from it is likewise valid without the
respective restrictions. That means that the theorem has many useful applications,
as the next section illustrates.

Let us notice that direct proofs of Theorem 4.8 or appropriate reformulations of it
can be given that have nothing to do with a calculus of logical rules. For example,
the theorem is equivalent to

⋂
α∈X Md α = ∅ ⇒

⋂
α∈X0

Md α = ∅ for some finite
X0 ⊆ X, where Md α denotes the set of all models of α. In this formulation the
compactness of a certain naturally arising topological space is claimed; the points
of this space are the valuations of the variables, hence the name “compactness
theorem.” More on this subject can be found in [RS].

Another approach to completeness (probably the simplest one) is provided by
Exercises 3 and 4. This approach makes some elegant use of substitutions. It yields
not only Theorems 4.6, 4.7, and 4.8 in one go, but also some further remarkable
properties: Neither new tautologies nor new rules can consistently be adjoined to the
consequence relation �, the so-called Post completeness and structural completeness
of �, respectively; see for instance [Ra1] for details.

Exercises

1. Prove using Theorem 4.6: if X ∪{¬α | α ∈ Y } is inconsistent and Y �= ∅, then
there exist formulas α0, . . . , αn ∈ Y with X � α0 ∨ · · · ∨ αn.

2. Augment the signature {¬, ∧} by ∨ and prove the completeness of the calculus
obtained by supplementing the basic rules used so far with the rules

X � α

X � α ∨ β, β ∨ α
;

X,α � γ X, β � γ

X, α ∨ β � γ
.

3. Let � be a finitary consequence relation in F{∧ ,¬} with the properties (∧1)
through (¬2). Show that � is maximal, which is to mean �′ α for all α, for
every proper extension �′ ⊃ �. The latter is readily shown with the so-called
substitution method explained in the Hints to the Exercises.

4. Show by referring to Exercise 3: there is exactly one consequence relation in
F{∧ ,¬} satisfying (∧1)–(¬2). This obviously implies the completeness of the
calculus �, for both � and � have these properties.

1.5 Applications of the Compactness Theorem 25

1.5 Applications of the Compactness Theorem

Theorem 4.8 is very useful in carrying over certain properties of finite structures to
infinite ones. There follow some typical examples. While these could also be treated
with the compactness theorem of predicate logic in 3.3, the examples demonstrate
how the consistency of certain sets of sentences in predicate logic can also be obtained
in propositional logic. This approach is also useful for Chapter 4.

1. Every set M can be (totally) ordered.5

This means that there is an irreflexive, transitive, and connex relation < on M . For
finite M this follows easily by induction on the number of elements of M . The claim
is obvious when M = ∅ or is a singleton. Let now M = N ∪ {a} with an n-element
set N and a /∈ N , so that M has n + 1 elements. Then we get an order on M from
that for N by “setting a to the end,” that is, defining x < a for all x ∈ N .

Now let M be any set. We consider for every pair (a, b) ∈M ×M a propositional
variable pab. Let X be the set consisting of the formulas

¬paa (a ∈M),
pab ∧pbc → pac (a, b, c ∈M),

pab ∨ pba (a �= b).
From a model w for X we obtain an order <, simply by putting a < b ⇔ w � pab.
w � ¬paa says the same thing as a ≮ a. Analogously, the remaining formulas reflect
transitivity and connexity. Thus, according to Theorem 4.8, it suffices to show that
every finite subset X0 ⊆ X has a model. In X0 only finitely many variables occur.
Hence, there are finite sets M1 ⊆ M and X1 ⊇ X0, where X1 is given exactly
as X except that a, b, c now run through the finite set M1 instead of M . But X1

is satisfiable, because if < is an order of the finite set M1 and w is defined by
w � pab ⇔ a < b, then w is clearly a model for X1, hence also for X0.

2. The four-color theorem for infinite planar graphs.
A simple graph is a pair (V,E) with an irreflexive symmetrical relation E ⊆ V 2.
The elements of V are called points or vertices. It is convenient to identify E with
the set of all unordered pairs {a, b} such that aEb and to call these pairs the edges
of (V,E). If {a, b} ∈ E then we say that a, b are neighbors. (V,E) is k-colorable if V

can be decomposed into k color classes Ci �= ∅, V = C1 ∪ · · · ∪Ck, with Ci ∩Cj = ∅
for i �= j, such that neighboring points do not carry the same color; in other words,
if a, b ∈ Ci then {a, b} /∈ E for i = 1, . . . , k.
5 Unexplained notions are defined in 2.1. Our first application is interesting because in set theory
the compactness theorem is weaker than the axiom of choice (AC) which is equivalent to the
statement that every set can be well-ordered. Thus, the ordering principle is weaker than AC
since it follows from the compactness theorem.

26 1 Propositional Logic

� ��
�
�
�
�
�
�

�
�
�
�
�
�

�
�
��

�
�

��
�

The figure shows the smallest four-colorable graph that is not
three-colorable; all its points neighbor each other. We show that
a graph (V,E) is k-colorable if every finite subgraph (V0, E0) is
k-colorable. E0 consists of the edges {a, b} ∈ E with a, b ∈ V0.
To prove our claim consider the following set X of formulas built

from the variables pa,i for a ∈ V and 1 � i � k:
pa,1 ∨ · · · ∨ pa,k, ¬(pa,i ∧pa,j) (a ∈ V, 1 � i < j � k),

¬(pa,i ∧pb,i) ({a, b} ∈ E, i = 1, . . . , k).
The first formula states that every point belongs to at least one color class; the
second ensures their disjointedness, and the third that no neighboring points have
the same color. Once again it is enough to construct some w � X. Defining then the
Ci by a ∈ Ci ⇔ w � pa,i proves that (V,E) is k-colorable. We must therefore satisfy
each finite X0 ⊆ X. Let (V0, E0) be the finite subgraph of (V,E) of all the points
that occur as indices in the variables of X0. The assumption on (V0, E0) obviously
ensures the satisfiability of X0 for reasons analogous to those given in Example 1,
and this is all we need to show. The four-colour theorem says that every finite planar
graph is four-colorable. Hence, the same holds for all graphs whose finite subgraphs
are planar. These cover all planar graphs, embeddable in the real plane.

3. König’s tree lemma.
There are several versions of this lemma. For simplicity, ours refers to a directed tree.
This is a pair (V,�) with an irreflexive relation �⊆ V 2 such that for a certain point
c, the root of the tree, and any other point a there is precisely one path connecting
c with a. This is a sequence (ai)i�n with a0 = c, an = a, and ai � ai+1 for all i < n.
From the uniqueness of a path connecting c with any other point it follows that each
b �= c has exactly one predecessor in (V,�), that is, a point a with a � b.

The lemma in question then reads as follows: If every a ∈ V has only finitely many
successors and V contains arbitrarily long finite paths, then there is an infinite path
through V starting at c. By such a path we mean an infinite sequence (ci)i∈N such
that c0 = c and ci � ci+1 for each i. In order to prove König’s lemma we define
inductively S0 = {c} and Sk+1 = {b ∈ V | there is some a ∈ Sk with a � b}. Since
every point has only finitely many successors, every “layer” Sk is finite, and since
there are arbitrarily long paths starting in c, no Sk is empty. Now let pa for every
a ∈ V be a propositional variable, and let X consist of the formulas

(A)
∨

a∈Sk
pa, ¬(pa ∧pb)

(
a, b ∈ Sk, a �= b, k ∈ N

)
,

(B) pb → pa

(
a, b ∈ V, a � b

)
.

Suppose that w � X. Then by the formulas under (A), for every k there is precisely
one a ∈ Sk with w � pa, denoted by ck. In particular, c0 = c. Moreover, ck � ck+1

for all k. Indeed, if a is the predecessor of b = ck+1, then w � pa in view of (B),

1.5 Applications of the Compactness Theorem 27

hence necessarily a = ck. Thus, (ci)i∈N is a path of the type sought. Again, every
finite subset X0 ⊆ X is satisfiable; for if X0 contains variables with indices up to at
most the layer Sn, then X0 is a subset of a finite set of formulas X1 that is defined
as X, except that k runs only up to n, and for this case the claim is obvious.

4. The marriage problem (in linguistic guise).
Let N be a set of words or names (in speech) with meanings in a set M . A name
ν ∈ N can be a synonym (i.e., it shares its meaning with other names in N), or
a homonym (i.e., it can have several meanings), or even both. We proceed from
the plausible assumption that each name ν has finitely many meanings and that k

names have at least k meanings. It is claimed that a pairing-off exists; that is, an
injection f : N →M that associates to each ν one of its original meanings.

For finite N , the claim will be proved by induction on the number n of elements
of N . It is trivial for n = 1. Now let n > 1 and assume that the claim holds for all
k-element sets of names whenever k < n.

Case 1: For each k (< n): k names in N have at least k + 1 distinct meanings.
Then to an arbitrarily chosen ν from N , assign one of its meanings a to it so that
from the names out of N \{ν} any k names still have at least k meanings �= a. By
the induction hypothesis there is a pairing-off for N \{ν} that together with the
ordered pair (ν, a) yields a pairing-off for the whole of N .

Case 2: There is some k-element K ⊆ N (0 < k < n) such that the set MK

of all meanings of the ν ∈ K has only k members. Every ν ∈ K can be assigned
its meaning from MK by the induction hypothesis. From the names in N \K any i

names (i � n − k) still have i meanings not in MK , as is not hard to see. By the
induction hypothesis there is also a pairing-off for N \K with a set of values disjoint
from MK . Joining the two obviously results in a pairing-off for the whole of N .

We will now prove the claim for arbitrary sets of names N : assign to each pair
(ν, a) ∈ N ×M a variable pν,a and consider the set of formulas

X :
{

pν,a ∨ · · · ∨ pν,e (ν ∈ N, a, . . . , e the meanings of ν),
¬(pν,x ∧pν,y) (ν ∈ N, x, y ∈M, x �= y).

If w � X, then we obtain a pairing-off for N by f(ν) = b ⇔ w � pν,b. But every
finite X0 ⊆ X has a model, because only finitely many names appear in it as indices.
This case was already covered, thus proving that X has a model.

5. The ultrafilter theorem.
This theorem is of fundamental significance in topology (from which it originally
stems), model theory, set theory, and elsewhere. Let I be any nonempty set. A
nonempty collection of sets F ⊆ PI is called a filter on I if for all M, N ⊆ I,

(a) M, N ∈ F ⇒M ∩N ∈ F , (b) M ∈ F & M ⊆ N ⇒ N ∈ F .

28 1 Propositional Logic

As is easily verified, (a) and (b) are equivalent to just a single condition, namely

(∩) M ∩N ∈ F ⇔ M ∈ F and N ∈ F.

Since F �= ∅, (b) shows that always I ∈ F . For fixed K ⊆ I, {J ⊆ I | J ⊇ K} is a
filter, the principal filter generated by K. It is a proper filter provided K �= ∅, which
in general is to mean a filter with ∅ /∈ F . Another example on an infinite I is the
set of all cofinite subsets M ⊆ I, i.e., ¬M (= I \M) is finite. This holds because
M1 ∩M2 is cofinite iff M1, M2 are both cofinite, so that (∩) is satisfied.

A filter F is said to be an ultrafilter on I provided it satisfies, in addition,

(¬) ¬M ∈ F ⇔ M /∈ F.

Ultrafilters on an infinite set I containing all cofinite subsets are called nontrivial.
That such ultrafilters exist will be shown below. It is nearly impossible to describe
them more closely. Roughly speaking, “we know they exist but we cannot see them.”
A trivial ultrafilter on I contains at least one finite subset. {J ⊆ I | i0 ∈ J} is an
example for each i0 ∈ I, also called a principal ultrafilter. All trivial ultrafilters
are of this form; Exercise 3. Thus, trivial and principal ultrafilters coincide. In
particular, each ultrafilter on a finite set I is trivial in this sense.

Each proper filter F obviously satisfies the assumption of the following theorem
and can thereby be extended to an ultrafilter.

Ultrafilter theorem. Every subset F ⊆ PI can be extended to an ultrafilter U on
a set I, provided M0 ∩ · · · ∩Mn �= ∅ for all n and all M0, . . . Mn ∈ F .

Proof. Consider along with the propositional variables p
J

(J ⊆ I) the formula set
X : p

M∩N
↔ p

M
∧p

N
, p¬M

↔ ¬p
M

, p
J

(M, N ⊆ I, J ∈ F).
Let w � X. Then (∩), (¬) are valid for U := {J ⊆ I | w � p

J
}, hence U is an

ultrafilter and also F ⊆ U . It therefore suffices to show that every finite subset of
X has a model, for which it is in turn enough to prove the ultrafilter theorem for
finite F . But this is easy: let F = {M0, . . . , Mn}, D := M0 ∩ · · · ∩Mn, and i0 ∈ D.
Then U = {J ⊆ I | i0 ∈ J} is an ultrafilter with U ⊇ F .

Exercises

1. Prove (using the compactness theorem) that every partial order �0 on a set
M can be extended to a total order � on M .

2. Let F be a proper filter on I (�= ∅). Show that F is an ultrafilter if and only
if M ∪N ∈ F ⇔ M ∈ F or N ∈ F .

3. Show that an ultrafilter U on I is trivial iff there is an i0 ∈ I such that
U = {J ⊇ I | i0 ∈ J}. Thus, each ultrafilter on a finite set I is of this form.

1.6 Hilbert Calculi 29

1.6 Hilbert Calculi

In a certain sense the simplest logical calculi are so-called Hilbert calculi. They
are based on tautologies selected to play the role of logical axioms; this selection
is, however, rather arbitrary and depends considerably on the logical signature.
They use rules of inference like, for example, modus ponens MP: α, α → β/β 6 . An
advantage of these calculi consists in the fact that formal proofs, defined below as
certain finite sequences, are immediately rendered intuitive. This advantage will
pay off above all in the arithmetization of proofs in 6.2.

In the following we consider such a calculus with MP as the only rule of inference;
we denote this calculus for the time being by |∼ , in order to distinguish it from
the calculus � of 1.4. The logical signature contains just ¬, ∧ . In the axioms
of |∼ , however, we will also use implication defined by α → β := ¬(α∧¬β), thus
considerably shortening the writing down of the axioms.

The logical axiom scheme of our calculus consists of the set Λ of all formulas of
the following form (not forgetting the right association of parentheses):

Λ1 (α → β → γ) → (α → β) → α → γ, Λ2 α → β → α∧β,

Λ3 α∧β → α, α∧β → β, Λ4 (α →¬β) → β →¬α.

Λ consists only of tautologies. Moreover, all formulas derivable from Λ using MP are
tautologies as well, because � α, α → β implies � β. We will show that all 2-valued
tautologies are provable from Λ by means of MP.

Definition. A proof from X (in |∼) is a sequence Φ = (ϕ0, . . . , ϕn) such that for
every k � n either ϕk ∈ X ∪Λ or there exist indices i, j < k such that ϕj = ϕi → ϕk

(i.e., ϕk results from applying MP to terms of Φ proceeding ϕk). A proof (ϕ0, . . . , ϕn)
with ϕn = α is called a proof of α from X of length n. When such a proof exists we
write X |∼α and say that α is provable or derivable from X.

Example. (p, q, p → q → p∧q, q → p∧q, p∧q) is a proof of p∧q from X = {p, q}. The
last two terms in this sequence derive with MP from the previous ones, which are
members of X ∪ Λ.

Since a proof contains only finitely many formulas, the preceding definition leads
immediately to the finiteness theorem for |∼ , formulated correspondingly to Theo-
rem 4.1. Every proper initial segment of a proof is obviously a proof itself. Moreover,
concatenating proofs of α and α → β and adjoining β to the resulting sequence will
produce a proof for β, as is plain to see. This observation implies

(∗) X |∼α, α → β ⇒ X |∼β.

6 Putting it crudely, this notation should express the fact that β is held to be proved from a
formula set X when α and α → β are provable from X. Modus ponens is an example of a binary
Hilbert-style rule; for a general definition of this type of rule see, for instance, [Ra1].

30 1 Propositional Logic

In short, the set of all formulas derivable from X is closed under MP. In applying the
property (∗) we will often say “MP yields. . . ” It is easily seen that X |∼α iff α belongs
to the smallest set containing X and is closed under MP. For the arithmetization of
proofs and for automated theorem proving, however, it is more appropriate to base
derivability on the finitary notion of a proof. Fortunately, the following theorem
relieves us of the necessity to verify a property of formulas α derivable from X each
time by induction on the length of a proof of α from X.

Theorem 6.1 (Induction principle for |∼). Let X be given and E be a property
of formulas. Then E holds for all α with X |∼α, provided

(o) E holds for all α ∈ X ∪ Λ, (s) Eα and E(α → β) imply Eβ, for all α, β.

Proof by induction on the length n of a proof Φ of α from X. If α ∈ X ∪ Λ then
Eα holds by (o), which applies in particular if n = 0. If α /∈ X ∪ Λ then n > 1 and
Φ contains members ϕi and ϕj = ϕi → α both having proofs of length < n. Hence
Eϕi and Eϕj by the induction hypothesis, and so Eα by (s).

An application of Theorem 6.1 is the proof that |∼ ⊆ �, or more explicitly
X |∼α ⇒ X � α (soundness).

To see this let Eα be the property ‘X � α’ for fixed X. Certainly, X � α holds
for α ∈ X. The same is true for α ∈ Λ. Thus, Eα for all α ∈ X ∪ Λ, and (o) is
confirmed. Now let X � α, α → β; then so too X � β, thus confirming the inductive
step (s). By Theorem 6.1, Eα (that is, X � α) holds for all α with X |∼α.

Unlike the proof of completeness for �, the one for |∼ requires a whole series of
derivations to be undertaken. This is in accordance with the nature of things: to
get Hilbert calculi up and running one must often begin with drawn-out derivations.

In the following, we shall use without further comment the evident monotonicity
property X ′ ⊇ X |∼α ⇒ X ′ |∼α, where as usual, |∼α stands for ∅ |∼α.

Lemma 6.2. (a) X |∼α →¬β ⇒ X |∼β →¬α, (b) |∼α → β → α,
(c) |∼α → α, (d) |∼α →¬¬α, (e) |∼β →¬β → α.

Proof. (a): Clearly X |∼ (α →¬β) → β →¬α by Axiom Λ4. From this and from
X |∼α →¬β the claim is derived by MP. (b): By Λ3 |∼β ∧¬α →¬α, and so with
(a) |∼α →¬(β ∧¬α) = α → β → α. (c): From γ := α, β := α → α in Λ1 we obtain
|∼ (α → (α → α) → α) → (α → α → α) → α → α, which gives together with (b) the claim
by applying MP twice; (d) then follows from (a) using |∼¬α →¬α. (e): Due to
|∼¬β ∧¬α →¬β and (a), we get |∼β →¬(¬β ∧¬α) = β →¬β → α.

Part (e) of this lemma immediately yields that |∼ satisfies the rule (¬1) of 1.4, and
hence X |∼β,¬β ⇒ X |∼α. Because of Λ2, Λ3, |∼ also satisfies (∧1) and (∧2). After

1.6 Hilbert Calculi 31

some preparation we will show that (¬2) holds for |∼ as well, thereby obtaining the
desired completeness result. A crucial step in the completeness proof is

Lemma 6.3 (Deduction theorem). X,α |∼γ implies X |∼α → γ.

Proof by induction in |∼ with a given set of premises X,α. Let X,α |∼γ, and let
Eγ now mean ‘X |∼α → γ’. To prove (o), let γ ∈ Λ ∪ X ∪ {α}. If γ = α then
clearly X |∼α → γ by Lemma 6.2(c). If γ ∈ X ∪ Λ then certainly X |∼γ. Because
also X |∼γ → α → γ by Lemma 6.2(b), MP yields X |∼α → γ, thus proving (o). To
show (s) let X,α |∼β and X,α |∼β → γ, so that X |∼α → β, α → β → γ by the induc-
tion hypothesis. Applying MP to Λ1 twice yields X |∼α → γ, thus confirming (s).
Therefore, by Theorem 6.1, Eγ for all γ, which completes the proof.

Lemma 6.4. |∼¬¬α → α.

Proof. By Λ3 and MP we have ¬¬α∧¬α |∼¬α,¬¬α. Choose any τ with |∼τ . The
already-proved rule (¬1) gives ¬¬α∧¬α |∼¬τ , and Lemma 6.3 |∼¬¬α∧¬α →¬τ .
From Lemma 6.2(a) it follows that |∼τ →¬(¬¬α∧¬α). But |∼τ , so using MP we
obtain |∼¬(¬¬α∧¬α) and the latter formula is the same as ¬¬α → α.

Lemma 6.5. |∼ satisfies rule (¬2), i.e., X, β |∼α and X,¬β |∼α imply X |∼α.

Proof. Suppose X, β |∼α and X,¬β |∼α; then also X, β |∼¬¬α and X,¬β |∼¬¬α by
Lemma 6.2(d). Hence, X |∼β →¬¬α,¬β →¬¬α (Lemma 6.3), and so X |∼¬α →¬β

and X |∼¬α →¬¬β by Lemma 6.2(a). Thus, MP yields X,¬α |∼¬β,¬¬β, whence
X,¬α |∼¬τ by (¬1), with τ as in Lemma 6.4. Consequently X |∼¬α →¬τ , due to
Lemma 6.3, and therefore X |∼τ →¬¬α by Lemma 6.2(a). Since X |∼τ it follows
that X |∼¬¬α and so eventually X |∼α by Lemma 6.4.

Theorem 6.6 (Completeness theorem). |∼ = �.

Proof. By soundness, |∼ ⊆ �. Since |∼ satisfies all basic rules of �, it follows that
�⊆ |∼ . Since � and � coincide (Theorem 4.6), we get also � ⊆ |∼ .

From this follows in particular |∼ϕ ⇔ � ϕ. In short, using MP one obtains from
the axiom system Λ exactly the two-valued tautologies.

Remark 1. It may be something of a surprise that Λ1–Λ4 are sufficient to obtain all
propositional tautologies, because these axioms and all formulas derivable from them using
MP are collectively valid in intuitionistic and minimal logic. That Λ permits the derivation
of all tautologies is based on the fact that → was defined. Had → been considered as
a primitive connective this would no longer have been the case. To see this, alter the
interpretation of ¬ by setting ¬0 = ¬1 = 1. While one here indeed obtains the value 1 for
every valuation of the axioms of Λ and formulas derived from them using MP, one does not
do so for ¬¬p → p, which therefore cannot be derived. Modifying the two-valued matrix
or using many-valued logical matrices is a widely applied method to obtain independence
results for logical axioms.

32 1 Propositional Logic

Thus, there are various calculi to derive tautologies or other semantical properties
of �. Clearly, simple relations like α → β � (γ → α) → (γ → β) can be confirmed
without recourse to � or |∼ , for instance with the semantical deduction theorem.

Using Hilbert calculi one can axiomatize other two- and many-valued logics, for
example the functional incomplete fragment in Exercise 3. The fragment in ∧ , ∨

which, while having no tautologies, contains interesting Hilbert-style rules, is also
axiomatizable through finitely many such rules. The proof is not as easy as might
be expected; at least nine Hilbert rules are required. Exercise 4 treats the somewhat
simpler case of the fragment in ∨ alone. This calculus is based on unary rules only
which simplifies the matter, but the completeness proof is still nontrivial.

Remark 2. Each of the infinitely many fragments of two-valued logic with or without
tautologies is axiomatizable by a Hilbert calculus using finitely many Hilbert-style rules
of its respective language; cf. [HeR]. In some of these calculi the method of enlarging a
consistent set to a maximally consistent one has to be modified, Exercise 2. Besides sequent
and Hilbert-style calculi there are still other types of logical calculi; for example, various
tableau calculi which are above all significant for their generalizations to nonclassical
logical systems. Related to tableau calculi is the resolution calculus dealt with in 4.2.

Exercises

1. Prove the completeness of the Hilbert calculus � in F{→ , ⊥} with MP as the
sole rule of inference, the definition ¬α := α→ ⊥, and the axioms

A1: α → β → α, A2: (α → β → γ) → (α → β) → α → γ, A3: ¬¬α → α.

2. Let � be a finitary consequence relation and let X � ϕ. Use Zorn’s lemma to
prove that there is a ϕ-maximal Y ⊇ X, that is, Y � ϕ but Y, α � ϕ whenever
α /∈ Y . Such a Y is deductively closed but need not be maximally consistent.

3. Let � denote the calculus in F{→} with the rule of inference MP, the axioms
A1, A2 from Exercise 1, and the Peirce axiom ((α → β) → α) → α. Verify that
(a) a ϕ-maximal set X is maximally consistent, (b) � is complete in F{→}.

4. Show the completeness of the calculus � in F{∨} with the four unary Hilbert-
style rules below. Since ∨ is the only connective, its writing has been omitted:

(1) α/αβ, (2) αα/α, (3) αβ/βα, (4) α(βγ)/(αβ)γ.

Note that (5) (αβ)γ/α(βγ) is derivable because application of (3) and (4)
yields (αβ)γ � γ(αβ) � (γα)β � β(γα) � (βγ)α � α(βγ). Crucial for com-
pleteness is the proof of “monotonicity” (m): α � β ⇒ αγ � βγ. (m) implies
(M): X,α � β ⇒ X,αγ � βγ, proving first that a calculus � based solely on
unary rules obeys X � β ⇒ α � β for some α ∈ X.

Chapter 2

Predicate Logic

Mathematics and some other disciplines like computer science often consider do-
mains of individuals in which certain relations and operations are singled out. When
we use the language of propositional logic, our ability to talk about the properties
of such relations and operations is very limited. Thus, it is necessary to refine our
linguistic means of expression, in order to procure new possibilities of description.
To this end, one needs not only logical symbols but also variables for the individuals
of the domain being considered, as well as a symbol for equality and symbols for
the relations and operations in question. Predicate logic is the part of logic that
subjects properties of such relations and operations to logical analysis.

Linguistic particles as “for all” and “there exists” (called quantifiers), play a cen-
tral role here whose analysis should be based on a well prepared semantical back-
ground. Hence, we first consider mathematical structures and classes of structures.
Some of these are relevant both to logic (especially to model theory) and to com-
puter science. Neither the newcomer nor the advanced student need to read all of
Section 2.1 with its mathematical flavor at once. The first four pages should suffice.
The reader may continue with 2.2 and later return to what is needed.

Next we home in on the most important class of formal languages, the first-order or
elementary languages. Their main characteristic is a restriction of the quantification
possibilities. We discuss in detail the semantics of these languages and arrive at a
notion of logical consequence from arbitrary premises. In this context, the notion of
a formalized theory is made more precise.

Finally, we treat the introduction of new notions by explicit definitions and other
expansions of a language, for instance by Skolem functions. Not until Chapter 3 do
we talk about methods of formal logical deduction. While a lot of technical details
have to be considered in this chapter, nothing is especially profound. Anyway, most
of it is important for the undertakings of the subsequent chapters.

33

34 2 Predicate Logic

2.1 Mathematical Structures

By a structure A we understand a nonempty set A together with certain distin-
guished relations and operations of A, as well as certain constants distinguished
therein. The set A is also termed the domain of A, or universe. The distinguished
relations, operations, and constants are called the (basic) relations, operations, and
constants of A. A finite structure is one with a finite domain. An easy example is
({0, 1}, ∧ , ∨, ¬). Here ∧ , ∨, ¬ have their usual meanings on the domain {0, 1}, and
no distinguished relations or constants occur. An infinite structure has an infinite
domain. A = (N, <, +, ·, 0, 1) is an example with the domain N; here <, +, ·, 0, 1
have again their ordinary meaning.

Without having to say so every time, for a structure A the corresponding letter
A will always denote the domain of A; similarly B denotes the domain of B, etc. If
A contains no operations or constants, then A is also called a relational structure.
If A has no relations it is termed an algebraic structure, or simply an algebra. For
example, (Z, <) is a relational structure, whereas (Z, +, 0) is an algebraic structure,
the additive group Z (it is customary using here the symbol Z as well). Also the set
of propositional formulas from 1.1 can be understood as an algebra, equipped with
the operations (α, β)
→ (α∧β), (α, β)
→ (α ∨ β), and α
→ ¬α. Thus, one may
speak of the formula algebra F whenever wanted.

Despite our interest in specific structures, whole classes of structures are also
often considered. For instance, the class of all groups, of rings, fields, vector spaces,
Boolean algebras, and so on. Even when initially just a single structure is viewed,
call it the paradigm structure, one often needs to talk about similar structures in the
same breath, in one language, so to speak. This can be achieved by setting aside the
concrete meaning of the relation and operation symbols in the paradigm structure
and considering the symbols in themselves, creating thereby a formal language that
enables one to talk at once about all structures relevant to a topic. Thus, one
distinguishes in this context clearly between denotation and what is denoted. To
emphasize this distinction, for instance for a structure A = (A, +, <, 0), one better
writes A = (A, +A, <A, 0A), where +A, <A and 0A mean the relation, operation,
and constant denoted by +, <, 0 in A. Still more precise is writing +A, <A, 0A for
+A, <A and 0A, respectively. In this way we are free to talk on the one hand about
the structure A and on the other hand about the symbols +, <, 0.

A finite or infinite set L resulting in this way, consisting of relation, operation and
constant symbols of given arity, is called an extralogical signature. For the class
of all groups (see page 38), L = {◦, e} exemplifies a favored signature; that is, one
often considers groups as structures of the form (G, ◦, e), where ◦ denotes the group
operation and e the unit element. But one can also define groups as structures of

2.1 Mathematical Structures 35

the signature {◦}, because e is definable in terms of ◦ as we shall see later. Of course,
instead of ◦, the operation symbol could be chosen as ·, ∗, or + (mainly used in
connection with commutative groups and semigroups, page 38). In this sense, the
actual appearance of a symbol is less important; what matters is its arity.

r ∈ L always means that r is a relation symbol, and f ∈ L that f is an operation
symbol, each time of some arity n > 0, which of course depends on the symbols r

and f , respectively.1 An L-structure is a pair A = (A, LA), where LA contains for
every r ∈ L a relation rA on A of the same arity as r, for every f ∈ L an operation
fA on A of the arity of f , and for every c ∈ L a constant cA ∈ A. We may omit the
superscripts, provided it is clear from the context which operation or relation on A

is meant. We occasionally abbreviate also the notation of certain structures. For
instance, we sometimes speak of the ring Z or the field R.

Every structure is an L-structure for a certain signature, namely that consisting of
the symbols for its relations, functions, and constants. But this does not make the
name L-structure superfluous. Basic concepts, such as isomorphism, substructure,
etc. each refer to structures of the same signature. From 2.2 on, once the elementary
language L belonging to L has been defined, L-structures will mostly be called L-
structures. We then also often say that r, f , or c belongs to L instead of L.

If A ⊆ B and f is an n-ary operation on B then A is closed under f , briefly
f -closed, if f�a ∈ A for all �a ∈ An. If n = 0, i.e., if f is a constant c, this simply
means c ∈ A. The intersection of any nonempty family of f -closed subsets of B

is itself f -closed. Accordingly, we can talk of the smallest (the intersection) of all
f -closed subsets of B that contain a given subset E ⊆ B. All of this extends in a
natural way if f is here replaced by an arbitrary family of operations of B.

Example. For a given positive m, the set mZ := {m ·n | n ∈ Z} of integers divisible
by m is closed in Z under +, −, and ·, and is in fact the smallest such subset of Z
containing m.

The restriction of an n-ary relation rB ⊆ Bn to a subset A ⊆ B is rA = rB ∩ An.
For instance, the restriction of the standard order of R to N is the standard order of
N. Only because of this fact can the same symbol be used to denote these relations.
The restriction fA of an operation fB on B to a set A ⊆ B is defined analogously
whenever A is f -closed. Simply let fA�a = fB�a for �a ∈ An. For instance, addition
in N is the restriction of addition in Z to N, or addition in Z is an extension of
this operation in N. Again, only this state of affairs allows us to denote the two
operations by the same symbol.
1 Here r and f represent the general case and look differently in a concrete situation. They are
sometimes also called predicate and function symbols respectively, in particular in the unary case.
In special contexts, we also admit n = 0, regarding constants as 0-ary operations.

36 2 Predicate Logic

Let B be an L-structure and A ⊆ B be nonempty and closed under all operations
of B; this will be taken to include cB ∈ A for constant symbols c ∈ L. To such a
subset A corresponds in a natural way an L-structure A = (A, LA), where rA and
fA for r, f ∈ L are the restrictions of rB respectively fB to A. Finally, let cA = cB

for c ∈ L. The structure A so defined is then called a substructure of B, and B
is called an extension of A, symbolically A ⊆ B. This notation is some abuse of
the set-theoretical symbol ⊆ but it does not cause confusion since the arguments
indicate what is meant. A ⊆ B implies A ⊆ B but not conversely, in general.

For example, A = (N, <, +, 0) is a substructure of B = (Z, <, +, 0) since N is
closed under addition in Z and 0 has the same meaning in A and B. Similarly, if
further relations or operations are considered. Note that we omitted the superscripts
for <, +, and 0 since there is no risk of misunderstanding.

A nonempty subset G of the domain B of an L-structure B defines a smallest
substructure A of B containing G, whose domain A is the smallest subset of B that
contains G and is closed under all operations of B. A is called the substructure
generated from G in B. For instance, 3N (= {3n | n ∈ N}) is the domain of the
substructure generated from G = {3} in (N, +, 0), since 3N contains 0 and 3, is
closed under +, and is clearly the smallest such subset of N. A structure A is called
finitely generated if for some finite G ⊆ A the substructure generated from G in A
coincides with A. For instance, (Z, +,−, 0) is finitely generated by G = {1}.

If A is an L-structure and L0 ⊆ L then the L0-structure A0 with domain A and
where ζA0 = ζA for all symbols ζ ∈ L0 is termed the L0-reduct of A, and A is called
an L-expansion of A0. For instance, the group (Z, +, 0) is the {+, 0}-reduct of the
ordered ring (Z, <, +, ·, 0). The notions reduct and substructure must clearly be
distinguished. A reduct of A has always the same domain as A.

We now list some frequently cited properties of a binary relation R in a set A.
It is convenient to write a � b and a � b instead of (a, b) ∈ R and (a, b) /∈ R,
respectively. Also, a � b � c stands for a � b & b � c, just as a < b < c is usually
written in place of a < b & b < c. In the listing, “for all a” and “there exists an a”
more precisely mean “for all a ∈ A” and “there exists an a ∈ A,” where A is a given
set. Thus, everything below refers to a given A. The relation � ⊆ A2 is called

reflexive if a � a for all a,
irreflexive if a � a for all a,
symmetric if a � b ⇒ b � a, for all a, b,
antisymmetric if a � b � a ⇒ a = b, for all a, b,
transitive if a � b � c ⇒ a � c, for all a, b, c,
connex if a = b or a � b or b � a, for all a, b.

Reflexive, transitive, and symmetric relations are called equivalence relations. These
are often denoted by ∼, ≈, ≡, �, or similar symbols.

2.1 Mathematical Structures 37

The following properties of a binary operation ◦ on a given set A will often be
referred to. The operation ◦ is

commutative if a ◦ b = b ◦ a for all a, b,
associative if a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c,
idempotent if a ◦ a = a for all a,
invertible if for all a, b there are x, y ∈ A with a ◦ x = b and y ◦ a = b.

We now present an overview of classes of structures that we will later refer back
to, mainly in Chapter 5. Hence, for the time being, the beginner may skip to 2.2.

1. Graphs, partial orders, and orders. A relational structure (A, �) with some
binary relation � on A is often termed a (directed) graph. If � is irreflexive and
transitive we usually write < for � and speak of a partially ordered set or a strict
(= irreflexive) partial order. If we define � by x � y :⇔ x < y or x = y, then
� is reflexive, transitive, and antisymmetric, called a reflexive partial order (the
one corresponding to <). Starting with a reflexive partial order on A and defining
x < y :⇔ x � y & x �= y, then < is a strict partial order on A as is easily seen.

A connex partial order A = (A, <) is called a total or linear order, mostly termed
an order or ordered set. N, Z, Q, R are examples with respect to their standard
orders. Here we follow the habit of referring to ordered sets by their domains only.

Let U be a nonempty subset of some ordered set A such that for all a, b ∈ A with
a < b and b ∈ U also a ∈ U , called an initial segment of A, and let V := A\U �= ∅.
If U has no largest and V no smallest element we say that the pair (U, V) is a gap in
A. If U has a largest element a, and V a smallest element b, then (U, V) is called a
jump. b is then called the immediate successor of a, and a the immediate predecessor
of b, for there is no element from A between a and b. An infinite ordered set without
gaps and jumps like R is said to be continuously ordered. Such a set is easily seen
to be densely ordered, i.e., between any two elements lies another one.

A totally ordered subset K of a partially ordered set H is called a chain in H.
Such a K is said to be bounded if there is some b ∈ H such that a � b for all a ∈ K.
Call c ∈ H maximal in H if no a ∈ H exists with a > c. An infinite partial order
need not contain a maximal element, nor need all chains be bounded, as seen by the
example (N, <). With these notions, an important mathematical tool can now be
stated, used already in Theorem 1.4.8.
Zorn’s lemma. If every chain in a nonempty partially ordered set H is bounded
then H has a maximal element.

An ordered set A is well-ordered if every nonempty subset of A has a smallest
element; equivalently, there are no infinite decreasing sequences a0 > a1 > · · · of
elements from A. Clearly, every finite ordered set is well-ordered. The simplest
example of an infinite well-ordered set is N together with its standard order.

38 2 Predicate Logic

2. Groupoids, semigroups, and groups. Algebras A = (A, ◦) with an operation
◦ : A2 → A are termed groupoids. If ◦ is associative then A is called a semigroup,
and if ◦ is additionally invertible then A is said to be a group. It is provable that
a group (G, ◦) in this sense contains exactly one unit element, that is, an element e

such that x ◦ e = e ◦ x = x for all x ∈ G, also called a neutral element. A well-known
example is the group of bijections of a set M �= ∅. If ◦ is commutative in addition,
then we speak of a commutative or abelian group, also called a module.

Here are some examples of semigroups that are not groups: (a) the set of strings
on some alphabet A with respect to concatenation, the word-semigroup or free semi-
group generated from A. (b) the set MM of mappings from M to itself with respect
to composition. (c) (N, +) and (N, ·); these two are commutative semigroups. With
the exception of (MM , ◦), all mentioned examples of semigroups are regular, which
is to mean x ◦ y = x ◦ z ⇒ y = z and x ◦ z = y ◦ z ⇒ x = y, for all x, y, z.

Substructures of semigroups are again semigroups. Substructures of groups are
in general only semigroups, as seen from (N, +) ⊆ (Z, +). Not so in the signature
{◦, e, −1}, where e denotes the unit element and x−1 the inverse of x. Here all
substructures are subgroups. The reason is that in {◦, e, −1}, the group axioms
can be written as universally quantified equations where, for brevity, we omit the
writing of “for all x, y, z,” namely as x ◦ (y ◦ z) = (x ◦ y) ◦ z, x ◦ e = x, x ◦ x−1 = e.
These equations certainly retain their validity in the transition to substructures.
We mention that from these three equations, e ◦ x = x and x−1 ◦ x = e are derivable,
although ◦ is not supposed to be commutative.

Ordered semigroups and groups possess along with ◦ some order, with respect to
which ◦ is monotonic in both arguments, like (N, +, 0,�). A commutative ordered
semigroup (A, +, 0,�) with zero element 0, which at the same time is the smallest
element in A, and where a � b iff there is some c with a + c = b, is called a domain
of magnitude. Everyday examples are the domains of length, mass, money, etc.

3. Rings and fields. Because these are among the most commonly known struc-
tures, we do not repeat their definition here. The ring axioms are formalized in
+,−, ·, 0 and include the axiom x + (y− x) = y. For fields, the constant symbol 1 is
adjoined. Removing the last-mentioned axiom from the list of ring axioms and the
minus symbol from the signature leaves us with the notion of a semiring.

Substructures of fields in the signature {0, 1, +,−, ·} are integral domains. These
are commutative rings without zero-divisors and with 1. Let K,K′ be fields with
K ⊂ K′. We call a ∈ K ′ \K algebraic or transcendental on K, depending on whether
a is a zero of a polynomial with coefficients in K or not. If every polynomial of
degree � 1 with coefficients in K breaks down into linear factors, as is the case
for the field of complex numbers, then K is called algebraically closed, in short,
K is a.c. These fields will be more closely inspected in 3.3 and Chapter 5. Each field

2.1 Mathematical Structures 39

K has a smallest subfield P , called a prime field. One says that K has characteristic
0 or p (a prime number), depending on whether P is isomorphic to the field Q or
the finite field of p elements. No other prime fields exist. It is not hard to show that
K has the characteristic p iff the sentence charp : 1 + · · ·+ 1︸ ︷︷ ︸

p

==== 0 holds in K.

Semirings, rings, and fields can also be ordered, whereby the usual monotonicity
laws are required. For example, (Z, <, +, ·, 0, 1) is the ordered ring of integers and
(N, <, +, ·, 0, 1) the ordered semiring of natural numbers.

4. Semilattices and lattices. A = (A, ◦) is called a semilattice if ◦ is associative,
commutative, and idempotent. An example is ({0, 1}, ∧). In what follows, we omit
the writing of the operation symbol. If we define a � b :⇔ ab = a then � is
a reflexive partial order on A. Reflexivity holds, since aa = a. As can be easily
verified, ab is in fact the infimum of a, b with respect to �, ab = inf{a, b}, that is,
ab � a, b and c � a, b imply c � ab, for all a, b, c ∈ A.
A = (A, ∩ , ∪) is called a lattice if (A, ∩) and (A, ∪) are both semilattices and the

following so-called absorption laws hold: a ∩ (a ∪ b) = a and a ∪ (a ∩ b) = a. These
imply a ∩ b = a⇔ a ∪ b = b. As above, a � b :⇔ a ∩ b = a defines a partial order such
that a ∩ b = inf{a, b}. In addition, a ∪ b = sup{a, b} (the supremum of a, b), which is
to mean a, b � a ∪ b and a, b � c ⇒ a ∪ b � c, for all c ∈ A. If A satisfies, moreover,
the distributive laws x ∩ (y ∪ c) = (x ∩ y) ∪ (x ∩ c) and x ∪ (y ∩ c) = (x ∪ y) ∩ (x ∪ c),
then A is termed a distributive lattice. For instance, the power set PM with the
operations ∩ and ∪ for ∩ and ∪ respectively, is a distributive lattice, as is every
nonempty family of subsets of M closed under ∩ and ∪, a so-called lattice of sets.
Another important example is (N, gcd, lcm). Here gcd(a, b) and lcm(a, b) denote the
greatest common divisor and the least common multiple of a, b ∈ N.

5. Boolean algebras. An algebra A = (A, ∩ , ∪ ,¬) where (A, ∩ , ∪) is a distribu-
tive lattice and in which at least the equations

¬¬x = x, ¬(x ∩ y) = ¬x ∪¬y, x ∩¬x = y ∩¬y

are valid is called a Boolean algebra. A paradigm structure is the two-element
Boolean algebra 2 := ({0, 1}, ∧ , ∨ ,¬), with ∩ , ∪ interpreted as ∧ , ∨, respectively.
In the general case, one defines 0 := a ∩¬a for any a ∈ A and 1 := ¬0. There
are many ways to characterize Boolean algebras A, for instance, by saying that A
satisfies all equations valid in 2 . The signature can also be variously selected. For
example, the signature ∧ , ∨ ,¬ is well suited to deal algebraically with two-valued
propositional logic. Terms of this signature are, up to the denotation of variables,
precisely the Boolean formulas from 1.1, and a logical equivalence α ≡ β corresponds
to the equation α = β, valid in all Boolean algebras. Further examples are the
Boolean algebras of sets A = (A,∩,∪,¬). Here A consists of a nonempty system of

40 2 Predicate Logic

subsets of a set I, closed under ∩,∪ and ¬, where ¬ denotes complementation in
I. These are the most general examples; a famous theorem, Stone’s representation
theorem, says that each Boolean algebra is isomorphic to an algebra of sets.

6. Logical L-matrices. These are structures A = (A, LA, DA), where L contains
just operation symbols (the “logical” symbols) and D denotes a unary predicate,
the set of distinguished values of A. Best known is the two-valued Boolean matrix
B = (2 , DB) with DB = {1}. The consequence relation �A in the propositional
language F with signature L is defined as in the two-valued case: Let X ⊆ F and
α ∈ F. Then X �A α if wα ∈ DA for every w : PV→ A with wX ⊆ DA. In words,
if the values of all ϕ ∈ X are distinguished, then so too is the value of α.

Homomorphisms and isomorphisms. The following notions are important for
both mathematical and logical investigations, mainly in Chapter 5.

Definition. Let A,B be L-structures and h :A → B (strictly speaking h : A → B)
a mapping such that for all f, c, r ∈ L and �a ∈ An (n > 0 is the arity of f or r),

(�) hfA�a = fBh�a, hcA = cB, rA�a⇒ rBh�a
(
h�a := (ha1, . . . , han)

)
.

Then h is called a homomorphism. If the third condition in (�) is replaced by the
stronger condition (∃�b∈An)(h�a=h�b & rA�b) ⇔ rBh�a 2 then h is said to be a strong
homomorphism (for algebras, the word “strong” is dispensable). An injective strong
homomorphism h :A → B is called an embedding of A into B. If, in addition, h is
bijective then h is called an isomorphism, and in case A = B, an automorphism.

An embedding or isomorphism h :A → B satisfies rA�a ⇔ rBh�a as is easily seen.
A,B are said to be isomorphic, in symbols A � B, if there is an isomorphism from
A to B. It is readily verified that � is reflexive, symmetric, and transitive.

Examples. (a) A valuation w considered in 1.1 can be regarded as a homomorphism
of the propositional formula algebra F onto the two-element Boolean algebra 2 .
(b) Let A = (A, ∗) be a word semigroup with the concatenation operation ∗ and B
the additive semigroup of natural numbers. These are L-structures for L = {◦} with
◦A = ∗ and ◦B = +. Let lh(w) denote the length of a word w ∈ A. Then w
→ lh(w)
is a homomorphism since lh(w ∗ w′) = lh(w) + lh(w′), for all w, w′ ∈ A. If A is
generated from just one letter, lh is evidently bijective, hence an isomorphism.
(c) The mapping a
→ (a, 0) from R to C (= set of complex numbers, understood as
ordered pairs of real numbers) is a paradigm of an embedding, here of the field R
into the field C. Nonetheless, in this and similar cases, we are used to saying that
R is a subfield of C, and that R is a subset of C.
2 (∃�b∈An)(h�a=h�b & rA�b) abbreviates ‘there is some �b ∈ An with h�a = �b and rA�b ’. If h :A → B is
onto (and only this case will occur in our examples and applications) then the stronger condition
is equivalent to the more suggestive condition rB = {h�a | rA�a}.

2.1 Mathematical Structures 41

(d) Let A = (R, +, <) be the ordered additive group of reals and B = (R+, ·, <) the
multiplicative group of positive reals. Then for any b ∈ R+ \{1} there is precisely
one isomorphism η :A → B such that η1 = b, namely η : x
→ bx, the exponential
function expb to the base b. Indeed, η runs through every value in R+ exactly
once, and η(x + y) = ηx · ηy holds for all x, y ∈ R. One could even define expb

as this isomorphism, by first proving that—up to isomorphism—there is only one
continuously ordered abelian group (probably first noticed in [Ta4]).
(e) The algebras A = ({0, 1}, +) and B = ({0, 1},↔) are only apparently different,
but are in fact isomorphic, as shown by the isomorphism δ where δ0 = 1, δ1 = 0.
Thus, since A is a group, B is a group as well, which is perhaps not so obvious (see
the proof in 2.3). By adjoining the unary predicate D = {1}, A and B become
(nonisomorphic) logical matrices. These actually define the two “dual” fragmentary
two-valued logics for the connectives ... if and only if ... and either ... or ...

Congruences. A congruence relation (or simply a congruence) in a structure A of
signature L is an equivalence relation ≈ in A such that for all f ∈ L of arity n,

(∗) �a ≈ �b⇒ fA�a ≈ fA�b, (�a,�b ∈ An; �a ≈ �b means ai ≈ bi for i = 1, . . . , n).
Let A′ be the set of equivalence classes a/≈ := {x ∈ A | a ≈ x} for a ∈ A, also
called the congruence classes of ≈, and set �a/≈ := (a1/≈, . . . , an/≈) for �a ∈ An.
Define fA′(�a/≈) := (fA�a)/≈ and let rA′

�a/≈ :⇔ (∃�b≈�a)rA�b. These definitions are
sound, that is, independent of the choice of the n-tuple �a of representatives. Then
A′ becomes an L-structure A′, the factor structure of A modulo ≈, also denoted by
A/≈. Interesting, in particular for Chapter 5, is the following general

Homomorphism theorem. Let A and B be L-structures and ≈ a congruence in
A. Then k : a
→ a/≈ is a strong homomorphism from A onto A/≈, the canonical
homomorphism. Conversely, if h :A → B is a strong homomorphism onto B then
≈ ⊆ A2, defined by a ≈ b ⇔ ha = hb, is a congruence in A, called the kernel of h;
moreover, ı : a/≈
→ ha is an isomorphism from A/≈ to B, and h = ı ◦ k.

Proof. We omit here the superscripts for f and r for the sake of faster legibility.
Clearly, kf�a = (f�a)/≈ = f(�a/≈) = fk�a

(
=f(ka1, . . . , kan)

)
, and by our definitions,

(∃�b∈An)(k�a = k�b & r�b)⇔ (∃�b≈�a)r�b⇔ r�a/≈ ⇔ r k�a. Hence k is what we claimed.
The definition of ı is sound. ı is obviously bijective. Furthermore, the isomorphism
conditions hold: ıf(�a/≈) = hf�a = fh�a = fı(�a/≈) and r�a/≈ ⇔ r h�a ⇔ r ı(�a/≈).
Finally, h is the composition ı ◦ k according to the definitions of ı and k.

For algebras A,B, this theorem is the usual homomorphism theorem of universal
algebra. It covers groups, rings, etc. In groups, the kernel of a homomorphism is
already determined by the congruence class of the unit element, called a normal
subgroup, in rings by the congruence class of 0, called an ideal. Hence, in textbooks
on basic algebra the homomorphism theorem may look somewhat differently.

42 2 Predicate Logic

Direct products. These provide the basis for many constructions of new struc-
tures, especially in 5.7. A well-known example is the n-dimensional vector group
(Rn, 0, +). This is the n-fold direct product of the group (R, 0, +) with itself. The
addition in Rn is defined componentwise, as is also the case in the following

Definition. Let (Ai)i∈I be a nonempty family of L-structures. The direct product
B =

∏
i∈I Ai is the following structure. Its domain is B =

∏
i∈I Ai, called the direct

product of the sets Ai, whose elements a = (ai)i∈I are functions defined on I with
ai ∈ Ai for i ∈ I. Relations and operations are defined componentwise, that is,

rB�a ⇔ rAi�ai for all i ∈ I, fB�a = (fAi�ai)i∈I , cB = (cAi)i∈I ,

where �a = (a1, . . . , an) ∈ Bn (here the superscripts count the components of the
n-tuple), aν := (aν

i)i∈I for ν = 1, . . . , n, and �ai := (a1
i , . . . , a

n
i) ∈ An

i . The sequence
�ai (∈ An

i) is called the ith projection of the n-tuple �a. For I = {1, . . . , m}, the
product

∏
i∈I Ai is also written as A1 × · · · × Am. Whenever Ai = A for all i ∈ I,

then
∏

i∈I Ai is denoted by AI and called a direct power of the structure A.

If I = {0, . . . , n−1} one mostly writes An for AI . Note that A is embedded in AI

by a
→ (a)i∈I , where (a)i∈I is the I-tuple with the constant value a.

Examples. (a) For I = {1, 2} and Ai = (Ai, <
i), a <B b ⇔ a1 <1 b1 & a2 <2 b2,

for all a, b ∈ B = A1 × A2. Note that if A1,A2 are orders then B is only a partial
order. The deeper reason for this observation will become clear in Chapter 5.
(b) Let B = 2 I be a direct power of the two-element Boolean algebra 2 . The
elements a ∈ B are I-tuples of zeros and ones that uniquely correspond to the
subsets of I via the mapping ı : a
→ Ia := {i ∈ I | ai = 1}. As a matter of fact, ı is
an isomorphism from B to (PI,∩,∪,¬) as can readily be verified.

Exercises

1. Show that there are (up to isomorphism) exactly five two-element proper
groupoids. Here a groupoid (H, ·) is termed proper if · is essentially binary.

2. ≈ (⊆ A2) is termed Euclidean if a ≈ b & a ≈ c ⇒ b ≈ c, for all a, b, c ∈ A.
Show that ≈ is an equivalence relation in A iff ≈ is reflexive and Euclidean.

3. Prove that an equivalence relation ≈ on an algebraic L-structure A is already
a congruence, if for all f ∈ L of arity n and all i = 1, . . . , n holds

a ≈ a′ ⇒ f(a1, . . . , ai−1, a, ai+1, . . . , an) ≈ f(a1, . . . , ai−1, a
′, ai+1, . . . , an).

4. Show that h :
∏

i∈I Ai → Aj with ha = aj is a homomorphism for each j ∈ I.

2.2 Syntax of Elementary Languages 43

2.2 Syntax of Elementary Languages

Standard mathematical language enables us to talk precisely about structures, like
the field of real numbers. However, for logical (and metamathematical) issues it
is important to delimit the theoretical framework to be considered; this is achieved
most simply by means of a formalization. In this way one obtains an object language;
that is, the formalized elements of the language, like the components of a structure,
are objects of our consideration. To formalize interesting properties of a structure
in this language, one requires at least variables for the elements of its domain, also
called individual variables. Further, a sufficient number of logical symbols, along
with symbols for the relations, functions, and constants of the structure, which
together constitute the extralogical signature L of the language to be defined.

In this manner one arrives at the first-order languages, also termed elementary
languages. Nothing is lost in terms of generality if the set of variables is the same
for all elementary languages; we denote this set by Var and take it to consist of
the countably many symbols v0, v1, . . . Two such languages therefore differ only in
the choice of their extralogical symbols. Variables for subsets of the domain are
consciously excluded, since languages containing variables both for individuals and
sets of these individuals—second-order languages, discussed in 3.7—have different
semantic properties than those investigated here.

We first determine the alphabet, the set of basic symbols of a first-order language
determined by a signature L. It includes, of course, the variables v0, v1, . . . In what
follows, the latter will mostly be denoted by x, y, z, u, v, though in some cases other
letters with or without indices may serve the same purpose. The boldface printed
variables are useful in writing down a formula in the variables vi1 , . . . , vin , for these
can then be denoted, for instance, by v1, . . . , vn, or by x1, . . . , xn.

Further, the logical symbols ∧ (and), ¬ (not), ∀ (for all), the equality sign ====,
and last but not least, all symbols of the extralogical signature L should belong to
the alphabet.3 Note that here the boldface symbol ==== is taken as a basic symbol;
simply taking = could lead to unintended mix-ups with the metamathematical use
of the equality symbol =. Finally, the parentheses (,) are included in the alphabet.
Additional logical symbols will be introduced later, including the symbols ∃ (there
exists) and ∃! (there exists exactly one).

From the set of all strings of these basic symbols we pick out the meaningful ones
according to certain rules, beginning with terms. A term, under an interpretation
of the language, will always denote an element of a domain, provided an assignment
is given of the occurring variables to elements of that domain. In order to keep the
syntax simple, terms will be parenthesis-free strings.
3 Sometimes identity-free languages without ==== will be considered, for instance in Chapter 4.

44 2 Predicate Logic

Terms in L:

(T1) Variables and constants are terms, called prime terms.

(T2) If f ∈ L is n-ary and t1, . . . , tn are terms, then ft1 · · · tn is a term.

This is an inductive definition in the set of strings on the alphabet of L, that is, any
string that is not generated by (T1) and (T2) is not a term in this context (cf. the
related definition of F in 1.1). Parenthesis-free term notation simplifies the syntax,
but for binary operations we proceed in practice otherwise. We write, for example,
the term ·+xyz as (x + y) · z because high density of information in the notation
complicates reading. Our brain does not process information sequentially like a
computer. Officially, terms are parenthesis-free, and the parenthesized notation is
just an alternative way of rewriting terms. Similarly to the unique reconstruction
property in 1.1, here the unique term reconstruction holds (Exercise 2):

ft1 · · · tn = fs1 · · · sn implies si = ti for i = 1, . . . , n (ti, si terms).
Let T (= TL) denote the set of all terms of a given signature L. Variable-free

terms, which can exist only with the availability of constant symbols, are called
constant terms or ground terms, mainly in logic programming. With the operations
given in T by fT (t1, . . . , tn) = ft1 · · · tn, T forms an algebra, the term algebra. From
the definition of terms immediately arises the following useful

Principle of proof by term induction. If E is a property of strings such that
Et for all prime terms, and for each n > 0 and each n-ary function symbol f

Et1, . . . , Etn implies Eft1 · · · tn, then all terms have the property E.
Indeed, T is by definition the smallest set of strings satisfying the conditions of

this principle. Hence, T is a subset of the set of all strings with the property E .
It seems to be obvious that a compound term t is a function term in the sense
that t = ft1 · · · tn for some n-ary function symbol f and some terms t1, . . . , tn. But
the critical reader may feel more comfortable after verifying this by term induction,
considering the property E : ‘t is either prime or a function term’.

We also have at our disposal a definition principle by term induction which, rather
than defining it generally, we demonstrate through examples. The set var t of vari-
ables occurring in a term t is inductively defined by

var c = ∅ ; var x = {x} ; var ft1 · · · tn = var t1 ∪ · · · ∪ var tn.

Clearly, this definition makes sense only in view of the unique term reconstruction.
var t (and even var ξ for any string ξ) can also easily be explicitly defined using
concatenation, namely as var t := {x ∈ Var | there are strings ξ0, ξ1 with t = ξ0xξ1}.

The notion of a subterm of a term can also inductively be defined. Again, we can
do it more briefly using concatenation. We now define inductively those strings of
the alphabet L to be denoted as formulas, also called (predicate logic) expressions
or well-formed formulas. Certain formulas will later be called sentences.

2.2 Syntax of Elementary Languages 45

Formulas in L:

(F1) If s, t are terms, then the string s==== t is a formula.

(F2) If t1, . . . , tn are terms and r ∈ L is n-ary, then rt1 · · · tn is a formula.

(F3) If α, β are formulas and x ∈ Var, then (α∧β), ¬α, and ∀xα are formulas.

Any string not generated according to (F1), (F2), (F3) is in this context not a
formula. Other logical symbols serve throughout merely as abbreviations; namely
∃xα := ¬∀x¬α, and as in 1.1, α ∨ β := ¬(¬α∧¬β), α → β := ¬(α∧¬β), and
α↔ β := (α → β)∧ (β → α).

Examples. (a) ∀x∃y x + y==== 0 (more explicitly, ∀x¬∀y¬x + y==== 0) is a formula.
Here we assume tacitly that x, y denote distinct original variables. The same is
assumed in all of the following whenever this can be made out from the context.
(b) ∀x∀xx==== y is a formula, since repeated “quantification” of the same variable is
not forbidden. ∀z x==== y is a formula, although z does not appear in x==== y.

Example (b) indicates that the grammar of our formal language is more liberal as
one might expect. This will spare us a lot of writing. The formula ∀x∀xx==== y, as well
as ∃x∀xx==== y, both have the same meaning as ∀xx==== y. These three formulas are
logically equivalent (in a sense still to be defined), as are ∀z x==== y and x==== y. It would
be to our disadvantage to require any restriction here. In spite of this liberality, the
formula syntax corresponds roughly to the syntax of natural language.

The formulas procured by (F1) and (F2) are called prime formulas (or simply
prime, also called atomic). Similar to unique term reconstruction holds the unique
prime formula reconstruction rt1 · · · tn = rs1 · · · sn ⇒ ti = si for i = 1, . . . , n.
Prime formulas of the form s==== t are called equations. These are the only prime
formulas if L contains no relation symbols, in which case L is called an algebraic
signature. For ¬ s==== t we henceforth write s �==== t.

Prime formulas that are not equations always begin with a relation symbol. In the
binary case the relation symbol tends to separate the two arguments as, for example,
in x � y. The official notation is, however, that of clause (F2). As in propositional
logic, prime formulas and their negations will be called literals.

The set of all formulas in L is denoted by L, and if L = {∈} then L is also
denoted by L∈. Analogously for similarly simple signatures. The case L = ∅ is also
permitted; it defines the language of pure identity, denoted by L====.

Formulas in which ∀,∃ do not occur are termed quantifier-free or open. These are
precisely the Boolean combinations of prime formulas. The Boolean combinations
of the formulas from X ⊆ L are those that can be generated by ∧ and ¬ from the
formulas in X. The strings ∀x and ∃x (read “for all x” respectively “there is an x”)
are called prefixes and may occasionally occur also in the metalanguage.

46 2 Predicate Logic

Instead of terms, formulas, and structures of the signature L, we will talk of L-
terms, L-formulas, and L-structures respectively. We also omit the prefix L- if L
has been given earlier. In writing down formulas, we use the same conventions of
parenthesis economy as in 1.1. We will also allow ourselves other informal aids in
order to increase readability. For instance, variously shaped parentheses may be
used as in ∀x∃y∀z[z ∈ y ↔ ∃u(z ∈ u∧u∈ x)]. Even verbal descriptions (partial or
total) are permitted, as long as the intended formula is uniquely recognizable.

X,Y, Z always denote sets of formulas, α, β, γ, δ, π, ϕ, . . . denote formulas, and
s, t terms, while Φ, Ψ are reserved to denote finite sequences of formulas and formal
proofs. Substitutions (to be defined below) will be denoted by σ, τ, ω, ρ, and ι.

Principles of proof by formula induction and of definition by formula induction
also exist for first-order (and other formal) languages. After the explanation of
inductive proofs and definitions on formulas in Chapter 1, we do without a general
formulation, preferring instead to use examples, adhering to the maxim verba docent,
exempla trahunt. For example, define rk ϕ, the rank of the formula ϕ, by rk π = 0
for prime formulas π and

rk(α∧β) = max{rk α, rk β}+ 1, rk¬α = rk∀xα = rk α + 1.

Useful for some purposes is the quantifier rank, qr ϕ. It represents a measure of
nested quantifiers in a formula. For prime formulas π let qr π = 0 and

qr¬α = qr α, qr(α∧β) = max{qr α, qr β}, qr∀xα = qr α + 1.
Note that qr∃xϕ = qr¬∀x¬ϕ = qr∀xϕ. A subformula of a formula is defined

analogously to the definition in 1.1. Hence, we need say no more on this. We write
x ∈ bnd ϕ (or x occurs bound in ϕ) if ϕ contains the prefix ∀x. In subformulas of ϕ

of the form ∀xα, the formula α is also called the scope of ∀x. The same prefix can
occur repeatedly and with nested scopes in a formula, as in ∀x(∀xx==== 0 ∧ x<y). In
practice we avoid this writing, though for a computer this would pose no problem.

Intuitively, the formulas (a) ∀x∃y x + y==== 0 and (b) ∃y x + y==== 0 are different in
that the former is in every context with a given meaning for + and 0 either true or
false, whereas in (b) the variable x is waiting to be assigned a value. One also says
that all the variables occurring in (a) are bound. (b) contains the “free” variable x.
The syntactic predicate ‘x occurs free in ϕ’, or ‘x ∈ free ϕ’ is defined inductively:
Let free α = var α for prime formulas α (var α was defined on page 44), and

free (α∧β) = free α ∪ free β, free¬α = free α, free∀xα = free α \{x}.
For example, free (∀x∃z x + y==== 0) = ∅, and free (x � y ∧ ∀x∃y x + y==== 0) = {x, y}.
As the last formula shows, x can occur both free and bound in a formula. This too
will be avoided in practice whenever possible. In some proof-theoretically oriented
presentations, even different symbols are chosen for free and bound variables. Each
of these approaches has its advantages and its disadvantages.

2.2 Syntax of Elementary Languages 47

Formulas without free variables are called sentences, or closed formulas. 1 + 1==== 0
and ∀x∃y x+y==== 0 (= ∀x¬∀y¬x+y==== 0) are examples. Throughout take L0 to denote
the set of all sentences of L. More generally, let Lk be the set of all formulas ϕ such
that free ϕ ⊆ Vark := {v0, . . . , vk−1}. Clearly, L0 ⊆ L1 ⊆ · · · and L =

⋃
k∈N Lk.

At this point we meet an important and for the remainder of the book valid
Convention. As long as not otherwise stated, the notation ϕ = ϕ(x) means that
the formula ϕ contains at most x as a free variable; more generally, ϕ = ϕ(x1, . . . , xn)
or ϕ = ϕ(�x) is to mean free ϕ ⊆ {x1, . . . , xn}, where x1, . . . , xn stand for arbitrary
but distinct variables. Not all of these variables need actually occur in ϕ. Further,
t = t(�x) for terms t is to be read completely analogously.

The term ft1 · · · tn is often denoted by f�t , the prime formula rt1 · · · tn by r�t . Note
that �t denotes here the concatenation t1 · · · tn of terms. �t behaves like a sequence
as was pointed out already, and has the unique readability property.

Substitutions. We begin with the substitution t
x of some term t for a single variable

x. Put intuitively, ϕ t
x (read “ϕ t for x,” also denoted by αx(t)), is the formula that

results from replacing all free occurrences of the variable x in ϕ by the term t. This
intuitive characterization is made precise inductively, first for terms by

x t
x = t, y t

x = y (x �= y), c t
x = c, (ft1 · · · tn) t

x = ft′1 · · · t′n,
where, for brevity, t′i denotes the term ti

t
x , and next for formulas as follows:

(t1 ==== t2) t
x = t′1 ==== t′2, (r�t) t

x = rt′1 · · · t′n,
(α∧β) t

x = α t
x ∧β t

x , (¬α) t
x = ¬(α t

x),
(∀yα) t

x =

{
∀yα in case x = y,

∀y(α t
x) otherwise.

Then also (α → β) t
x = α t

x → β t
x , and likewise for ∨ and ∃, as can easily be checked.

Along with these simple substitutions t
x , also simultaneous substitutions

ϕ t1··· tn
x1··· xn

(x1, . . . , xn distinct)

are useful. This will briefly be written ϕ
�t
�x

or ϕ�x(�t) or just ϕ(�t), provided there is
no danger of misunderstanding. Here the variables xi are simultaneously replaced
by the terms ti. Simple and simultaneous substitutions are special cases of what is
called a global substitution σ. Such a σ assigns to every variable x a term xσ ∈ T .
It is extended to the whole of T by the clauses cσ = c and (f�t)σ = ftσ1 · · · tσn, and
subsequently to the formula set L, so that σ is defined for the whole of T ∪ L:

(t1 ==== t2)σ = tσ1 ==== tσ2 , (r�t)σ = rtσ1 · · · tσn, (α∧β)σ = ασ ∧βσ, (¬α)σ = ¬ασ,

and (∀xϕ)σ = ∀xϕτ , where the global substitution τ is defined by xτ = x and
yτ = yσ for y �= x. The identical substitution, always denoted by ι, is defined by
xι = x for all x, hence tι = t and ϕι = ϕ for all terms t and formulas ϕ.

A simultaneous substitution �t
�x

can be understood as the global substitution σ with
xσ

i = ti for i = 1, . . . , n and xσ = x otherwise. This can also be stated as follows:
simultaneous substitutions are those global substitutions σ such that xσ = x for

48 2 Predicate Logic

almost all variables x, i.e., with the exception of finitely many. This way of putting
things makes it immediately clear that the composition σ1σ2 of two simultaneous
substitutions—let xσ1σ2 = (xσ1)σ2—is again a simultaneous substitution. It is hence
obvious that these constitute a semigroup with the neutral element ι.

It always holds that t1t2
x1x2 = t2t1

x2x1 , whereas the compositions t1
x1

t2
x2 and t2

x2
t1
x1 are

distinct, in general. Let us elaborate by explaining the difference between ϕ t1t2
x1x2

and ϕ t1
x1

t2
x2

(
= (ϕ t1

x1)
t2
x2

)
. For example, if one wants to swap x1, x2 at their free

occurrences in ϕ then this is ϕ x2x1
x1x2 , but not, in general, ϕ x2

x1
x1
x2 ; choose ϕ := x1<x2,

for instance. Rather, ϕ x2x1
x1x2 = ϕ y

x2
x2
x1

x1
y for any y /∈ var ϕ distinct from x1, x2 as is

shown by induction on ϕ. In the same way we readily obtain
(1) ϕ

�t
�x

= ϕ y
xn

t1··· tn-1
x1··· xn-1

tn
y (y /∈ var ϕ ∪ var �x ∪ var�t , n � 2).

Thus, a simultaneous and even a global substitution therefore yields locally, that
is, with respect to individual formulas, just the same as a suitable composition of
simple substitutions. In some cases (1) can be simplified. Useful, for example, is
the following equation, which holds in particular when all terms ti are variable-free:

(2) ϕ
�t
�x

= ϕ t1
x1 · · · tn

xn
, (provided xi /∈ var tj for i �= j).

In Chapter 4 we intensively operate with substitutions. Getting on correctly with
substitutions is not altogether simple; it requires practice, because our ability to
regard complex strings is not especially trustworthy. A computer is not only much
faster but more reliable in this respect.

Exercises
1. Show by term induction that a terminal segment of a term t is a concatenation

s1 · · · sm of terms si for some m � 1. Thus, a symbol in t is at each position
of its occurrence in t the initial symbol of a subterm s of t which is unique by
Exercise 2(c). The same then holds for a concatenation t1 · · · tn of terms.

2. Prove (a) no term is a concatenation of two or more terms, (b) no proper initial
segment of a term t is a term, (c) the subterm s of t in Exercise 1 is unique,
(d) the unique term concatenation: t1 · · · tn = t′1 · · · t′m ⇒ m = n & ti = t′i
for i = 1, . . . , n. The latter obviously implies the unique term reconstruction
and the unique prime formula reconstruction property.

3. Prove ϕ t
x = ϕ for x /∈ free ϕ, and ϕ y

x
t
y = ϕ t

x for y /∈ var ϕ. Show by means
of examples that these restrictions are indispensable provided t �= x.

4. Let ξ, η be strings over the alphabet of L. Verify (a) ¬ξ ∈ L ⇒ ξ ∈ L,
(b) ξ ∧η ∈ L ⇒ ξ, η ∈ L, (c) ξ → η ∈ L ⇒ ξ, η ∈ L.

5. Let qrϕ = n > 0. Show that ϕ is a Boolean combination of formulas α with
qr α < n and at least one formulas ∀xβ with qr β = n− 1.

2.3 Semantics of Elementary Languages 49

2.3 Semantics of Elementary Languages

Intuitively it is clear that the formula ∃y y + y==== x can be allocated a truth value in
the domain (N, +) only if to the free variable x there corresponds a value in N. Thus,
along with an interpretation of the extralogical symbols, a truth value allocation for a
formula ϕ requires a valuation of at least the variables occurring free in ϕ. However,
it is technically more convenient to work with a global assignment of values to all
variables, even if in a concrete case only the values of finitely many variables are
needed. We therefore begin with the following

Definition. A model M is a pair (A, w) consisting of an L-structure A and a val-
uation w : Var→ A, w : x
→ xw. We denote rA, fA, cA, and xw also by rM, fM, cM,
and xM, respectively. The domain of A is also called the domain of M.

Models are also called interpretations, or L-models if the connection to L is to be
highlighted. Some authors identify models with structures from the outset. This
also happens in 2.5, where we talk about models of theories. The notion of a model
is to be maintained flexible in logic, and adapted according to requirements.

A model M allocates in a natural way to every term t a value in A, denoted by
tM or tA,w or just by tw. For prime terms the value is already given by M. This
evaluation extends to compound terms by term induction as follows:

(f�t)M = fM�t M,

where �t M abbreviates the sequence of values (tM1 , . . . , tMn). If the context allows we
neglect the superscripts and retain just an imaginary distinction between symbols
and their interpretation. For instance, if A = (N, +, ·, 0, 1) and xw = 2, say, we write
(0 · x + 1)A,w = 0 · 2 + 1 = 1. The value of t underM depends only on the meaning
of the symbols that effectively occur in t; using induction on t the following slightly
more general claim is obtained: if var t ⊆ V ⊆ Var andM,M′ are models with the
same domain such that xM = xM′ for all x ∈ V and ζM = ζM′ for all remaining
symbols ζ occurring in t, then tM = tM

′ . Clearly, tA,w may simply be denoted by
tA provided the term t contains no variables.

We also consider models that differ from a given M = (A, w) only in the values
of one or more variables. Let x1, . . . , xn be distinct and w′ := w�a

�x be defined by
xw′

i = ai for i = 1, . . . , n and xw′ = xw, for any variable x distinct from x1, . . . , xn.
Then put M�a

�x := (A, w�a
�x). In particular, Ma

x denotes (A, wa
x). This model differs

fromM only in the value of the fixed variable x.
We now define a satisfiability relation � between modelsM = (A, w) and formulas

ϕ, using induction on ϕ as in 1.3. We read M � ϕ as M satisfies ϕ, or M is a
model for ϕ. Sometimes A � ϕ [w] is written for M � ϕ. A similar notation,
just as frequently encountered, is introduced later. Each of these notations has its

50 2 Predicate Logic

advantages, depending on the context. If M � ϕ for all ϕ ∈ X we write M � X

and call M a model for X. For the formulation of the satisfaction clauses below
(taken from [Ta1]) we consider for givenM = (A, w), x ∈ Var, and a ∈ A also the
modelMa

x. It differs fromM only in that x receives the value a instead of xM.
M � s==== t ⇔ sM = tM,

M � r�t ⇔ rM�t M,

M � α∧β ⇔ M � α andM � β,

M � ¬α ⇔ M � α,

M � ∀xα ⇔ Ma
x � α for all a ∈ A.

Example 1. Let M′ :=MtM
x . We claim that M′ � x==== t if x /∈ var t. In this case

namely tM
′ = tM. Since also xM′ = tM we get xM′ = tM

′ . ThusM′ � x==== t.

Remark 1. The last satisfaction clause can be stated differently if a name for each a ∈ A,
let’s say a, is available in the signature: M � ∀xα ⇔ M � α a

x for all a ∈ A. This
assumption permits the definition of the satisfaction relation for sentences using induction
on sentences while bypassing arbitrary formulas. If not every a ∈ A has a name in L, one
could “fill up” L in advance by adjoining to L a name a for each a. But expanding the
language is not always wanted and does not really simplify the matter.

A natural, often-used generalization of the last satisfaction clause is

M � ∀�xϕ ⇔ M�a
�x � ϕ for all �a ∈ An.

For ∧ ,¬ basically the same satisfaction clauses have been used as in 1.3. Since the
definitions of ∨ , → , and ↔ have not been altered, the following equivalences are
valid in the current approach:
M � α ∨ β ⇔ M � α orM � β, M � α → β ⇔ ifM � α thenM � β,

and analogously for ↔. Further, ∃xϕ was correctly defined in 2.2, because

M � ∃xϕ ⇔ there exists some a ∈ A such thatMa
x � ϕ.

Indeed, ifM � ¬∀x¬ϕ then, by definition,Ma
x � ¬ϕ does not hold for all a, hence

there is some a ∈ A such that Ma
x � ¬ϕ, or equivalently, such that Ma

x � ϕ. And
this chain of reasoning is obviously reversible.

We now introduce several fundamental notions that will be treated systematically
in 2.4 and 2.5, once certain necessary preparations have been completed.

Definition. A formula or set of formulas in L is termed satisfiable if it has a model.
ϕ is called generally valid, logically valid, or a tautology, in short, � ϕ, ifM � ϕ for
every model M. The formulas α, β are called (logically or semantically)equivalent,
symbolically α ≡ β, if M � α ⇔ M � β, for all L-models M. Further, let A � ϕ

(read in A holds ϕ or A satisfies ϕ) if (A, w) � ϕ for all w : Var → A. One writes
A � X in case A � ϕ for all ϕ ∈ X. Finally, let X � ϕ (from X follows ϕ or ϕ is a
consequence of X) if every model of X also satisfies the formula ϕ.

2.3 Semantics of Elementary Languages 51

As in Chapter 1, � denotes both the satisfaction and the consequence relation.
Here, as there, we also write ϕ1, . . . , ϕn � ϕ for {ϕ1, . . . , ϕn} � ϕ etc. In addition, �
denotes the validity relation in structures which is illustrated by the following

Example 2. We show that A � ∀x∃y x �====y where the domain of A contains at least
two elements. Indeed, let M = (A, w) and a ∈ A be arbitrarily given. Then there
is some b ∈ A with a �= b. Hence, (Ma

x)
b
y = Ma b

xy � x �==== y and so Ma
x � ∃y x �==== y.

Since a was arbitrary,M � ∀x∃y x �====y. Clearly the actual values of w are irrelevant
in this argument. Hence (A, w) � ∀x∃y x �====y for all w, that is, A � ∀x∃y x �====y.

Here some care is needed. While M � ϕ or M � ¬ϕ for all formulas, A � ϕ

or A � ¬ϕ (the law of the excluded middle for validity in structures) is in general
correct only for sentences ϕ, as Theorem 3.1 will show. If A contains more than
one element, then, for example, neither A � x==== y nor A � x �==== y. Indeed, x==== y is
falsified by any w such that xw �= yw, and x �====y by any w with xw = yw. This is one
of the reasons why models were not simply identified with structures.

For ϕ ∈ L let ϕG be the sentence ∀x1 · · · ∀xmϕ, where x1, . . . , xm is an enumeration
of free ϕ according to index size, say. ϕG is called the generalized of ϕ, also called
its universal closure. For ϕ ∈ L0 clearly ϕG = ϕ. From this definition results

(1) A � ϕ ⇔ A � ϕG,
and more generally A � X ⇔ A � X G (:= {ϕG | ϕ ∈ X}). (1) explains why ϕ and
ϕG are often notionally identified and the information that formally runs ϕG is often
shortened to ϕ. It must always be clear from the context whether our eye is on
validity in a structure or in a model with its fixed valuation. Only in the first case
can a generalization (or globalization) of the free variables be thought of as carried
out. However, independent of this discussion, � ϕ ⇔ � ϕG always holds.

Even after just these incomplete considerations it is already clear that numerous
properties of structures and whole systems of axioms can adequately be described by
first-order formulas and sentences. Thus, for example, the axiom system mentioned
in 2.1 for groups in {◦, e, −1} can be formulated as follows:

∀x∀y∀z x ◦ (y ◦ z)==== (x ◦ y) ◦ z; ∀x x ◦ e==== x; ∀x x ◦ x−1 ==== e.

Precisely the sentences following from these three axioms are the theorems of the
elementary group theory in ◦, e, −1, denoted by T ====

G . In the sense elaborated in 2.6,
an equivalent formulation of the theory of groups in ◦, e, denoted by TG, is obtained
if the last T ====

G -axiom is replaced by ∀x∃y x ◦ y==== e.
An axiom system for ordered sets can also easily be provided, in that one formalizes

the properties of irreflexivity, transitivity, and connexivity. Here and elsewhere
∀x1 · · ·xnϕ stands for ∀x1 · · · ∀xnϕ:

∀xx ≮ x; ∀xyz(x < y ∧ y < z → x < z); ∀xy(x �====y → x < y ∨ y < x).

52 2 Predicate Logic

In writing down these and other axioms (e.g. those for groups as done above) the
outer ∀-prefixes are occasionally omitted so as to save on writing, and we think
implicitly of the generalization of variables as having been carried out. This is also
the case for the formulation of (1) above, which strictly speaking runs

for all A, ϕ : A � ϕ ⇔ A � ϕG.
For sentences α of a given language it is intuitively clear that the values of the

variables of w for the relation (A, w) � α are irrelevant. The precise proof is ex-
tracted from the following theorem for V = ∅. Thus, either (A, w) � α for all w

and hence A � α, or else (A, w) � α for no w, i.e., (A, w) � ¬α for all w, and hence
A � ¬α. Sentences therefore obey the already-cited tertium non datur.

Theorem 3.1 (Coincidence theorem). Let V ⊆ Var, free ϕ ⊆ V andM,M′ be
models on the same domain A such that xM = xM′ for all x ∈ V , and ζM = ζM′

for all extralogical symbols ζ occurring in ϕ. Then M � ϕ ⇔ M′ � ϕ.

Proof by induction on ϕ. Let ϕ be the prime formula r�t . As was mentioned earlier,
the value of a term t depends only on the meaning of the symbols occurring in t.
But in view of the suppositions regarding t1, . . . , tn, these symbols are just the same
in M and M′. Thus, �t M = �t M′ (i.e., tM

i = tM′
i for i = 1, . . . , n), and therefore

M � r�t ⇔ rM�t M ⇔ rM′�t M′ ⇔ M′ � r�t . For equations t1 ==== t2 one reasons
analogously. Further, the induction hypothesis for α, β yields

M � α∧β ⇔M � α, β ⇔M′ � α, β ⇔M′ � α∧β.

In the same way one obtains M � ¬α ⇔ M′ � ¬α. By the induction step on ∀
it becomes clear that the induction hypothesis needs to be skillfully formulated. It
must be given with respect to any pair of models and any V . Therefore let a ∈ A

andMa
x � ϕ. Since for V ′ := V ∪{x} certainly free ϕ ⊆ V ′ and the modelsMa

x,M′ a
x

coincide for all y ∈ V ′ (although in general xM �= xM′), by the induction hypothesis
we haveMa

x � ϕ⇔M′ a
x � ϕ. This clearly implies

M � ∀xϕ⇔Ma
x � ϕ for all a⇔M′ a

x � ϕ for all a⇔M′ � ∀xϕ.

It follows from this theorem that an L-model M = (A, w) of ϕ for the case that
ϕ ∈ L ⊆ L′ can be completely arbitrarily expanded to an L′-model M′ = (A′, w)
of ϕ, i.e., arbitrarily fixing ζA′ for ζ ∈ L′ \L gives M � ϕ ⇔M′ � ϕ by the above
theorem with V = Var. This readily implies that the consequence relation �L′ with
respect to L′ is a conservative extension of �L in that X �L ϕ ⇔ X �L′ ϕ, for
all sets X ⊆ L and all ϕ ∈ L. Hence, there is no need here for using indices. In
particular, the satisfiability or general validity of ϕ depends only on the symbols
effectively occurring in ϕ.

Another application of Theorem 3.1 is the following fact, which justifies the already
mentioned “omission of superfluous quantifiers.”

(2) ∀xϕ ≡ ϕ ≡ ∃xϕ, supposing that x /∈ free ϕ.

2.3 Semantics of Elementary Languages 53

Indeed, x /∈ free ϕ implies M � ϕ ⇔ Ma
x � ϕ (here a ∈ A is arbitrary) according

to Theorem 3.1; chooseM′ =Ma
x and V = free ϕ. Therefore,

M � ∀xϕ⇔Ma
x � ϕ for all a⇔M � ϕ⇔Ma

x � ϕ for some a ⇔M � ∃xϕ.
Very important for the next theorem and elsewhere is

(3) If A ⊆ B, M = (A, w), M′ = (B, w) and w : Var→ A then tM = tM
′.

This is clear for prime terms, and the induction hypothesis tMi = tM
′

i for i = 1, . . . , n
implies (f�t)M = fM(tM1 , . . . , tMn) = fM′(tM′

1 , . . . , tM
′

n) = (f�t)M′ .
By Theorem 3.1 the satisfaction of ϕ in (A, w) depends only on the values of the

x ∈ free ϕ under w. Let ϕ = ϕ(�x)4 and �a = (a1, . . . , an) ∈ An. Then the statement
(A, w) � ϕ for a valuation w with xw

1 = a1, . . . , x
w
n = an

can more suggestively be expressed by writing
(A,�a) � ϕ or A � ϕ [a1, . . . , an] or A � ϕ [�a]

without mentioning w as a global valuation. Such notation also makes sense if w is
restricted to a valuation on {x1, . . . , xn}. One may accordingly extend the concept
of a model and call a pair (A,�a) a model for a formula ϕ(�x) whenever (A,�a) � ϕ(�x),
in particular if ϕ ∈ Ln. We return to this extended concept in 4.1. Until then we
use it only for n = 0. That is, besides M = (A, w) also the structure A itself is
occasionally called a model for a set S ⊆ L0 of sentences provided A � S.

Corresponding to the above let tA,�a, or more suggestively tA(�a), denote the value
of t = t(�x). Then (3) can somewhat more simply be written as

(4) A ⊆ B and t = t(�x) imply tA(�a) = tB(�a) (�a ∈ An).
Thus, along with the basic functions also the so-called term functions �a
→ tA(�a) are
the restrictions to their counterparts in B. Clearly, if n = 0 or t is variable-free, one
may write tA for tA(�a). Note that in these cases tA = tB provided A ⊆ B, by (4).

As above let ϕ = ϕ(�x). Then ϕA := {�a ∈ An | A � ϕ [�a]} is called the predicate
defined by the formula ϕ in the structure A. For instance, the �-predicate in (N, +)
is defined by ϕ(x, y) = ∃z z + x==== y, but also by several other formulas.

More generally, P ⊆ An is termed (elementarily or first order) definable in A if
there is some ϕ = ϕ(�x) with P = ϕA. Analogously, f : An → A is called definable
in A if ϕA = graph f for some ϕ(�x, y). We also talk in all these cases of explicit
definability in A, to distinguish this from recursive definability. Much information
on a structure can be gained from the knowledge which predicates, or at least which
sets, are definable. For instance, the sets definable in (N, 0, 1, +) are the eventually
periodic ones (periodic from some number upwards). Thus, · cannot explicitly be
defined by +, 0, 1 because the set of square numbers is not eventually periodic.
4 Since this is to mean free ϕ ⊆ {x1, . . . , xn}, �x is not uniquely determined by ϕ. Hence, the phrase
“Let ϕ = ϕ(�x) . . . ” implicitly includes along with a given ϕ also a tuple �x given in advance. The
notation ϕ = ϕ(�x) does not even state that ϕ contains free variables at all.

54 2 Predicate Logic

A ⊆ B and ϕ = ϕ(�x) do not imply ϕA = ϕB ∩ An, in general. For instance, let
A = (N, +), B = (Z, +), and ϕ = ∃z z + x==== y. Then ϕA = �A, while ϕB contains
all pairs (a, b) ∈ Z2. As the next theorem will show, ϕA = ϕB ∩An holds in general
only for open formulas ϕ, and is even characteristic for A ⊆ B provided A ⊆ B.
Clearly, A ⊆ B is much weaker a condition than A ⊆ B:

Theorem 3.2 (Substructure theorem). For structures A,B such that A ⊆ B

the following conditions are equivalent:
(i) A ⊆ B,
(ii) A � ϕ [�a]⇔ B � ϕ [�a], for all open ϕ = ϕ(�x) and all �a ∈ An,
(iii) A � ϕ [�a]⇔ B � ϕ [�a], for all prime formulas ϕ(�x) and all �a ∈ An.

Proof. (i)⇒(ii): It suffices to prove that M � ϕ ⇔ M′ � ϕ, with M = (A, w)
and M′ = (B, w) where w : Var → A. In view of (3) the claim is obvious for prime
formulas, and the induction steps for ∧ ,¬ are carried out just as in Theorem 3.1.
(ii)⇒(iii): Trivial. (iii)⇒(i): By (iii), rA�a ⇔ A � r�x [�a] ⇔ B � r�x [�a] ⇔ rB�a.
Analogously fA�a = b ⇔ A � f�x==== y [�a, b] ⇔ B � f�x==== y [�a, b] ⇔ fB�a = b, for all
�a ∈ An and b ∈ A. These conclusions state precisely that A ⊆ B.

Let α be of the form ∀�xβ with open β, where ∀�x may also be the empty prefix.
Then α is a universal or ∀-formula (spoken “A-formula”), and for α ∈ L0 also a
universal or ∀-sentence. A simple example is ∀x∀y x==== y, which holds in A iff A

contains precisely one element. Dually, ∃�xβ (β open) is termed an ∃-formula, and
an ∃-sentence whenever ∃�xβ ∈ L0. Examples are the “how-many sentences”

∃1 := ∃v0 v0 ==== v0; ∃n := ∃v0 . . .∃vn−1
∧

i<j<n vi �====vj (n > 1).
∃n states ‘there exist at least n elements’, ¬∃n+1 thus that ‘there exist at most n

elements’, and ∃=n := ∃n ∧¬∃n+1 says ‘there exist exactly n elements’. Since ∃1 is a
tautology, it is convenient to set � := ∃1, and ∃0 := ⊥ := ¬�.

Corollary 3.3. Let A ⊆ B. Then every ∀-sentence ∀�xα valid in B is also satisfied
in A. Dually, every ∃-sentence ∃�xβ valid in A is also valid in B.
Proof. Let B � ∀�xβ and �a ∈ An. Then B � β [�a]; hence A � β [�a] by Theorem 3.2.
�a was arbitrary, so A � ∀�xβ. Now let A � ∃�xβ. Then A � β [�a] for some �a ∈ An,
hence B � β [�a] by Theorem 3.2, and consequently B � ∃�xβ.

We formulate a generalization of certain individual often-used arguments, namely

Theorem 3.4 (Invariance theorem). Let A,B be isomorphic L-structures and
let ı :A → B be an isomorphism. Then for all ϕ = ϕ(�x) and all �a ∈ An,

A � ϕ [�a] ⇔ B � ϕ [ı�a]
(
ı�a = (ıa1, . . . , ıan)

)
.

In particular A � α ⇔ B � α, for all sentences α of L.

2.3 Semantics of Elementary Languages 55

Proof. It is convenient to reformulate the claim as
M � ϕ ⇔ M′ � ϕ

(
M = (A, w), M′ = (B, w′), w′ : x
→ ıxw

)
.

It is easy to confirm this inductively on ϕ after one has first proved that ı(tM) = tM
′

inductively on t. The particular case for sentences results from the case n = 0.

Thus, for example, it is once and for all clear that the isomorphic image of a group
is a group even if we know at first only that it is a groupoid. Simply let α in the
theorem run through all axioms of group theory. Here is another application. Let ı

be an isomorphism of the group A = (A, ◦) onto the group A′ = (A′, ◦) and let e and
e′ denote their unit elements, not named in the signature. We claim that nonetheless
ıe = e′, using the easily provable fact that the unit element of a group is the only
solution of the equation x ◦ x==== x (Example 2, page 65). Thus, since A � e ◦ e==== e, we
get A′ � ıe ◦ ıe==== ıe by Theorem 3.4, hence ıe = e′. Theorem 3.4, incidentally, holds
for formulas of higher order as well; see 3.7. For instance, that a set is continuously
ordered is likewise invariant under isomorphism.
L-structures A,B are termed elementary equivalent if A � α ⇔ B � α, for all

α ∈ L0. One then writes A ≡ B. We consider this important notion in 3.3 and
more closely in 5.1. Theorem 3.4 states in particular that A � B ⇒ A ≡ B.
The question immediately arises whether the converse of this also holds. For infinite
structures the answer is negative (see 3.3), for finite structures affirmative; a finite
structure of a finite signature can, up to isomorphism, even be described by a single
sentence. For example, the 2-element group ({0, 1}, +) is up to isomorphism well
determined by the following sentence, which tells us precisely how + operates:

∃v0∃v1[v0 �====v1 ∧∀x(x==== v0 ∨ x==== v1) ∧ v0+v0 ==== v1+v1 ==== v0 ∧ v0+v1 ==== v1+v0 ==== v1].

We now investigate the behavior of the satisfaction relation under substitution.
The definition of ϕ t

x in 2.2 pays no attention to collision of variables, which is
taken to mean that certain variables of the substitution term t after application
of the substitution fall into the scope of quantifiers. In this case M � ∀xϕ does
not necessarily imply M � ϕ t

x , although this might have been expected. In other
words, ∀xϕ � ϕ t

x is not unrestrictedly correct. For instance, if ϕ = ∃y x �==== y then
certainly M � ∀xϕ (= ∀x∃y x �==== y), provided M has at least two elements, but
M � ϕ y

x (= ∃y y �==== y) is certainly false. Analogously ϕ t
x � ∃xϕ is not correct, in

general. Choose, for example, ∀y x==== y for ϕ and y for t.
One could forcibly obtain ∀xϕ � ϕ t

x without any limitation by renaming bound
variables by a suitable modification of the inductive definition of ϕ t

x in the quantifier
step. However, such measures are rather unwieldy for the arithmetization of proof
method in 6.2. It is therefore preferable to put up with minor restrictions when we
are formulating rules of deduction later. The restrictions we will use are somewhat
stronger than they need to be but can easier be handled; they look as follows:

56 2 Predicate Logic

ϕ, t
x are called collision-free if y /∈ bnd ϕ for all y ∈ var t\{x}. We need not to

require x /∈ bnd ϕ because t is substituted only at free occurrences of x, that is, even
if x ∈ var t, x cannot fall after substitution within the scope of a prefix ∀x. For
collision-free ϕ, t

x we will then get ∀xϕ � ϕ t
x by Corollary 3.6 below.

If σ is a global substitution (see 2.2) then ϕ, σ are termed collision-free if ϕ, xσ

x

are collision-free for every x ∈ Var. In the special case σ = �t
�x , this condition clearly

need be checked only for the pairs ϕ,
xσ

i
xi

(i = 1, . . . , n).
For M = (A, w) put Mσ := (A, wσ) where xwσ := (xσ)M for all x ∈ Var. This

equation reproduces itself inductively to tM
σ = tσM for all t. Indeed, it is correct

for prime terms. Now let tM
σ

i = tσi
M for i = 1, . . . , n by the induction hypothesis.

Then the claim for t = ft1 · · · tn follows from
tM

σ = fM(tMσ

1 , . . . , tMσ

n) = fM(tσ1
M, . . . , tσn

M) = tσM.

Note thatMσ coincides withM�t M
�x for the case σ = �t

�x .

Theorem 3.5 (Substitution theorem). Suppose M is a model and σ a global
substitution. Then for all formulas ϕ such that ϕ, σ are collision-free,

M � ϕσ ⇔ Mσ � ϕ.

In particular, M � ϕ
�t
�x ⇔ M�t M

�x � ϕ, provided ϕ,
�t
�x are collision-free.

Proof by induction on ϕ. In view of tσM = tM
σ , we obtain

M � (t1 ==== t2)σ ⇔ tσ1
M = tσ2

M ⇔ tM
σ

1 = tM
σ

2 ⇔ Mσ � t1 ==== t2.

Prime formulas of the form r�t are treated analogously. The induction steps for ∧ ,¬
are harmless. Only the ∀-step ϕ = ∀xα is interesting, and is achieved as follows:
M �(∀xα)σ⇔M � ∀xατ (where xτ = x and yτ = yσ otherwise)

⇔Ma
x � ατ for all a (definition)

⇔ (Ma
x)

τ � α for all a (induction hypothesis; α, τ collision-free)
⇔ (Mσ)a

x � α for all a
(
since (Ma

x)
τ = (Mσ)a

x, see below
)

⇔Mσ � ∀xα.

We show (Ma
x)

τ = (Mσ)a
x. Since ∀xα, σ (hence ∀xα, yσ

y for every y) are collision-
free, we have x /∈ var yσ provided y �= x, and since yτ = yσ we get in this case

y(Ma
x)τ = yτ Ma

x = yσMa
x = yσM = yMσ = y(Mσ)a

x .
But also in the case y = x we have x(Ma

x)τ = xτ Ma
x = xMa

x = a = x(Mσ)a
x .

Corollary 3.6. For all ϕ and �t
�x such that ϕ,

�t
�x are collision-free, the following hold:

(a) ∀�xϕ � ϕ
�t
�x , in particular ∀xϕ � ϕ t

x , (b) ϕ
�t
�x � ∃�xϕ,

(c) ϕ s
x , s==== t � ϕ t

x if ϕ, s
x , t

x are collision-free.

2.3 Semantics of Elementary Languages 57

Proof. Let M � ∀�xϕ, so that M�a
�x � ϕ for all �a ∈ An. In particular, M�t M

�x � ϕ, so
thatM � ϕ

�t
�x by the theorem. (b) is equivalent to ¬∃�xϕ � ¬ϕ

�t
�x . This holds by (a),

for ¬∃�xϕ ≡ ∀�x¬ϕ and ¬(ϕ �t
�x) ≡ (¬ϕ) �t

�x . (c): Let M � ϕ s
x , s==== t, so that sM = tM

andMsM
x � ϕ by the theorem, hence alsoMtM

x � ϕ. ThusM � ϕ t
x .

Remark 2. Since the identical substitution ι is obviously collision-free with every formula;
∀xϕ � ϕ (= ϕι) is always the case. Moreover, ∀xϕ � ϕ t

x is correct without any restriction
provided t contains at most the variable x, since ϕ, t

x are then collision-free. Theorem 3.5
and Corollary 3.6 are easily strengthened. Define inductively a ternary predicate ‘t is free
for x in ϕ’, which intuitively is to mean that no free occurrence in ϕ of the variable x lies
within the scope of a prefix ∀y whenever y ∈ var t. Theorem 3.5 holds then for σ = t

x as
well, so that nothing needs to be changed in the proofs based on this theorem if one works
with ‘t is free for x in ϕ’, or simply reads “ϕ, t

x are collision-free” as “x is free for t in ϕ.”
Though collision-freeness is somewhat cruder, it is for all that more wieldy, which will pay
off, for example, in 6.2 where proofs will be gödelized. Once one has become accustomed
to the required caution, it is allowable not always to state explicitly the restrictions caused
by collisions of variables, but rather to assume them tacitly.

Theorem 3.5 also shows that the quantifier “there exists exactly one,” denoted
by ∃!, is correctly defined by ∃!xϕ := ∃xϕ ∧ ∀x∀y(ϕ∧ϕ y

x → x==== y) with y /∈ var ϕ.
Indeed, M � ∀x∀y(ϕ∧ϕ y

x → x==== y) means just Ma
x � ϕ & Mb

y � ϕ ⇒ a = b, or
equivalently, Ma

x � ϕ for at most one a. Anyone who would like to verify this to
the utmost precision should observe that Mb

y � ϕ ⇔ M � ϕ whenever y /∈ var ϕ.
Putting together, M � ∃!xϕ iff there is precisely one a ∈ A such that Ma

x � ϕ.
A particularly simple example is M � ∃!xx==== y, for arbitrary M. In other words,
∃!xx==== y is a tautology. These will be discussed in more detail in 2.4.

There are various equivalent definitions of ∃!xϕ. For example, a short and catchy
formula is ∃x∀y(ϕ y

x ↔ x==== y), where y /∈ var ϕ.

Exercises

1. Prove ∃x∃y(ϕ∧ϕ y
x ∧x �====y) � ∀x∃y(ϕ y

x ∧x �====y) provided y /∈ var ϕ.

2. Verify ∃x∀y(ϕ y
x ↔ x==== y) � ∃!xϕ (y /∈ var ϕ).

3. Suppose A′ results from A by adjoining a constant symbol a for some a ∈ A.
Prove t(x)A,a = t(a)A′ and A � α [a] ⇔ A′ � α(a) (= α a

x) for α = α(x).
This is easily generalized to the case of more than one variable.

4. Show that (a) a conjunction of the ∃i and their negations is equivalent to
∃n, ¬∃n, or ∃n ∧¬∃m for suitable n, m, (b) a Boolean combination of the ∃i

is equivalent to
∨

ν�n ∃=kν ∨ ∃m, where 0 � k0 < · · · < kn, n < m, and the
disjunction term ∃m may actually be absent.

58 2 Predicate Logic

2.4 General Validity and Logical Equivalence

From the perspective of predicate logic α ∨ ¬α (α ∈ L) is a trivial example of a
tautology, because it results by inserting α for p from the propositional tautology
p ∨ ¬p. Every propositional tautology provides generally valid L-formulas by the
insertion of L-formulas for the propositional variables. But there are also tautologies
not arising in this way, for example ∀x(x < x ∨ x ≮ x). This tautology is the result
of generalizing x < x ∨ x ≮ x. However, the tautologies ∃xx==== x and ∃xx==== t for
x /∈ var t are not generated in this way. The former arises from the convention that
structures are always nonempty, the latter from that all basic operations are totally
defined. A particularly interesting tautology is presented by the following

Example 1 (Russell’s antinomy). We will show that � ¬∃u∀x(x∈ u ↔ x /∈ x),
the nonexistence of the “Russellean set” u, consisting of all sets not containing
themselves as a member (see also 3.4). Remarkably, the proof does not assume
that ∈ means membership. By Corollary 3.6(a), ∀x(x∈ u ↔ x /∈ x) � u∈ u ↔ u /∈ u.
Since u∈ u ↔ u /∈ u is obviously unsatisfiable, the same holds for ∀x(x∈ u ↔ x /∈ x),
hence also for ∃u∀x(x∈ u↔ x /∈ x). Thus, ¬∃u∀x(x∈ u↔ x /∈ x) is a tautology. This
inference need not at all be related to set theory! The antinomy arises here from
that the (unsatisfiable) ∃u∀x(x∈ u ↔ x /∈ x) should hold in set theory if Cantor’s
definition of a set as an arbitrary collection of objects is taken literally.

The satisfaction clause for α → β easily yields α � β ⇔ � α → β, a special case
of X,α � β ⇔ X � α → β. This can be useful in checking whether formulas given
in implicative form are tautologies, as was mentioned already in 1.3. Thus, from
∀xα � α t

x one immediately obtains � ∀xα → α t
x for collision-free α, t

x .
As in propositional logic, α ≡ β is again equivalent to � α ↔ β. By inserting L-

formulas for the variables of a propositional equivalence one automatically procures
one of predicate logic. Thus, for instance, α → β ≡ ¬α ∨ β, because certainly
p → q ≡ ¬p ∨ q. Since every L-formula results from the insertion of propositionally
irreducible L-formulas in a formula of propositional logic, one also sees that every
L-formula can equivalently be converted into a conjunctive normal form. But there
are also numerous other equivalences, for example

¬∀xα ≡ ∃x¬α and ¬∃xα ≡ ∀x¬α.
The first of these means just ¬∀xα ≡ ¬∀x¬¬α (= ∃x¬α), obtained by replac-

ing α on the left by the equivalent formula ¬¬α. This is a simple application of
Theorem 4.1 below with ≡ for ≈. As in propositional logic, semantical equivalence
is an equivalence relation in L and, moreover, a congruence in L. Speaking more
generally, an equivalence relation ≈ in L that satisfies the congruence property

CP: α ≈ α′, β ≈ β′ ⇒ α∧β ≈ α′ ∧β′, ¬α ≈ ¬α′, ∀xα ≈ ∀xα′

is termed a congruence in L. Its most important property is expressed by

2.4 General Validity and Logical Equivalence 59

Theorem 4.1 (Replacement theorem). Let ≈ be a congruence in L and α ≈ α′.
If ϕ′ results from ϕ by replacing the formula α at one or more of its occurrences in
ϕ by the formula α′, then ϕ ≈ ϕ′.

Proof by induction on ϕ. Suppose ϕ is a prime formula. Both for ϕ = α and ϕ �= α,
ϕ ≈ ϕ′ clearly holds. Now let ϕ = ϕ1 ∧ϕ2. In case ϕ = α holds trivially ϕ ≈ ϕ′.
Otherwise ϕ′ = ϕ′

1 ∧ϕ′
2, where ϕ′

1, ϕ
′
2 result from ϕ1, ϕ1 by possible replacements. By

the induction hypothesis ϕ1 ≈ ϕ′
1 and ϕ2 ≈ ϕ′

2. Hence, ϕ = ϕ1 ∧ϕ2 ≈ ϕ′
1 ∧ϕ′

2 = ϕ′

according to CP. The induction steps for ¬, ∀ follow analogously.

This theorem will constantly be used, mainly with ≡ for ≈, without actually
specifically being cited, just as in the arithmetical rearrangement of terms, where
the laws of arithmetic used are hardly ever named explicitly. The theorem readily
implies that CP is provable for all defined connectives like → and ∃. For example,
α ≈ α′ ⇒ ∃xα ≈ ∃xα′, because α ≈ α′ ⇒ ∃xα = ¬∀x¬α ≈ ¬∀x¬α′ = ∃xα′.

Predicate logical languages have a finer structure than those of propositional logic.
There are consequently further interesting congruences in L. Thus, formulas α, β are
equivalent in an L-structure A, symbolized α ≡A β, if A � α [w] ⇔ A � β [w], for
all w. For instance, in A = (N, <, +, 0) the formulas x < y and ∃z (z �====0 ∧ x+z ==== y)
are equivalent. The proof of the congruence property CP for ≡A is very simple,
hence is left to the reader.

Clearly, α ≡A β is equivalent to A � α↔ β. Because of ≡ ⊆ ≡A, properties such
as ¬∀xα ≡ ∃x¬α carry over from ≡ to ≡A. But there are often new interesting
equivalences in certain structures. For instance, there are structures in which every
formula is equivalent to an open one, as we will see in 5.6.

A very important fact with an almost trivial proof is that the intersection of a
family of congruences is itself a congruence. Consequently, for any class K �= ∅ of
L-structures, ≡K :=

⋂
{≡A | A ∈ K} is always a congruence. For the class K of

all L-structures, ≡K is identical to the logical equivalence ≡, which in this section
we deal with exclusively. In the following we list its most important features; they
should be committed to memory, since they will continually be applied.

(1) ∀x(α∧β) ≡ ∀xα∧∀xβ, (2) ∃x(α ∨ β) ≡ ∃xα ∨ ∃xβ,

(3) ∀x∀yα ≡ ∀y∀xα, (4) ∃x∃yα ≡ ∃y∃xα.

If x does not occur free in the formula β, then also
(5) ∀x(α ∨ β) ≡ ∀xα ∨ β, (6) ∃x(α∧β) ≡ ∃xα∧β,

(7) ∀xβ ≡ β, (8) ∃xβ ≡ β,

(9) ∀x(α → β) ≡ ∃xα → β, (10) ∃x(α → β) ≡ ∀xα → β.

The simple proofs are left to the reader. (7) and (8) were stated in (2) in 2.3.
Only (9) and (10) look at first sight surprising. But in practice these equivalences

60 2 Predicate Logic

are very frequently used. Consider for a fixed set of formulas X the evidently true
metalogical assertion ‘for all α: if X � α,¬α then X � ∀xx �====x’. The latter clearly
states the same as ‘If there is an α such that X � α,¬α then X � ∀xx �====x’.

Remark. In everyday speech variables tend to remain unquantified, partly because in
some cases the same meaning results from quantifying with “there exists a” or “for all.”
For instance, consider the following three sentences, which obviously tell us the same thing,
and of which the last two correspond to the logical equivalence (9):
• If a lawyer finds a loophole in the law it must be changed.
• If there is a lawyer who finds a loophole in the law it must be changed.
• For all lawyers: if one of them finds a loophole in the law it must be changed.

Often, the type of quantification in linguistic bits of information can be made out only
from the context, and this leads not all too seldom to unintentional (or intentional) mis-
understandings. “Logical relations in language are almost always just alluded to, left to
guesswork, and not actually expressed” (G. Frege).

Let x, y be distinct variables and α ∈ L. One of the most important logical
equivalences is renaming of bound variables (in short, bound renaming), stated in

(11) (a) ∀xα ≡ ∀y(α y
x), (b) ∃xα ≡ ∃y(α y

x) (y /∈ var α).
(b) follows from (a) by rearranging equivalently. Note that y /∈ var α is equivalent
to y /∈ free α and α, y

x collision-free. WritingMy
x forMyM

x , (a) derives as follows:
M � ∀xα ⇔ Ma

x � α for all a (definition)
⇔ (Ma

y)
a
x � α for all a (Theorem 3.1)

⇔ (Ma
y)

y
x � α for all a

(
(Ma

y)
y
x = (Ma

y)
a
x

)
⇔ Ma

y � α y
x for all a (Theorem 3.5)

⇔ M � ∀y(α y
x) .

The equivalences (12) and (13) below are also noteworthy. According to (13),
substitutions are completely described up to logical equivalence by so-called free
renamings (substitutions of the form y

x). (13) also embraces the case x ∈ var t.

(12) ∀x(x==== t → α) ≡ α t
x ≡ ∃x(x==== t ∧ α) (α, t

x collision-free, x /∈ var t).
(13) ∀y(y==== t → α y

x) ≡ α t
x ≡ ∃y(y==== t ∧ α y

x) (α, t
x collision-free, y /∈ var α, t).

Proof of (12): ∀x(x==== t → α) � (x==== t → α) t
x = t==== t → α t

x � α t
x by Corollary 3.6.

Conversely, let M � α t
x so that MtM

x � α and Ma
x � x==== t. Then a = tM and so

Ma
x � α, which shows thatMa

x � x==== t → α for any a ∈ A, henceM � ∀x(x==== t → α).
This proves the left equivalence in (12). The right equivalence reduces to the left
one because ∃x(x==== t ∧ α) = ¬∀x¬(x==== t ∧ α) ≡ ¬∀x(x==== t→ ¬α) ≡ ¬¬α t

x ≡ α t
x .

Item (13) is proved similarly, using Corollary 3.6 and Exercise 1 in 2.2. Observe
that ∀y(y==== t → α y

x) � α y
x

t
y = α t

x and α t
x

t
y � α y

x .
With the above equivalences we can now regain an equivalent formula starting

with any formula in which all quantifiers are standing at the beginning. But this
one requires both quantifiers ∃ and ∀, in the following denoted by Q, Q1, Q2, . . .

2.4 General Validity and Logical Equivalence 61

A formula of the form α = Q1x1 · · ·Qnxnβ with an open formula β is termed a
prenex formula or a prenex normal form, in short a PNF. The open β is also called
the kernel of α. We may assume that x1, . . . , xn are distinct; this can always be
achieved by bound renaming. These normal forms are, for instance, highly important
for classifying definable number-theoretic predicates in 6.3. Obviously, ∀-formulas
and ∃-formulas are the simplest examples of prenex normal forms.

Theorem 4.2 (on the prenex normal form). Every formula ϕ is equivalent to
a formula in prenex normal form that can effectively be constructed from ϕ.

Proof. Without loss of generality let ϕ contain only the logical symbols ¬, ∧ ,∀,∃
(besides ====). For each prefix Qx in ϕ consider the number of symbols ¬ or ∧ standing
in front of Qx in ϕ. Let sϕ be the sum of these numbers, summed over all prefixes
occurring in ϕ. Clearly, ϕ is a PNF if and only if sϕ = 0. Let sϕ �= 0. In view of

¬∀xα ≡ ∃x¬α, ¬∃xα ≡ ∀x¬α, β ∧Qxα ≡ Qy(β ∧α y
x) for y /∈ var α, β,

sϕ can obviously be reduced stepwise by means of equivalent replacements.

Example 2. ∀x∃y(x �==== 0 → x · y==== 1) is a PNF for ∀x(x �==== 0 →∃y x · y==== 1). And
for ∃xϕ∧∀y∀z(ϕ y

x ∧ϕ z
x → y==== z) we get the PNF ∃x∀y∀z(ϕ∧ (ϕ y

x ∧ϕ z
x → y==== z)) if

y, z /∈ free ϕ; if not, a bound renaming will help. An equivalent PNF for this formula
with minimal quantifier rank is ∃x∀y(ϕ y

x ↔ x==== y), see page 57.

The first formula ∀x(x �====0 →∃y x ·y==== 1) from the example may be abbreviated by
(∀x �====0)∃y x · y==== 1. More generally, we shall write (∀x �==== t)α for ∀x(x �==== t → α) and
(∃x �==== t)α for ∃x(x �==== t ∧ α) from now on. A similar notation is used for �, <, ∈ and
their negations. For instance, (∀x�t)α and (∃x�t)α are to mean ∀x(x�t → α) and
∃x(x�t ∧ α), respectively. For any binary relation symbol �, the “prefixes” (∀y�x)
and (∃y�x) are related to each other as are ∀ and ∃; see Exercise 2.

Exercises

1. Suppose α ≡ β. Prove α
�t
�x ≡ β

�t
�x whenever α,

�t
�x and β,

�t
�x are collision-free.

2. Prove that ¬(∀x�y)α ≡ (∃x�y)¬α and ¬(∃x�y)α ≡ (∀x�y)¬α. Here �
represents any binary relation symbol.

3. Show that the conjunction or disjunction of ∀-formulas α, β is equivalent to a
∀-formula. Prove the same for ∃-formulas (use bounded renaming if necessary).

4. Let P be a unary predicate symbol. Prove that ∃x(Px →∀yPy) is a tautology.

5. Call α, β ∈ L tautologically equivalent if � α⇔ � β. Confirm that the follow-
ing (in general not logically equivalent) formulas are tautologically equivalent:
α, ∀xα, and α c

x , where the constant symbol c does not occur in α.

62 2 Predicate Logic

2.5 Logical Consequence and Theories

Whenever L′ ⊇ L, the language L′ is called an expansion or extension of L and L
a reduct or restriction of L′. Recall the insensitivity of the consequence relation to
extensions of a language, mentioned in 2.3. Theorem 3.1 yields that establishing
X � α does not depend on the language to which the set of formulas X and the
formula α belong. For this reason, indices for �, such as �L, are dispensable.

Because of the unaltered satisfaction conditions for ∧ and ¬, all properties of
the propositional consequence gained in 1.3 carry over to predicate logic. These
include general properties such as, for example, the reflexivity and transitivity of �,
and the semantical counterparts of the rules (∧1), (∧2), (¬1), (¬2) from 1.4, for

instance
X � α, β

X � α∧β
.5 Also, Gentzen-style properties such as the deduction theorem,

automatically carry over. But there are also completely new properties among the
following ones. Some of these will be elevated to basic rules of a logical calculus for
first-order languages in 3.1.

Examples of properties of the predicate logical consequence relation

(a) X � ∀xα

X � α t
x

(α, t
x collision-free), (b)

X � α s
x , s==== t

X � α t
x

(
α, s

x and α, t
x

collision-free

)
,

(c) X, β � α

X,∀xβ � α

(
anterior
generalization

)
, (d) X � α

X � ∀xα

(
x /∈ free X, poste-
rior generalization

)
,

(e) X, β � α

X,∃xβ � α

(
x /∈ free X,α, anter-
ior particularization

)
, (f)

X � α t
x

X � ∃xα

(
α, t collision-free,
posterior particul.

)
.

Since � is transitive, (a) and (b) follow from ∀xα � α t
x and α s

x , s==== t � α t
x .

This was already stated in Corollary 3.6. Analogously (c) results from ∀xβ � β. To
prove (d), suppose that X � α, M � X, and x /∈ free X. Then Ma

x � X for any
a ∈ A by Theorem 3.1, which just means M � ∀xα. As regards (e), observe that
X, β � α ⇒ X,¬α � ¬β ⇒ X,¬α � ∀x¬β and (d), whence X,¬∀x¬β � α.
(e) captures deduction from an existence claim. (f) proves an existence claim and
holds since α t

x � ∃xα by Corollary 3.6. Both (e) and (f) are permanently applied
in mathematical reasoning and will briefly be discussed in Example 1 on the next
page. All of the above properties have certain variants; for example,

(g)
X � α y

x

X � ∀xα
(y /∈ free X ∪ var α).

This results from (d) with α y
x for α and y for x, because ∀yα y

x ≡ ∀xα if y /∈ var α.

5 A suggestive way of writing “X � α, β implies X � α ∧ β,” a notation that was introduced already
in Exercise 3 in 1.3. A corresponding notation will also be used in the examples below.

2.5 Logical Consequence and Theories 63

From these properties complicated chains of deduction can where necessary be
justified step by step. But in practice this makes sense only in particular circum-
stances, because formalized proofs are readable only at the expense of a lot of time,
just like lengthy computer programs, even with well prepared documentation.

What is most important is that a proof, when written down, can be understood
and reproduced. This is why mathematical deduction tends to proceed informally,
i.e., both claims and their proofs are formulated in a mathematical “everyday”
language with the aid of fragmentary and flexible formalization. To what degree
a proof is to be formalized depends on the situation and need not be determined
in advance. In this way the strict syntactic structure of formal proofs is slackened,
compensating for the imperfection of our brains in regard to processing syntactic
information. Further, certain informal proof methods will often be described by a
more or less clear reference to so-called background knowledge, and not actually
carried out. This method has proven itself to be sufficiently reliable. Indeed, apart
from specific cases it has not yet been bettered by any of the existing automatic
proof machines. Let us present and analyse a very simple example of an informal
proof in a language L for natural numbers that along with 0, 1, +, · contains the
symbol for divisibility, defined by m n⇔ ∃k m · k = n. In addition, let L contain
a symbol f for some function from N to N; we shall write here fi for f(i).

Example 1. We want to prove ∀n∃x(∀i�n)fi x. That is, for every n, f0, . . . , fn have
a common multiple. A careful proof proceeds by induction on n. Here we focus
solely on the induction step X,∃x(∀i�n)fi x � ∃x(∀i�n+1)fi x, where X repre-
sents our prior knowledge about familiar properties of divisibility. Informally we
reason as follows: Suppose ∃x(∀i�n)fi x and let x denote any common multiple of
f0, . . . , fn. Then x · fn+1 is obviously a common multiple of f0, . . . , fn+1, whence we
infer ∃x(∀i�n+1)fi x. That’s all. To argue formally like a proof machine, we start
from the obvious (∀i�n)fi x � (∀i�n+1)fi (x · fn+1). Posterior particularization
of x is applied to get X, (∀i�n)fi x � ∃x(∀i�n+1)fi x. Thereafter anterior particu-
larization is used to obtain the desired X,∃x(∀i�n)fi x � ∃x(∀i�n+1)fi x.

Some textbooks deal with a somewhat stricter consequence relation, which we
denote here by �G. The reason is that in mathematics one largely considers derivations
in theories. For X ⊆ L and ϕ ∈ L define X �G ϕ if A � ϕ for all L-structures A such
that A � X. In contrast to the local consequence relation �, �G can be considered
as the global consequence relation since it cares only about A, not about a concrete
valuation w in A, and hence not on pairs (A, w).

Let us collect a few properties of �G. Obviously, X � ϕ implies X �G ϕ, but
the converse does not hold in general. For example, x==== y �G ∀xy x==== y, however
x==== y � ∀xy x==== y. By (d) from the beginning of this section, X � ϕ ⇒ X � ϕG

64 2 Predicate Logic

holds in general only if the free variables of ϕ do not occur free in X, while �G has
this property unrestrictedly; indeed, for any X, by definition, X �G ϕ ⇔ X �G ϕG.
A reduction of �G to � is provided by the following equivalence which follows from
M � X G ⇔ A � X G, for each modelM = (A, w):

(1) X �G ϕ ⇔ X G � ϕ.
Because of S G = S for sets of sentences S, we clearly obtain from (1)

(2) S �G ϕ ⇔ S � ϕ (in particular, �G ϕ ⇔ � ϕ).
Thus, a distinction between � and �G is apparent only when premises are involved

that are not sentences. In such a situation the relation �G must be treated with the
utmost care. In particular, neither of the rules

X,α �G β X,¬α �G β

X �G β
(case distinction), X,α �G β

X �G α → β
(deduction theorem)

is unrestrictedly correct; for example x==== y �G ∀xy x==== y, but not �G x==== y →∀xy x==== y.
Thus, the deduction theorem fails to hold for �G. A main reason for our preference of
� over �G is that � extends the propositional consequence relation conservatively, so
that features such as the deduction theorem carry over unrestrictedly, while this is
not the case for �G. It should also be said that �G reflects only incompletely the actual
procedures of natural deduction in that formulas with free variables are frequently
used also in deductions of sentences from sentences as is seen in Example 1.

We now make more precise the notion of a formalized theory in L, where it is
useful to think of the examples in 2.3, such as group theory.

Definition. An elementary theory or first-order theory in L, also termed an L-
theory, is a set of sentences T ⊆ L0 deductively closed in L0, i.e., T � α ⇔ α ∈ T ,
for all α ∈ L0. If α ∈ T then we say that α is valid or holds in T , or α is a theorem
of T . The extralogical symbols of L are also called the symbols of T . If T ⊆ T ′ then
T is called a subtheory of T ′, and T ′ an extension of T . An L-structure A such that
A � T is also termed a model of T , in short a T -model. Md T denotes the class of
all models of T in this sense; Md T consist of L-structures only.

For instance, for any set X of sentences, T = {α ∈ L0 | X � α} is a theory, in
view of the transitivity of �. Clearly, α ∈ T if and only if A � α for all A � T .

According to (2), there is no difference between � and �G as long as deduction from
theories is considered. We always have T � ϕ ⇔ T � ϕG, for an arbitrary ϕ ∈ L.
This fact should be taken in and remembered, since it is constantly used.

Different authors may use different definitions for a theory. For example, it is not
always demanded that theories consist only of sentences. Conventions of this type
each have their advantages and disadvantages. Proofs regarding theories are always
adaptable enough to accommodate small modifications of the definition. Using the
definition given above we set the following convention.

2.5 Logical Consequence and Theories 65

Convention. In talking of the theory S where S is a set of sentences, we always
mean the theory determined by S, that is, {α ∈ L0 | S � α}. A set of formulas X

is called an axiom system for T whenever T = {α ∈ L0 |X G � α}. Thus, we tacitly
generalize all possibly open formulas in X. Axioms of a theory are always sentences.
But we conforme to standard practice of writing long axioms as formulas.

We will later consider extensive axiom systems (in particular, for arithmetic and
for set theory) whose axioms are partly written as open formulas just for the reason
of economy. Free variables occurring in axioms have always to be generalized.

There exists a smallest theory in L, namely the set Taut (= TautL) of all generally
valid sentences in L, also called the “logical” theory. An axiom system for Taut is
the empty set of axioms. There is also a largest theory: the set L0 of all sentences,
the inconsistent theory which possesses no models. All remaining theories are called
satisfiable or consistent.6 Moreover, the intersection T =

⋂
i∈I Ti of any nonempty

family of theories Ti is in turn a theory: if T � α ∈ L0 then clearly Ti � α holds as
well, for every i ∈ I. Hence, T � α (equivalently, α ∈ T). In this book T and T ′,
with or without indices, exclusively denote theories.

For T ⊆ L0 and α ∈ L0 let T +α denote the smallest extension of T containing α.
Similarly let T + S for S ⊆ L0 be the smallest theory ⊇ T ∪ S. If S is finite then
T ′ = T + S = T +

∧
S is called a finite extension of T . Here

∧
S denotes the

conjunction of all sentences in S. A sentence α is termed compatible or consistent
with T , if T + α is satisfiable, and refutable in T if T + ¬α is satisfiable. Thus, the
theory of fields TF is compatible with the sentence 1+1==== 0, or 1+1 �====0 is refutable
in TF , since the 2-element field satisfies 1 + 1==== 0.

If both α and ¬α are compatible with T then the sentence α is termed inde-
pendent of T . The classic example is the independence of the parallel axiom from
the remaining axioms of Euclidean plane geometry which define absolute geometry.
Much more difficult is the independence proof of the continuum hypothesis from the
axioms for set theory. These axioms are presented and discussed in 3.4.

At this point we introduce another important concept; α, β ∈ L are said to be
equivalent in or modulo T , α ≡T β, if α ≡A β for all A � T . Being an intersection of
congruences, ≡T is itself a congruence and hence satisfies the replacement theorem.
This will henceforth be used without further mention, as will the obvious equivalence
of α ≡T β, T � α↔ β, and T � (α↔ β)G.

Example 2. In TG (page 51) holds x ◦ x==== x ≡TG
x==== e ≡TG

∀y y ◦ x==== y. The only
tricky step in the proof is TG � x ◦ x==== x → x==== e. Let x ◦ x==== x and choose some y

with x ◦ y==== e. This equation implies x==== x ◦ e==== x ◦ x ◦ y==== x ◦ y==== e in TG.
6 Consistent mostly refers to a logic calculus, e.g., the calculus in 3.1. However, it will be shown
in 3.2 that consistency and satisfiability coincide, thus justifying the word’s ambiguous use.

66 2 Predicate Logic

Terms s, t are called equivalent in T , symbolically s ≈T t, if T � s==== t, that is,
A � s==== t [w] for all A � T and w : Var → A. For instance, in the theory T := T ====

G of
groups is provable (x ◦ y)−1 ==== y−1 ◦ x−1, equivalently, (x ◦ y)−1 ≈T y−1 ◦ x−1.

If all axioms of a theory T are ∀-sentences then T is called a universal or ∀-theory.
For such a theory, Md T is closed with respect to substructures as follows from
Corollary 3.3, that is, A ⊆ B � T ⇒ A � T . Examples are partial orders, orders,
lattices, Boolean algebras etc. Universal theories are further classified. The most
important ∀-theories are equational, quasi-equational, and universal Horn theories,
all of which will be considered to some extent in later chapters.

Theories are frequently given by structures or classes of structures. The elementary
theory ThA and the theory ThK of a class K of structures are defined by

ThA := {α ∈ L0 | A � α}, ThK :=
⋂
{ThA |A ∈K},

where we tacitly assume K �= ∅. It is easy to verify that here theories in the precise
sense are being dealt with. Instead of α ∈ ThK one often writes K � α. In general,
MdThK is larger than K as we shall see.

Remark. The set of formulas breaks up modulo T (more precisely, modulo ≡T) into
equivalence classes; their totality is denoted by BωT . Based on these we can define in
a natural manner operations ∧ , ∨,¬. For instance, ᾱ∧ β̄ = α∧β where ϕ̄ denotes the
equivalence class to which ϕ belongs. One shows easily that BωT forms a Boolean algebra
with respect to ∧ , ∨,¬. For every n, also the set BnT of all ϕ̄ in BωT such that the free
variables of ϕ belong to Varn (= {v0, . . . ,vn−1}) is a subalgebra of BωT . Note that B0T
is isomorphic to the Boolean algebra of all sentences modulo ≡T . The significance of the
Boolean algebras BnT is revealed only in the somewhat higher reaches of model theory,
and they are therefore mentioned only incidentally.

Exercises

1. Suppose x /∈ free X and c is not in X,α. Prove the equivalence of

(i) X � α, (ii) X � ∀xα, (iii) X � α c
x .

This holds then in particular if X is a theory or the axiom system of a theory.

2. Let S be a set of sentences, α = α(x) and β formulas, and c be a constant not
occurring in S, α, β. Show that the following statements are equivalent:

(i) S � α c
x → β, (ii) S � ∃xα → β.

3. Show for all α, β ∈ L0 that β ∈ T + α ⇔ α → β ∈ T .

4. Let T ⊆ L be a theory, L0 ⊆ L, and T0 := T ∩ L0. Prove that T0 is also a
theory (the so-called reduct theory in the language L0).

2.6 Explicit Definitions—Expanding Languages 67

2.6 Explicit Definitions–Expanding Languages

The deductive development of a theory, be it given by an axiom system or a single
structure or classes of those, nearly always goes hand in hand with expansions of the
language carried out step by step. For example, in developing elementary number
theory in the language L(0, 1, +, ·), the introduction of the divisibility relation by
means of the (explicit) definition x y ↔ ∃z x · z ==== y has certainly some advantages.
This and similar examples motivate the following

Definition I. Let r be an n-ary relation symbol not in L. An explicit definition of
r in L is a formula of the following form, with distinct variables in �x:

ηr : r�x↔ δ(�x)
with δ(�x) ∈ L, named the defining formula. For a theory T , Tr := T + η G

r is then
called a definitorial expansion (or extension) of T by r. This is a theory in L[r], the
language resulting from L by adjoining the relation symbol r.

Tr is a conservative extension of T which, in general, is to mean a theory T ′ ⊇ T

in L′ ⊇ L such that T ′ ∩ L = T . Thus, no new sentences from the language of T

are added to T . In this sense Tr is a harmless extension of T . Our claim constitutes
part of Theorem 6.1. For ϕ ∈ L[r] define the reduced formula ϕrd ∈ L as follows:
Starting from the left, replace every prime formula r�t occurring in ϕ by δ�x(�t).

Theorem 6.1 (Elimination theorem). Let Tr ⊆ L[r] be a definitorial extension
of T ⊆ L0 by the explicit definition r�x↔ δ(�x). Then for all ϕ ∈ L[r]

(∗) Tr � ϕ ⇔ T � ϕrd.

For ϕ ∈ L we have in particular Tr � ϕ ⇔ T � ϕ (because then ϕrd = ϕ). Hence,
α ∈ Tr ⇔ α ∈ T , for all α ∈ L0. In short, Tr is a conservative extension of T .
Proof. Each A � T is expandable to a model A′ � Tr with the same domain, setting
rA′

�a :⇔ A � δ [�a] (�a ∈ An). Since r�t ≡Tr δ(�t) for any term sequence �t , we have
ϕ ≡Tr ϕrd for all ϕ ∈ L[r] (replacement theorem). Thus, (∗) follows from

Tr � ϕ⇔ A′ � ϕ for all A � T (Md Tr consist of the A′ with A � T)
⇔ A′ � ϕrd for all A � T (because ϕ ≡Tr ϕrd)
⇔ A � ϕrd for all A � T (Theorem 3.1)
⇔ T � ϕrd.

Operation symbols and constants can be similarly introduced, though in that case
there are certain conditions to observe. For instance, in the theory of groups TG

(page 51) the operation −1 can be defined by y==== x−1 ↔ x ◦ y==== e. This definition is
legitimate since TG � ∀x∃!y x ◦ y==== e. Only this requirement ensures that TG + η G

is a conservative extension of TG; Exercise 3. We therefore extend Definition I as

68 2 Predicate Logic

follows, keeping in mind that to the end of this section constant symbols are to be
counted among the operation symbols.

Definition II. An explicit definition of an n-ary operation symbol f not occurring
in L is a formula of the form

ηf : y==== f�x↔ δ(�x, y) (δ ∈ L and y, x1, . . . , xn distinct).
ηf is called legitimate in T ⊆ L if T � ∀�x ∃!yδ, and Tf := T + η G

f is then called
a definitorial extension by f . In the case n = 0 we write c for f and speak of an
explicit definition of the constant symbol c. It is of the form y==== c↔ δ(y).

Some of the free variables of δ are often not explicitly named, and thus downgraded
to parameter variables. More on this will be said in the discussion of the axioms
for set theory in 3.4. The elimination theorem is proved in almost exactly the same
way as above, provided ηf is legitimate in T . The reduced formula ϕrd is defined
correspondingly. For a constant c (n = 0 in Definition II), let ϕrd := ∃z(ϕ z

c ∧δ z
y),

where ϕ z
c denotes the result of replacing c in ϕ by z (/∈ var ϕ). Now let n > 0. If

f does not appear in ϕ, set ϕrd = ϕ. Otherwise, looking at the first occurrence of
f in ϕ from the left, we certainly may write ϕ = ϕ0

f�t
y for appropriate ϕ0, �t , and

y /∈ var ϕ. Clearly, ϕ ≡Tf
∃y(ϕ0 ∧ y==== f�t) ≡Tf

ϕ1, with ϕ1 := ∃y(ϕ0 ∧ δf (�t , y)). If
f still occurs in ϕ1 then repeat this procedure, which ends in, say, m steps in a
formula ϕm that no longer contains f . Then set ϕrd := ϕm.

Frequently, operation symbols f are introduced by definitions of the form

(∗) f�x := t(�x)

where of course f does not occur in the term t(�x). This procedure is in fact subsumed
by Definition II, because the former is nothing more than a definitorial extension of T

with the explicit definition ηf : y==== f�x↔ y==== t(�x). This definition is legitimate since
∀�x ∃!y y==== t(�x) is a tautology. It can readily be shown that η G

f is logically equivalent
to ∀�x f�x==== t(�x). Hence, (∗) can indeed be regarded as a kind of an informative
abbreviation of a legitimate explicit definition with the defining formula y==== t(�x).

Remark. Instead of introducing new operation symbols, so-called iota-terms from [HB]
could be used. For any formula ϕ = ϕ(�x, y) in a given language, let ιyϕ be a term in
which y appears as a variable bound by ι. Whenever T � ∀�x∃!yϕ then T is extended by the
axiom ∀�x∀y[y ==== ιyϕ(�x, y)↔ ϕ(�x, y)] so that ιyϕ(�x, y) so to speak stands for the function
term f�x, which could have been introduced by an explicit definition. We mention that a
definitorial language expansion is not a necessity. In principle, formulas of the expanded
language can always be understood as abbreviations in the original language. This is
in some presentations the actual procedure, though our imagination prefers additional
notions over long sentences that would arise if we were to stick to the basic notions.

Definitions I and II can be unified in a more general declaration as follows: T ′ is a
definitorial extension of T whenever T ′ = T +∆ for some list ∆ of explicit definitions

2.6 Explicit Definitions—Expanding Languages 69

of new symbols legitimate in T , given in terms of those of T (here legitimate is meant
to pertain to operation symbols and constants only). ∆ need not be finite, but in
principle it is sufficient to restrict ourselves to this case. If L′ is the language of T ′,
a reduced formula ϕrd ∈ L is stepwise constructed as above, for every ϕ ∈ L. In
this way the somewhat long-winded proof of the following theorem is reduced each
time to the case for extension by a single symbol:

Theorem 6.2 (General elimination theorem). Let T ′ be a definitorial extension
of T . Then α ∈ T ′ ⇔ αrd ∈ T , and T ′ is a conservative extension of T .

A relation or operation symbol ζ occurring in T ⊆ L is termed explicitly definable
in T if T is a definitorial extension of T0 := T ∩L0, where L0 denotes the language of
the extralogical symbols of T without ζ. For example, in the theory TG of groups the
constant e is explicitly defined by x==== e↔ x ◦ x==== x (Example 2 page 65). In such a
case each T0-model can be expanded in only one way to a T -model. If this special
condition is fulfilled then ζ is also called implicitly definable in T . This could also
be stated as follows: if T ′ is distinct from T only in that the symbol ζ is everywhere
replaced by a new symbol ζ ′, then T ∪ T ′ � ∀�x(ζ�x↔ ζ ′�x) or T ∪ T ′ � ∀�x(ζ�x==== ζ ′�x),
depending on whether ζ, ζ ′ are relation or operation symbols. It is noteworthy that
the latter is already sufficient for the explicit definability of ζ in T . But we will go
without the proof, preferring instead to quote the following interesting theorem:

Beth’s definability theorem. A relation or operation symbol implicitly definable
in a theory T is also explicitly definable in T .

Definitorial expansions of a language should be conscientiously distinguished from
expansions of languages that arise from the introduction of so-called Skolem func-
tions. These are useful for many purposes and are therefore briefly described.

Skolem normal forms. According to Theorem 4.2, every formula α can be con-
verted into an equivalent PNF, α ≡ Q1x1 · · ·Qkxkα

′, where α′ is open. Obviously
then ¬α ≡ Q1x1 · · ·Qkxk¬α′, where ∀ = ∃ and ∃ = ∀. Because � α if and only if
¬α is unsatisfiable, the decision problem for general validity can first of all be re-
duced to the satisfiability problem for formulas in PNF. Using Theorem 6.3 below,
the latter—at the cost of introducing new operation symbols—is then completely
reduced to the satisfiability problem for ∀-formulas.

Call formulas α and β satisfiably equivalent if both are satisfiable (not necessarily in
the same model), or both are unsatisfiable. We construct for every formula, which
w.l.o.g. is assumed to be given in prenex form α = Q1x1 · · ·Qkxkβ, a satisfiably
equivalent ∀-formula α̂ with additional operation symbols such that free α̂ = free α.
The construction of α̂ will be completed after m steps, where m is the number of ∃-
quantifiers among the Q1, . . . , Qk. Take α = α0 and αi to be already constructed. If
αi is already an ∀-formula then let α̂ = αi. Otherwise αi has the form ∀x1 · · · ∀xn∃yβi

70 2 Predicate Logic

for some n � 0. With an n-ary operation symbol f not yet used let αi+1 = ∀�xβi
f�x
y .

Thus, after m steps an ∀-formula α̂ is obtained such that free α̂ = free α; this formula
is called a Skolem normal form (SNF) of α.

Example 1. If α = ∀x∃y x < y then α̂ = ∀xx < fx. For α = ∃x∀y x ·y==== y we have
α̂ = ∀y c · y==== y. If α = ∀x∀y∃z(x < z ∧ y < z) then α̂ = ∀x∀y(x < fxy ∧ y < fxy).

Theorem 6.3. Suppose that α̂ is a Skolem normal form for the formula α. Then
(a) α̂ � α, (b) α is satisfiably equivalent to α̂.

Proof. (a): It suffices to show that αi+1 � αi for each of the described construction
steps. βi

f�x
y � ∃yβi implies αi+1 = ∀�xβi

f�x
y � ∀�x ∃yβi = αi, by (a) and (d) in 2.5. (b):

If α̂ is satisfiable then by (a) so too is α. Conversely, supposeA � ∀�x ∃yβi(�x, y, �z) [�c].
For each �a ∈ An we choose some b ∈ A such that A � β [�a, b,�c] and expand A to
A′ by setting fA′

�a = b for the new operation symbol. Then evidently A′ � αi+1 [�c].
Thus, we finally obtain a model for α̂ that expands the initial model.

Now, for each α, a tautologically equivalent ∃-formula α̌ (that is, � α ⇔ � α̌) is
gained as well. By the above theorem, we first produce for β = ¬α a satisfiably
equivalent SNF β̂ and put α̌ := ¬β̂. Then indeed � α ⇔ � α̌, because

� α ⇔ β unsatisfiable ⇔ β̂ unsatisfiable ⇔ � α̌.

Example 2. Let α := ∃x∀y(ry → rx). Clearly, ¬α ≡ β := ∀x∃y(ry ∧¬rx) and
β̂ = ∀x(rfx∧¬rx). Thus, α̌ = ¬β̂ ≡ ∃x(rfx → rx). The last formula is a tautology
(in contrast to ∃x(rx → rfx)). Thus, α̌ and hence α are tautologies as well. This
example shows how useful Skolem normal forms can be for discovering tautologies.

Exercises

1. Suppose Tf results from T by adjoining an explicit definition η for f and let
αrd be constructed as explained in the text. Show that Tf is a conservative
extension of T if and only if η is a legitimate explicit definition.

2. Let S : n
→ n + 1 denote the successor function in N = (N, 0, S, +, ·). Show
that ThN is a definitorial extension of Th (N, S, ·); in other words, 0 and +
are explicitly definable by S and · in ThN .

3. Prove that y==== x−1 ↔ x ◦ y==== e is a legitimate explicit definition in TG (which
amounts to showing that TG � x ◦ y==== e ∧ x ◦ z ==== e → y==== z). Moreover, prove
that the resulting definitorial extension coincides with T ====

G .

4. Prove that the <-relation is not explicitly definable in (Z, 0, +).

5. Construct to each α ∈ X (⊆ L) a SNF α̂ (indexing the functions properly)
such that X is satisfiably equivalent to X̂ = {α̂ | α ∈ X} and X̂ � X.

Chapter 3

Gödel’s Completeness Theorem

Our goal is to characterize the consequence relation in a first-order language by
means of a calculus similar to that of propositional logic. That this goal is attainable
at all was shown for the first time by Gödel in [Go1]. The original version of Gödel’s
theorem refers to the axiomatization of tautologies only and does not immediately
imply the compactness theorem of first-order logic; but a more general formulation
of completeness in 3.2 does. The importance of the compactness theorem for math-
ematical applications was first revealed in 1936 by A. Malcev, see [Ma].

The characterizability of logical consequence by means of a calculus (the content
of the completeness theorem) is a crucial result in mathematical logic with far-
reaching applications. In spite of its metalogical origin, the completeness theorem
is essentially a mathematical theorem. It satisfactorily explains the phenomenon
of the well-definedness of logical deductive methods in mathematics. To seek any
additional, possibly unknown methods or rules of inference would be like looking for
perpetual motion in physics. Of course, this insight does not affect the development
of new ideas in solving open questions. We will say somewhat more regarding the
metamathematical aspect of the theorem and its applications, as well as the use of
the model construction connected with its proof in a partly descriptive manner in
the Sections 3.3, 3.4, and 3.5.

Without beating around the bush, we deal from the outset with the case of an ar-
bitrary, not necessarily countable first-order language. Nonetheless, the proof given,
based on Henkin’s idea of a constant expansion [He], is kept relatively short, mainly
thanks to an astute choice of its logical basis. Although mathematical theories are
countable as a rule, a successful application of methods of mathematical logic in al-
gebra and analysis relies essentially on the unrestricted version of the completeness
theorem. Only with such generality does the proof display the inherent unity that
tends to distinguish the proofs of magnificent mathematical theorems.

71

72 3 Gödel’s Completeness Theorem

3.1 A Calculus of Natural Deduction

As in Chapter 2, let L be an arbitrary but fixed first-order language in the logical
signature ¬, ∧ ,∀, ==== . We define a calculus � by the system of deductive rules en-
closed in the box below. The calculus operates with sequents as in propositional
logic. It supplements the basic rules of 1.4 with three predicate-logical rules. Note
that the initial rule (IR) is subject to a minor extension.

(IR)
X � α

(α ∈ X ∪ {t==== t}) (MR) X � α

X ′ � α
(X ⊆ X ′)

(∧1) X � α, β

X � α∧β
(∧2) X � α∧β

X � α, β

(¬1) X � β,¬β

X � α
(¬2) X, β � α X,¬β � α

X � α

(∀1) X � ∀xα

X � α t
x

(α, t
x collision-free) (∀2)

X � α y
x

X � ∀xα
(y �∈ free X ∪ var α)

(=)
X � s==== t, α s

x

X � α t
x

(α any prime formula)

By (IR), X � t==== t for arbitrary X and t, in particular � t==== t. Here as everywhere,
� ϕ stands for ∅ � ϕ. The remaining notation from Chapter 1 is also used here;
thus, α � β abbreviates {α} � β, etc. (IR) was formulated stronger than necessary
only for convenience. Using (MR) it could be pared down to

α � α
and � t==== t

.

We call � a calculus of natural deduction because it models logical inference in
mathematics and other deductive sciences sufficiently well.1 Our aim is to show
that � is completely characterized by �. Here the calculus is developed only inso-
far as the completeness proof requires. While undertaking further derivations can
be instructive (see the examples and exercises), this is not the principal point of
formalizing proofs unless one is after specific proof-theoretical goals. It should also
be said that an acute study of formalized proofs does not really promote a human
being’s ability to draw correct conclusions in practice.

All basic rules are sound in the sense of 1.4. The restrictions to the rules (∀1), (∀2),
and (=) ensure their soundness as shown in Examples (a), (g), and (b) in 2.5. Rule
(=) could have been strengthened from the outset to allow α to be any formula such
that α, s

x , t
x are collision-free, but we get along with the weak version. (∀1) could

1 We deal here with a version of the calculus NK from [Ge] adapted to our purpose; more involved
descriptions of this and related sequent calculi are given in various textbooks on proof theory.

3.1 A Calculus of Natural Deduction 73

still be weakened; it suffices to require just bnd α ∩ var t = ∅. As already stated
in 2.3, we could in fact avoid any kind of restriction by means of a more involved
and somewhat artificial definition for substitution. However, such measures would
not simplify the matter. Weakly formulated logical calculi like the one given here
often alleviate certain induction procedures, for example in proving soundness, or
in verifying these rules in other logical calculi as will be done in 3.6.

Because � can be understood as an extension of the corresponding calculus from
1.4, all the examples of provable rules given there carry over automatically, the cut
rule included. All further sound rules, such as the formal versions of generalization
and particularization in 2.5, are provable thanks to the completeness of the calculus.

This is also true of the rule X � α

X � ∀xα
(x /∈ free X), which is sound by (d) in 2.5,

though it does not result directly from (∀2). However, we do not want to spend
too much time on the proofs of other rules; they are irrelevant for the completeness
proof, which can then be used to justify these rules retrospectively.

Just as in the propositional case the following proof procedure will often be applied;
it is legitimate because the proof of the corresponding principle in 1.4 depends
neither on the type of language nor the concrete form of the rules.

Principle of rule induction. Let E be a property of sequents (X,α) such that
(o) E(X,α) provided α ∈ X or α is of the form t==== t,

(s) E(X,α) ⇒ E(X ′, α) for (MR), and similarly for (∧1) through (=).
Then E(X,α) holds for all X,α such that X � α.

Since the basic rules are clearly sound, the soundness of the calculus, that is to
say, � ⊆ �, follows immediately from the principle of rule induction. Similarly one
obtains the following monotonicity property:

(mon) L ⊆ L′ ⇒ �L ⊆ �L′ .

Here the derivability relation is indexed; note that every elementary language defines
its own derivability relation, and for the time being we are concerned with the
comparison of these relations in various languages. Only with the completeness
theorem will we see that the indices are superfluous, just as for the consequence
relation �. To prove (mon) let E(X,α) be the property ‘X �L′ α’ for which the
conditions (o) and (s) of rule induction are easily verified. For instance, let X �L α, β

and suppose X �L′ α, β. Then (∧1), applied in L′, yields X �L′ α∧β as well.
As in propositional logic we have here the easily provable

Finiteness theorem. If X � α then X0 � α for some finite X0 ⊆ X.

The only difference to the proof from 1.4 is that a few more rules have to be
considered. Remember that L denotes the signature of L, L0 that of L0, etc. For
the moment we require a somewhat stronger version of the theorem, namely

74 3 Gödel’s Completeness Theorem

(fin) If X �L α then there exists a finite signature L0 ⊆ L and a finite subset
X0 ⊆ X such that X0 �L0 α.

Herein the claim X0 �L0 α, of course, includes X0 ∪ {α} ⊆ L0. For the proof,
consider the property ‘there exist a finite X0 ⊆ X and L0 ⊆ L such that X0 �L0 α ’.
It suffices to confirm the conditions (o) and (s) of the principle of rule induction.
For α ∈ X ∪ {t==== t} we clearly have X0 �L0 α where X0 = {α} or X0 = ∅. Thus, L0

may be chosen to contain all the extralogical symbols occurring in α, and these are
surely finitely many. This confirms (o). The induction step on (MR) is trivial. For
(∧1) suppose X1 �L1 α and X2 �L2 α for some finite Xi ⊆ X and Li ⊆ L, i = 1, 2.
Then (mon) gives X0 �L0 αi where X0 = X1 ∪X2 and L0 = L1 ∪L2. Applying (∧1)
to the language L0, we obtain X0 �L0 α1 ∧α2, which is what we want. The induction
steps for all remaining rules proceed similarly and are even somewhat simpler. This
confirms condition (s), which in turn proves (fin).

In the foregoing proof, L0 contains at least the extralogical symbols of X0 and α

but perhaps also some others. Only with the completeness theorem can we know
that the symbols occurring in X0, α in fact suffice. This insensitivity of derivation
with respect to language extensions can be derived purely proof-theoretically, albeit
with considerable effort, but purely combinatorially and without recourse to the
infinitistic means of semantics. A modest demonstration of such methods is the
constant elimination by Lemmas 2.1 and 2.2 from the next section.

Now for some more examples of provable rules required later.

Example 1. (a) X � s==== t, s==== t′

X � t==== t′
, (b) X � s==== t

X � t==== s
, (c) X � t==== s, s==== t′

X � t==== t′
.

To show (a) let x /∈ var t′ and let α be the formula x==== t′. Then the premise of (a)
is written X � s==== t, α s

x . Rule (=) yields X � α t
x . Now, α t

x equals t==== t′, since
x /∈ var t′, hence X � t==== t′. (b) is obtained immediately from (a) with t′ = s because
X � s==== s. And with this follows (c), for thanks to (b), the premise of (c) now yields
X � s==== t, s==== t′ and hence, by (a), the conclusion of (c).

Example 2. In (a)–(d), n is as usual the arity of the symbols f and r. (a) and (c)
are provable for i = 1, . . . , n. In order to ease the writing, X � �t ====�t′ abbreviates
X � t1 ==== t′1, . . . , tn ==== t′n so that, for instance, rule (b) has actually n premisses.

(a)
X � ti ==== t

X � f�t ==== ft1 · · · ti−1tti+1 · · · tn
, (b)

X � �t ====�t′

X � f�t ==== f�t′
,

(c)
X � ti ==== t, r�t

X � rt1 · · · ti−1tti+1 · · · tn
, (d)

X � �t ====�t′, r�t

X � r�t′
.

Proof of (a): Suppose X � s==== t with s := ti. Let α be f�t ==== ft1 · · · ti−1xti+1 · · · tn,
where x is not to occur in any of the tj. Since X � α ti

x (= f�t ==== f�t), it follows that

3.1 A Calculus of Natural Deduction 75

X � α t
x using (=). This confirms the conclusion of (a). (b) is then obtained by

considering Example 1(c) and the n times iteration of (a), as can best be seen by
first working through the case n = 2. Rule (c) is just another application of (=)
by taking the formula rt1 · · · ti−1xti+1 · · · tn for α where again, x is supposed not to
occur in any of the tj. Applying (c) n times then yields (d).

Example 3. (a) � ∃x t==== x, for all x, t with x /∈ var t, (b) � ∃xx==== x.
(a) holds because (∀1) gives ∀x t �====x � t �==== t, for t �==== t equals (t �====x) t

x (here x /∈ var t

is required). Clearly, ∀x t �==== x � t==== t as well. Thus, ∀x t �==== x � ∃x t==== x by (¬1).
Trivially, also ¬∀x t �==== x � ∃x t==== x (= ¬∀x t �==== x). Therefore, by (¬2), � ∃x t==== x.
Similarly, (b) is verified, starting with ∀xx �==== x � x �==== x, x==== x. Note that the
assumption x /∈ var t is essential in order to derive � ∃x t==== x for a compound
term t and hence to gain ∃x t==== x as a tautology. For instance, ∃x fx==== x with a
unary operation symbol f is not a tautology, because this formula is falsified in the
2-element algebra ({0, 1}, f), with f0 = 1 and f1 = 0.

A set X (⊆ L) is called inconsistent if X � α for all α ∈ L, and otherwise con-
sistent, exactly as in propositional logic. A satisfiable set X is evidently consistent.
By (¬1), the inconsistency of X is equivalent to X � α,¬α for any α, hence also to
X � ⊥ since ⊥ = ¬� and certainly X � � (= ∃v0 v0 ==== v0) by Example 3.

As in 1.4, � is completely characterized by some inconsistency condition. Indeed,
the proofs given there of the two properties

C+ : X � α ⇔ X,¬α � ⊥, C− : X � ¬α ⇔ X,α � ⊥

from Lemma 1.4.2 remain correct for any meaningful definition of ⊥. C+ and C− will
permanently be used in the sequel without explicitly refering to them.

As in propositional logic, X ⊆ L is called maximally consistent if X is consistent
but each proper extension of X in L is inconsistent. There are various characteri-
zations of maximal consistency. For instance, the one given in Exercise 4 is easily
confirmed by using one of the properties C+ or C−.

Exercises

1. Derive the rule
X � α t

x

X � ∃xα
(α, t

x collision-free).

2. Prove ∀xα � ∀yα y
x and ∀yα y

x � ∀xα for y /∈ var α.

3. Using Exercise 2 and the cut rule prove
X � ∀yα y

x

X � ∀zα z
x

(y, z /∈ var α).

4. Show that a formula set X is maximally consistent if and only if for each ϕ ∈ L
either X � ϕ or X � ¬ϕ.

76 3 Gödel’s Completeness Theorem

3.2 The Completeness Proof

Let L be a language and c a constant (more precisely, a constant symbol). Lc is the
result of adjoining c to L. We have Lc = L if and only if c is already in L. Similarly
LC denotes the language resulting from L by adjoining a set C of constants, a
constant expansion of L. We shall also come across such expansions in Chapter 5.
Let α z

c (read “α z for c”) denote the formula arising from α by replacing c with
the variable z, and put X z

c := {α z
c | α ∈ X}. c then no longer occurs in X z

c . We
actually require the following assertion only for a single variable z, but as is often
the case, induction proves only a stronger version unproblematically.

Lemma 2.1 (on constant elimination). Suppose X �Lc α. Then X z
c �L α z

c for
almost all variables z.

Proof by rule induction in �Lc . If α ∈ X then α z
c ∈ X z

c is clear; if α is of the form
t==== t, so too is α z

c . Thus, X z
c �L α z

c in either case, even for all z. Only the induction
steps on (∀1), (∀2) and (=) are not immediately apparent. We restrict ourselves
to (∀1), because the steps for (∀2) and (=) proceed analogously. Let X �Lc ∀xα

so that X z
c �L (∀xα) z

c for almost all z by the induction hypothesis. Suppose α, t
x

are collision-free, and z /∈ var {∀xα, t}. A separate induction on α readily confirms
α t

x
z
c = α′ t’

x with α′ := α z
c and t′ := t z

c . Clearly α′, t’
x are collision-free as well.

Because by the induction hypothesis X z
c �L (∀xα) z

c = ∀xα′, rule (∀1) then yields
X z

c �L α′ t’
x = α t

x
z
c , and this holds still for almost all variables z.

This lemma leads to the following derivable rule of “constant-quantification” whose
semantical counterpart plays a key rule in model theory:

(∀3)
X � α c

x

X � ∀xα
(c not in X,α).

Indeed, suppose X � α c
x . Because of the finiteness theorem we may assume that X

is finite. By Lemma 2.1, where in the case at hand Lc = L, some y not occurring
in X,α can be found such that X y

c � α c
x

y
c = α y

x (the latter holds because c does
not occur in α). Since X y

c = X, we thus obtain X � α y
x . Hence X � ∀xα by (∀2),

which confirms (∀3). A likewise useful consequence of constant elimination is

Lemma 2.2. Let C be any set of constants and L′ = LC. Then X �L α⇔ X �L′ α,
for all X ⊆ L and α ∈ L. Thus, �L′ is a conservative expansion of �L.

Proof. (mon) states that X �L α ⇒ X �L′ α. Suppose conversely X �L′ α. To
prove X �L α we may assume, thanks to (fin) and (MR), that C is finite. Since the
adjunction of finitely many constants can be undertaken stepwise, we may suppose
for the purpose of the proof that L′ = Lc for a single constant c not occurring in
L. Lemma 2.1 then yields X z

c �L α z
c for at least one variable z. X z

c �L α z
c means

the same as X �L α because c occurs neither in X nor in α.

3.2 The Completeness Proof 77

In the following, we denote the derivability relation in L and in every constant
expansion L′ of L with the same symbol �. By Lemma 2.2 no misunderstandings
can arise from this notation. Since the consistency of X is equivalent to X � ⊥,
there is also no need to distinguish between the consistency of X ⊆ L with respect
to L or L′. This is highly significant for the proofs of the next two Lemmas.

The proof of the completeness theorem essentially proceeds with a model con-
struction from the syntactic material of a certain constant expansion of L. We first
choose for each variable x and each α ∈ L a constant cx,α not occurring in L; more
precisely, we choose exactly one such constant for each pair x, α. Define

(∗) αx := ¬∀xα ∧ α c
x (c := cx,α).

Here it is insignificant how many free variables α contains, and whether x occurs at
all in α. We mention that the formula ¬αx is logically equivalent to ∃x¬α →¬α c

x .
This formula states that under the hypothesis ∃x¬α, the constant c represents a
counterexample for the validity of α, that is, an example for the validity of ¬α.

Lemma 2.3. Let ΓL := {¬αx | α ∈ L, x ∈ Var} where αx is defined as in (∗), and
let X ⊆ L be consistent. Then X ∪ ΓL is consistent as well.

Proof. Assume that X ∪ ΓL � ⊥. Since X � ⊥, there is some n � 0 and formulas
¬αx0

0 , . . . ,¬αxn
n ∈ ΓL such that (a): X ∪{¬αxi

i | i � n} � ⊥. Choose n to be minimal
so that (b): X ′ := X ∪ {¬αxi

i | i < n} � ⊥, and set x := xn, α := αn, and c := cx,α.
By (a), X ′ ∪ {¬αx} � ⊥. Hence, X ′ � αx, and so X ′ � ¬∀xα, α c

x , by (∧2). But
X ′ � α c

x yields X ′ � ∀xα using (∀3), since c does not occur in X ′ and α. Thus,
X ′ � ∀xα,¬∀xα, whence X ′ � ⊥, contradicting (b) and hence our assumption.

Call X ⊆ L a Henkin set if X satisfies the following two conditions:

(H1) X � ¬α ⇔ X � α, (equivalently, X � α ⇔ X � ¬α),
(H2) X � ∀xα ⇔ X � α c

x for all constants c in L.

(H1) and (H2) produce yet another useful property of a Henkin set X, namely

(H3) For each term t there exists a constant c such that X � t==== c.
Indeed, X � ∃xt==== x (= ¬∀x t �==== x) for x /∈ var t by Example 3 in 3.1. Hence,
X � ∀x t �====x by (H1). Thus X � t �====c for some c by (H2), and so X � t==== c by (H1).

As regards the following lemma, we mention that in the framework of the original
language L, consistent sets are not generally embeddable in Henkin sets.

Lemma 2.4. Let X ⊆ L be consistent. Then there exists a Henkin set Y ⊇ X in a
suitable constant expansion LC of L.

Proof. Put L0 := L, X0 := X and assume Ln, Xn have been given. Let Ln+1 result
from Ln by adopting new constants cx,α,n for all x ∈ Var, α ∈ Ln; more precisely
Ln+1 = LnCn, with the set Cn of constants cx,α,n. Further let Xn+1 = Xn ∪ ΓLn .

78 3 Gödel’s Completeness Theorem

Here ΓLn is defined as in Lemma 2.3, so that Xn+1 ⊆ Ln+1. Using Lemma 2.3 we
have Xn � ⊥ for each n. Let X ′ :=

⋃
n∈N Xn, hence X ′ ⊆ L′ :=

⋃
n∈N Ln = LC,

where C :=
⋃

n∈N Cn. Then X ′ � ⊥ since X ′, as the union of a chain of consistent
sets, is surely consistent (in L′). Let α ∈ L′, x ∈ Var, and, say, α ∈ Ln with
minimal n, and let αx be the formula defined as in (∗) but with respect to Ln. Then
¬αx belongs to Xn+1. Hence ¬αx ∈ X ′. Now let (H,⊆) be the partial order of all
consistent extensions of X ′ in L′. Every chain K ⊆ H has the upper bound

⋃
K in

H, because if all members of K are consistent so is
⋃

K. Also H �= ∅; for instance
X ′ ∈ H. By Zorn’s lemma, H therefore contains a maximal element Y . In short, Y

is a maximally consistent set containing X ′. Further, what is significant here, Y is
at the same time a Henkin set. Here is the proof:
(H1) ⇒: Y � ¬α implies Y � α due to the consistency of Y . ⇐ : If Y � α then
surely α �∈ Y . As a result, Y, α � ⊥, for Y is maximally consistent. Thus Y � ¬α.
(H2)⇒: Clear by (∀1). ⇐ : Let Y � α c

x for all c in L′, so also Y � α c
x for c := cx,α,n,

where n is minimal with α ∈ Ln. Assume that Y � ∀xα. Then Y � ¬∀xα by (H1).
But Y � ¬∀xα, α c

x implies Y � ¬∀xα ∧ α c
x = αx using (∧1). Now, since Y is

consistent, Y � αx contradicts Y � ¬αx. The latter is certainly the case because
¬αx ∈ X ′ ⊆ Y . Thus, our assumption was wrong and indeed Y � ∀xα.

Lemma 2.5. Every Henkin set Y ⊆ L possesses a model.

Proof. The model constructed in the following is called a term model. Let t ≈ t′

whenever Y � t==== t′. The relation ≈ is a congruence in the term algebra T of L.
This means (repeating the definitions on page 41),

(a) ≈ is an equivalence relation,

(b) t1 ≈ t′1, . . . , tn ≈ t′n ⇒ f�t ≈ f�t′, for operation symbols f in L.
The claim (a) follows immediately from Y � t==== t and Example 1 in 3.1; (b) is just
another way of formulating Example 2(b). Let A := {t | t ∈ T }. Here t denotes the
equivalence class of ≈ to which the term t belongs, so that

(c) t̄ = s̄ ⇔ t ≈ s ⇔ Y � t==== s.
This set A is the domain of the sought modelM = (A, w) for Y . The factorization
of T will ensure that ==== means identity in the model. Let C be the set of constants
in L. By (H3) there is for each term t in T some c ∈ C such that c ≈ t. Therefore
even A = {c̄ | c ∈ C}. Now, let xM := x and cM := c for variables and constants in
L. An operation symbol f occurring in L of arity n is interpreted by fM where

fM(t1, . . . , tn) := ft1 · · · tn.

This definition is sound because ≈ is a congruence in the term algebra T . Finally,
define rM for an n-ary relation symbol r by

rMt1 · · · tn ⇔ Y � r�t .

3.2 The Completeness Proof 79

This definition is also sound, since Y � r�t ⇒ Y � r�t′ whenever t1 ≈ t′1, . . . , tn ≈ t′n.
Here we use Example 2(d) in 3.1. Induction then yields

(d) tM = t; (e) M � α ⇔ Y � α,

of which (e) may be regarded as the goal of the constructions. (d) is evident for
prime terms, and the induction hypothesis tMi = ti for i = 1, . . . , n leads to

(f�t)M = fM(tM1 , . . . , tMn) = fM(t1, . . . , tn) = f�t .

(e) follows by induction on rkα. We begin with formulas of rank 0 (prime formulas).
Induction proceeds under consideration of rkα < rk¬α, rk α, rk β < rk(α∧β) and
rk α c

x < rk∀xα, analogously to formula induction:

M � t==== s ⇔ tM = sM ⇔ t = s (by (d))
⇔ Y � t==== s (by (c)).

M � r�t ⇔ rMtM1 · · · tMn ⇔ rMt1 · · · tn ⇔ Y � r�t .

M � α∧β ⇔ M � α, β ⇔ Y � α, β (induction hypothesis)
⇔ Y � α∧β (using (∧1), (∧2)).

M � ¬α ⇔ M � α ⇔ Y � α (induction hypothesis)
⇔ Y � ¬α (using (H1)).

M � ∀xα ⇔ Mc
x � α for all c ∈ C (because A = {c | c ∈ C})

⇔ McM
x � α for all c ∈ C (because cM = c)

⇔ M � α c
x for all c ∈ C (substitution theorem)

⇔ Y � α c
x for all c ∈ C (induction hypothesis)

⇔ Y � ∀xα (using (H2)).

Because of Y � α for all α ∈ Y , (e) immediately impliesM � Y .

Just as for propositional logic, the equivalence of consistency and satisfiability,
and the completeness of �, result from the above. These results, stated in the next
two theorems, are what we aimed at in this section. Information about the size of
the model constructed in the next theorem will be given in Theorem 4.1.

Theorem 2.6 (Model existence theorem). Let X ⊆ L be consistent. Then X

has a model.

Proof. Let Y ⊇ X be a Henkin extension of X, i.e., a Henkin set in a suitable
constant expansion LC applying Lemma 2.4. According to Lemma 2.5, Y and
hence also X has a model M′ in LC. Let M denote the L-reduct of M′. In other
words, “forget” the interpretation of the constants not occurring in L. Then, by
Theorem 2.3.1,M � X holds as well.

80 3 Gödel’s Completeness Theorem

Theorem 2.7 (Completeness theorem). Let L be any first-order language. Then
for all X ⊆ L and α ∈ L holds X � α ⇔ X � α.

Proof. The soundness of � states that X � α ⇒ X � α. The converse follows
indirectly. Let X � α, so that X,¬α is consistent. Theorem 2.6 then provides
model for X ∪ {¬α}, whence X � α.

Thus, � and � can henceforth be freely interchanged. We will often verify X � α

by proving that X � α. In particular, for theories T , T � α is equivalent to T � α,
for which in the following we mostly write �T α. Clearly, �T α means the same as
α ∈ T for sentences α. More generally, let X �T α stand for X ∪ T � α and α �T β

for {α} �T β. We will also occasionally abbreviate α �T β & β �T γ to α �T β �T γ.
In subsequent chapters, equivalences such as α �T β ⇔ �T α → β ⇔ �T+α β, and
�T α ⇔ �T αG, will be used without further mentioning and should be committed
to memory. Some more useful equivalences are listed in Exercise 5.

Remark. The methods in this section easily provide also completeness of a logical calculus
for identity-free (or ==== -free) languages in which the symbol ==== does not appear. Simply
discard from the calculus in 3.1 everything that refers to ==== , including rule (=). Almost
everything runs as before. The factorization in Lemma 2.5 is now dispensable and the
domain A is the set of all terms of LC. The last induction step in Lemma 2.5 has to be
modified. We will not go into details since we will need in Chapter 4 only Exercise 2. The
restriction to ∀-formulas therein is not really essential, because by Exercise 5 in 2.6 any X
can be replaced by a satisfiably equivalent set of ∀-formulas after expanding the language
by suitable Skolem functions.

Exercises

1. Show that a set X ⊆ L is maximally consistent iff there is a model M such
that X � α⇔M � α, for all α ∈ L.

2. Let X ⊆ L be a consistent set of identity-free ∀-formulas. Construct a model
T � X on the domain T of all L-terms by setting rT�t :⇔ rM�t , cT := c,
fT�t := f�t , and xT = x. Show in addition that if X ⊆ L0 and L contains at
least one constant, then X has a model on the domain of all ground terms.

3. Let K �= ∅ be a chain of theories in L, i.e., T ⊆ T ′ or T ′ ⊆ T , for all T, T ′ ∈ K.
Show that

⋃
K is a theory that is consistent iff all T ∈ K are consistent.

4. Suppose T is consistent and Y ⊆ L. Prove the equivalence of

(i) Y �T ⊥, (ii) �T ¬α for some conjunction α of formulas in Y .

5. Let x /∈ var t and α, t
x collision-free. Verify the equivalence of

(i) �T α t
x , (ii) x==== t �T α, (iii) �T ∀x(x==== t → α), (iv) �T ∃x(x==== t∧α).

3.3 First Applications—Nonstandard Models 81

3.3 First Applications–Nonstandard Models

In this section we draw important conclusions from the completeness theorem and
the corresponding model-construction procedure. Since the finiteness theorem holds
for the provability relation �, Theorem 2.7 immediately yields

Theorem 3.1 (Finiteness theorem for the consequence relation). X � α

implies X0 � α for some finite subset X0 ⊆ X.

Let us consider a first application. The elementary theory of fields of characteristic
0 is obviously axiomatized by the set X consisting of the axioms for fields and the
formulas ¬charp (page 39). We claim

(1) A sentence α valid in all fields of characteristic 0 is also valid in all fields of
sufficiently high prime characteristic p which, of course, depends on α.

Indeed, since X � α, for some finite subset X0 ⊆ X we have X0 � α. If p is a
prime number larger than all prime numbers q such that ¬charq ∈ X0, then α holds
in all fields of characteristic p, since these satisfy X0. Thus (1) holds. From (1)
we obtain, for instance, the information, easily formalized in L{0, 1, +, ·}, that two
given polynomials that are coprime over all fields of characteristic 0 are also coprime
over fields of sufficiently high prime characteristic.

A noteworthy consequence of Theorem 3.1 is also the nonfinite axiomatizability
of many elementary theories. Before presenting examples, we clarify finite axioma-
tizability in a somewhat broader context.

A set Z of strings of a given alphabet A is called decidable if there is an algorithm (a
mechanical decision procedure) that after finitely many calculation steps provides
us with an answer to the question whether a string ξ of symbols of A belongs
to Z; otherwise Z is called undecidable. Thus it is certainly decidable whether ξ

is a formula. While this is all intuitively plausible, it nonetheless requires more
precision (undertaken in 6.2). A theory T is called recursively axiomatizable, or
just axiomatizable, if it possesses a decidable axiom system. This is the case, for
instance, if T is finitely axiomatizable, i.e., if it has a finite axiom system.

From (1) it follows straight away that the theory of fields of characteristic 0 is not
finitely axiomatizable. For were F a finite set of axioms, their conjunction α =

∧
F

would, by (1), also have a field of finite characteristic as a model.
Now for another instructive example. An abelian group G is called n-divisible if
G � ϑn with ϑn := ∀x∃y x==== ny where ny is the n-fold sum y + · · · + y, and G is
called divisible if G � ϑn for all n � 1. Thus, the theory of divisible abelian groups,
DAG, is axiomatized by the set X consisting of the axioms for abelian groups plus
all sentences ϑn. Also DAG is not finitely axiomatizable. This follows as above from

82 3 Gödel’s Completeness Theorem

(2) Every sentence α ∈ L{+, 0} valid in all divisible abelian groups is also valid
in at least one nondivisible abelian group.

To prove (2), let α ∈ DAG, or equivalently X � α. According to Theorem 3.1 we
have X0 � α for some finite X0 ⊆ X. Let Zp be the cyclic group of order p, where
p is a prime number > n for all n with ϑn ∈ X0. The mapping x
→ nx from Zp

to itself is surjective for 0 < n < p, otherwise {na | a ∈ Zp} would be a nontrivial
subgroup of Zp. Hence, Zp � ϑn for all n < p. Thus, Zp � X0 and so Zp � α. On
the other hand, Zp is not p-divisible because px = 0 for all x ∈ Zp. In exactly the
same way, we can show that the theory of torsion-free abelian groups is not finitely
axiomatizable. In these groups is na �= 0 for all n �= 0 and a �= 0.

In a similar manner, it is possible to prove for many theories that they are not
finitely axiomatizable. However, this may often demand more involved methods
than the above ones. For instance, consider the theory of a.c. fields (see page 38),
denoted by ACF, which results from adjoining to the theory of fields the schema of
all sentences ∀�a∃x p(�a, x)==== 0, where p(�a, x) denotes the term

xn+1 + anx
n + · · ·+ a1x + a0 (n = 0, 1, . . .),

called a monic polynomial of degree n + 1. Here let a0, . . . , an, x denote distinct
variables. Thus, every monic polynomial has a zero, and so every polynomial of
positive degree. Nonfinite axiomatizability of ACF follows from the by no means
trivial existence proof of fields in which all polynomials up to a certain degree do
factorize but irreducible polynomials of higher degree still exist. The same holds for
the theory ACFp of a.c. fields of fixed characteristic p (p = 0 or a prime number).

As in propositional logic, the finiteness theorem for the consequence relation leads
immediately to the corresponding compactness result:

Theorem 3.2 (Compactness theorem). Any set X of first-order formulas is
satisfiable provided every finite subset of X is satisfiable.

Because of the greater power of expression of first-order languages, this theorem is
somewhat more amenable to certain applications than its propositional counterpart.
It can be proved in various ways, even quite independent of a logical calculus; for
instance, by means of ultraproducts as will be carried out in 5.7. It can also be
reduced to the propositional compactness theorem, for X is satisfiably equivalent to
a set of propositional formulas; see Remark 1 in 4.1. For applications of Theorem 3.2
we concentrate on the construction of nonstandard models; to this end we introduce
some more important concepts.

A theory T (⊆ L0) is called complete if it is consistent and has no consistent proper
extension in the same language. It is easily seen that this property is equivalent to
either �T α or �T ¬α but not both, for each α ∈ L0 (for other equivalences, see
Theorem 5.2.1). Hence, for an arbitrary A, the theory ThA is always complete.

3.3 First Applications—Nonstandard Models 83

We will frequently come across the theory ThN where N = (N, 0, S, +, ·) with the
successor function S : n
→ n + 1. The choice of signature is a matter of convenience;
for instance, one could replace S by the constant 1. Of the relations and functions
definable inN , we name just �, defined by x � y ↔ ∃z z+x==== y, and the predecessor
function Pd : N→ N, defined by y==== Pdx↔ y==== 0 ∨ x==== Sy, so that Pd 0==== 0.

Certain axiomatic subtheories of ThN are even more frequently dealt with, in
particular Peano arithmetic PA in the arithmetical language Lar := L{0, S, +, ·}.
This theory is important for many investigations in mathematical foundations and
theoretical computer science (see e.g. [Kr]). The axioms of PA run as follows:

∀x Sx �====0, ∀xx + 0==== x, ∀xx · 0==== 0,
∀x∀y(Sx==== Sy → x==== y), ∀x∀y x + Sy==== S(x + y), ∀x∀y x · Sy==== x · y + x,

IS: ϕ 0
x ∧∀x(ϕ → ϕ Sx

x) →∀xϕ.

IS is called the induction schema and should not be mixed up with the induction
axiom IA discussed on the next page. In IS, ϕ is any formula in Lar with x ∈ free ϕ.
IS reads more precisely [ϕ 0

x ∧∀x(ϕ → ϕ Sx
x) →∀xϕ]G, see our convention in 2.5.

Thus, to prove �PA ∀xϕ, one has to confirm �PA ϕ 0
x (induction initiation), and

�PA ∀x(ϕ → ϕ Sx
x) or equivalently, ϕ �PA ϕ Sx

x (induction step, the derivation of the
induction claim ϕ Sx

x from the induction hypothesis ϕ).
Example. Let ϕ = ϕ(x) := x �==== 0 →∃v Sv==== x. We want to prove �PA ∀xϕ(x). In
words, each x �==== 0 has a predecessor, not something seen at once from the axioms.
Trivially, �PA ϕ 0

x . Since Sv==== x �PA SSv==== Sx, we get ∃v Sv==== x �PA ∃vSv==== Sx by
particularization. Therefore x �====0 →∃vSv==== x �PA x �====0 →∃vSv==== Sx (cf. Exercise 2
in 1.3), that is, ϕ �PA ϕ Sx

x (the induction step), and so �PA ∀xϕ by IS. This proof
is easily supplemented by an inductive proof of �PA ∀x Sx �====x.

Remark 1. Only few arithmetical facts (like x � y ↔ Sx � Sy) are derivable in PA
without IS. Already the derivation of x � x needs IS when x � y is defined as above by
∃z z + x==== y. More in the exercises; these are exclusively devoted to PA, in order to get
familiar in time with this important theory. In 7.1 it will then become clear that PA fully
embraces elementary number theory and practically the whole of discrete mathematics. It
is not of any import that subtraction is only partially defined in models of PA. A theory
of integers formulated similarly to PA may be more convenient for number theory, but is
actually not stronger than PA; it is interpretable in PA in the sense of 6.6. We mention
that PA is not finitely axiomatizable, shown for the first time in [Ry].

We will now prove that not only PA but also the complete theory ThN has along-
side the standard model N other models not isomorphic to N , called nonstandard
models. In these models, exactly the same theorems hold as in N . The existence
proof of a nonstandard model N ′ of ThN is strikingly simple. Let x ∈ Var and
X := ThN ∪ {n < x | n ∈ N}. Here and elsewhere we use n to denote the term
Sn0 := S · · · S︸ ︷︷ ︸

n

0. Thus 1 = S0, 2 = S1, . . . Instead of 0 (= S00) one writes just 0.

84 3 Gödel’s Completeness Theorem

n < x is the formula n � x∧n �====x. One may x replace here by a constant symbol c,
thus expanding the language. But both approaches lead to the same result.

Every finite subset X0 ⊆ X possesses a model. Indeed, there is evidently some
m such that X0 ⊆ X1 := ThN ∪ {n < x | n < m}, and X1 certainly has a model:
one need only appoint to x in N the number m. Thus, by Theorem 3.2, X has a
model (N ′, c) with the domain N′, where c ∈ N′ denotes the interpretation of x.
Because N ′ satisfies all sentences valid in N , including in particular the sentences
Sn==== Sn, n + m==== n+m and n · m==== n ·m, it is easily seen that n
→ nN ′ constitutes
an embedding fromN intoN ′ whose image can be thought of as coinciding withN .2

Thus, it is legitimate to presume that nN ′ = n and hence N ⊆ N ′.
Because N ′ � X, on the one hand N ′ is elementarily equivalent to N , and on

the other n < a for all n and any a ∈ N′ \N, since in N and hence in N ′ holds
(∀x�n)

∨
i�n x==== i. In short, N is a (proper) initial segment of N′, or N ′ is an end

extension of N . The elements of N′ \N are called nonstandard numbers. Alongside c,
other examples are c+ c and c+n for n ∈ N. Clearly, c has both an immediate suc-
cessor and an immediate predecessor in the order, because N ′ � (∀x �====0)∃y x==== Sy.
The figur gives a rough picture of a nonstandard model N ′:

N′ : · · ·� � �� � �� � �� � �� � �� � �� � �� � �� �� �� �� �� �� �� �
0 1 c c+c

︷ ︸︸ ︷N

N ′ has the same number-theoretical features as N , at least all those that can be
formulated in Lar . These include nearly all the interesting ones, as will turn out to
be the case in 7.1. For example, ∀x∃y(x==== 2y ∨ x==== 2y + 1) holds in every model of
ThN , that is, every nonstandard number is either even or odd. Clearly, N′ contains
gaps in the sense of 2.1, (N, N′ \N) being an example.

Remark 2. Theorem 4.1 will show that ThN has countable nonstandard models. The
order of such a model N ′ is easy to make intuitive: it arises from the half-open interval
[0, 1) of rational numbers by replacing 0 with N and every other r ∈ [0, 1) by a specimen
from Z. On the other hand, neither +N ′

nor ·N ′
is effectively describable; see e.g. [HP].

Replacing IS in the axiom system for PA by the so-called induction axiom
IA: ∀P (P0∧∀x(Px → PSx) →∀xPx) (P a predicate variable)

results in a categorical axiom system that, up to isomorphism, has just a single
model (see e.g. [Ra2]). How is it possible that N is uniquely determined up to
isomorphism by a few axioms, but at the same time nonstandard models exist for
ThN ? The answer: IA cannot be adequately formulated in Lar . That is, IA is
not an axiom or perhaps an axiom scheme of the first-order language of N . It

2 Whenever A is embeddable into B there is a structure B′ isomorphic to B such that A ⊆ B′. The
domain B′ arises from B by interchanging the images of the elements of A with their originals.

3.3 First Applications—Nonstandard Models 85

is a sentence of a second-order language, about which we shall say more in 3.7.
However, this intimated limitation regarding the possibilities of formulation in first-
order languages is merely an apparent one, as the undertakings of the rest of the
book will show, especially those concerning axiomatic set theory in 3.4.

In no nonstandard model N ′ is the initial segment N definable, indeed not even
parameter definable, i.e., there exist no α = α(x, �y) and no b1, . . . , bn ∈ N′ such that
N = {a ∈ N′ | N ′ � α [a,�b]}. Otherwise we would have N ′ � α 0

x ∧ ∀x(α → α Sx
x) [�b].

This statement yields N ′ � ∀xα [�b] by IS, in contradiction to N′ \N �= ∅. The same
reasoning shows that no proper initial segment A ⊂ N′ without a largest element
is definable in N′, because such an A would clearly define a gap in the order of N′.
The situation can also be described as gaps in N′ are not recognizable from within.

Introductory courses in real analysis tend to give the impression that a meaningful
study of the subject requires the axiom of continuity: Every nonempty bounded set
of real numbers has a supremum. On this basis, Cauchy and Weierstrass reformed
analysis, thus banishing from mathematics the somewhat mysterious infinitesimal
arguments of Leibniz, Newton, and Euler. But mathematical logic has developed
methods that, to a large extent, justify the original arguments. This is undertaken in
the framework of nonstandard analysis, developed above all by A. Robinson around
1950. In the following, we provide an indication of its basic idea.

The same construction as for N also provides a nonstandard model for the theory
of R = (R, +, ·, <, {a | a ∈ R}), where for each real number a, a name a was added
to the signature. Consider X = ThR ∪ {a < x | a ∈ R}. Every finite subset of X

has a model on the domain R. Thus, X is consistent and as above, a model of X

represents a proper extension R∗ of R, a so-called nonstandard model of analysis.
In each such model the same theorems hold as in R. For instance, in R∗ every
polynomial of positive degree can be decomposed into linear and quadratic factors.
In Chapter 5 it will be shown that the nonstandard models of ThR are precisely
the real closed extensions of R. All these are elementarily equivalent to R.

For analysis, it is now decisive that the language can be enriched from the very
beginning, say by the adoption of the symbols exp, ln, sin, cos for the exponential,
logarithmic and trigonometric functions, and further symbols for further functions.
We denote a thus expanded standard model once again by R and a corresponding
nonstandard model by R∗. The mentioned real functions available in R carry over
to R∗ and maintain all properties that can be elementarily formulated. That means
in fact almost all properties with interesting applications, for example

∀xy exp(x + y)==== exp x · exp y, (∀x>0) exp lnx==== x, ∀x sin2 x + cos2 x==== 1,

as well as the addition theorems for the trigonometric functions and so on. All these
functions remain continuous and repeatedly differentiable. However, the Bolzano–

86 3 Gödel’s Completeness Theorem

Weierstrass theorem and other topological properties cannot be salvaged in full
generality. They are replaced by the aforementioned infinitesimal arguments.

In a nonstandard model R∗ of ThR with R ⊆ R∗ there not only exist infinitely
large numbers c (i.e., r < c for all r ∈ R), but also infinitely many small positive
numbers. Let c be infinite. Then 1

r < c ⇔ 1
c < r, i.e., 1

c is smaller than each
positive real r, and yet is positive. That is, 1

c is fairly precisely what Leibniz once
named an infinitesimal . Taking a somewhat closer look reveals the following picture:
every real number a is sitting in a nest of nonstandard numbers a∗ ∈ R∗ that are
only infinitesimally distinct from a. In other words, |a∗ − a| is an infinitesimal.
Hence, quantities such as dx, dy exist in mathematical reality, and may once again
be considered as infinitesimals in the sense of their inventor Leibniz. These quantities
are precisely the elements of R∗ infinitesimally distinct from 0.

From the existence of nonstandard models for ThR, it can be concluded that the
continuity axiom, just like IA, cannot be elementarily formulated. For by adjoining
this axiom to those for ordered fields, R is characterized, up to isomorphism, as the
only continuously ordered field; see e.g. [Ta4]. Hence, the order of a nonstandard
model R∗ of ThR possesses gaps. Here, too, the gaps are “not recognizable from
within,” since every nonempty, bounded parameter-definable subset of R∗ has a
supremum in R∗. That is the case because in R and thus also in R∗, the following
continuity schema holds, which ensures the existence of a supremum for those sets;
here ϕ = ϕ(x, �y) runs over all formulas such that y, z /∈ free ϕ:

CS: ∃xϕ∧∃y∀x(ϕ → x � y) →∃z∀x[(ϕ → x � z) ∧ ∀y((ϕ → x � y) → z � y)].
Analogous remarks can be made with respect to the complex numbers. R∗ has

an algebraically closed field extension R∗[i] in which familiar facts such as Euler’s
formula eix ==== cos x + i · sin x continue to hold, in particular eiπ ==== − 1.

Exercises

1. Prove in PA the associativity and commutativity of +, ·, along with the law of
distributivity. Before proving that + is commutative derive Sx+ y==== x+ Sy in
PA by induction on y. The basic arithmetical laws, including the ones about
� and <, are collected in the axiom system N on page 182.

2. Define � in PA as in the text. Reflexivity and transitivity of � are obvious.
Derive in PA the important x < y ↔ Sx � y (or equivalently, y < Sx↔ y � x).
Use this to prove �PA x � y ∨ y � x inductively on x.

3. Verify (a) �PA ∀x((∀y<x)α y
x → α) →∀xα, the schema of <-induction,

(b) �PA ∃xβ →∃x(β ∧ (∀y<x)¬β y
x), the well-ordering (or minimum) schema,

(c) �PA (∀x<v)∃yγ →∃z(∀x<v)(∃y<z)γ, the schema of bounds.
Here α, β, γ are any formulas in Lar with y /∈ var {α, β} and z /∈ var γ.

3.4 ZFC and Skolem’s Paradox 87

3.4 ZFC and Skolem’s Paradox

Before turning to further consequences of the results from 3.2, we collect a few basic
facts about countable sets. The proofs are simple and can be found in any textbook
on basic set theory. A set M is called countable if M = ∅ or there is a surjective
mapping f : N → M (i.e., M = {an | n ∈ N} provided fn = an), and otherwise
uncountable. Every subset of a countable set is itself countable. If f : M → N

is surjective and M is countable then clearly so too is N . Sets M, N are termed
equipotent, briefly M ∼ N , if a bijection from M to N exists. If M ∼ N, then M

is said to be countably infinite. A countable set can only be countably infinite or
finite, which is to mean equipotent to {1, . . . , n} for some n ∈ N.

The best-known uncountable set is R, which is equipotent to PN. The uncount-
ability of PN is a particular case of an important theorem from Cantor: The power
set PM of any set M has a higher cardinality than M , i.e., no injection from M to
PM is surjective. The cardinality of sets will be explained to some extend in 5.1.
Here it suffices to know that two sets M, N are of the same cardinality iff M ∼ N ,
and that there are countable and uncountable infinite sets.

If M, N are countable so too are M ∪ N and M × N , as is easy to see. More-
over, a countable union U =

⋃
i∈N Mi of countable sets Mi is again countable.

a00 a01 a02 a03

a20

a10 a11

� �

�
��

�

�
�	

�
�	

�
����� � � �

A familiar proof consists in writing down U as an in-
finite matrix where the nth line is an enumeration of
Mn = {anm |m ∈ N}. Then enumerate the matrix in
the zigzag manner indicated by the figure on the right,
beginning with a00. Accordingly, for countable M , in
particular

⋃
n∈N Mn, the set of all finite sequences of

elements in M is again countable, because every Mn

is countable. Hence, every elementary language with a countable signature is itself
countable, more precisely countably infinite.

By a countable theory we always mean a theory formalized in a countable language
L. We now formulate a theorem significant for many reasons.

Theorem 4.1 (Löwenheim–Skolem). A countable consistent theory T always has
a countable model.

Proof. By Theorem 2.6, T (⊆ L) has a modelM with domain A, consisting of the
equivalence classes c̄ for c ∈ C in the set of all terms of L′ = LC, where C =

⋃
n∈N Cn

is a set of new constants. By construction, C0 is equipotent to Var × L and thus
countable. The same holds for every Cn, and so C is also countable. The map
c
→ c̄ from C to A is trivially surjective, so thatM has a countable (possibly finite)
domain, and this was the very claim.

88 3 Gödel’s Completeness Theorem

In 5.1 we will significantly generalize the theorem, but even in the above formu-
lation it leads to noteworthy consequences. For example, there exist also countable
ordered fields R = (R, 0, 1, +, <, ·, exp, sin, . . .) as nonstandard models of ThR in
which the usual theorems about real functions retain their validity. Thus, one need
not really overstep the countable to obtain a rich theory of analysis.

Especially surprising is the existence, ensured by Theorem 4.1, of countable models
of formalized set theory. Although set theory can be regarded as the basis for
the whole of presently existing mathematics, it embraces only a few set-building
principles. The most important system of formalized set theory is ZFC.

Remark. Z stands for E. Zermelo, F for A. Fraenkel, and C for AC, the axiom of choice.
ZF denotes the theory resulting from the removal of AC. ZFC sets out from the principle
that every element of a set is again a set, so that a distinction between sets and families of
sets vanishes. Thus, ZFC speaks exclusively about sets, unlike B. Russell’s type-theoretical
system, in which, along with sets, so-called urelements (objects that are members of sets
but are themselves not sets) are considered. Set theory without urelements is fully suffi-
cient as a foundation of mathematics and for nearly all practical purposes. Even from the
epistemological point of view there is no evidence that urelements occur in reality: each
object can be identified with the set of all properties that distinguish it from other ob-
jects. Nonetheless, urelements are still in use as a technical tool in certain set-theoretical
investigations. We mention in passing that neither ZF nor ZFC are finitely axiomatizable.
This seems plausible if looking at the axioms given below, but the proof is not easy.

To make clear that ZFC is a countable first-order theory and hence belongs to
the scope of applications of Theorem 4.1, we present in the following its axioms.
Each of the axioms will be briefly discussed. This will be at the same time an
excellent exercise in advanced formalization technics. The set-theoretical language
already denoted in 2.2 by L∈ is one of the most conceivably simple languages and is
certainly countable. Alongside ==== it contains only the membership symbol ∈ . This
symbol should be distinguished from the somewhat larger ∈ that is used throughout
in our metatheory. The variables are now called set variables. These will as a
rule be denoted by lowercase letters as in other elementary languages. In order to
make the axioms more legible, we use the abbreviations (∀y∈x)ϕ := ∀y(y ∈ x → ϕ),
(∃y∈x)ϕ := ∃y(y ∈ x∧ϕ). In addition, we introduce the relation of inclusion by
the explicit definition x ⊆ y ↔ ∀z(z ∈ x → z ∈ y). Note also that all free variables
occurring in the axioms below have to be thought of as being generalized according
to our convention in 2.5. The axioms of the theory ZFC are then the following:

AE : ∀z(z ∈ x↔ z ∈ y) → x==== y (axiom of extensionality).

AS : ∃y∀z(z ∈ y ↔ ϕ ∧ z ∈ x) (schema of separation).
Here ϕ runs over all L∈-formulas with y /∈ free ϕ. Let ϕ = ϕ(x, z,�a). From AS and AE
is derivable ∀x∃!y∀z(z ∈ y ↔ ϕ ∧ z ∈ x). Indeed, observe the obvious derivability of

3.4 ZFC and Skolem’s Paradox 89

(z ∈ y ↔ ϕ∧z ∈ x)∧ (z ∈ y′ ↔ ϕ∧z ∈ x) → (z ∈ y ↔ z ∈ y′) (y, y′ /∈ free ϕ). This implies
∀z(z ∈ y ↔ ϕ∧z ∈ x)∧∀z(z ∈ y′ ↔ ϕ∧z ∈ x) → y==== y′ and hence the claim. Therefore,

y==== {z ∈ x | ϕ} ↔ ∀z(z ∈ y ↔ ϕ ∧ z ∈ x)

is a legitimate definition in the sense of 2.6. {z ∈ x | ϕ} is called a set term and
is just a suggestive writing of a function term f�ax. This term still depends on the
“parameters” a1, . . . , an, which are the variables from free ϕ\{x, z}.

The empty set can explicitly be defined by y==== ∅ ↔ ∀z z /∈ y. Indeed, thanks to AS,
∃y∀z(z ∈ y ↔ z /∈ x∧z ∈ x) is provable. This formula is clearly equivalent to ∃y∀z z /∈ y.
Now, using AE, ∀z z /∈ y ∧ ∀z z /∈ y′ → y==== y′ is provable, hence also ∃!y∀z z /∈ y, which
legitimates the explicit definition y==== ∅ ↔ ∀z z /∈ y. The next axiom is

AU : ∀x∃y∀z(z ∈ y ↔ (∃u∈ x) z ∈ u) (axiom of union).
Here again, because of AE, ∃y can be replaced by ∃!y. As in 2.6, we may therefore
define an operator on the universe,3 denoted by x
→

⋃
x. AU is equivalent to

∀x∃y∀z((∃u∈ x)z ∈ u → z ∈ y), because
⋃

x can be separated from such a set y by
means of AS. The following axiom could be analogously weakened.

AP : ∀x∃y∀z(z ∈ y ↔ z ⊆ x) (power set axiom).
Let Px denote the y that in view of AE is uniquely determined by x in AP. What
first can be proved is ∀x(x∈ P∅ ↔ x==== ∅) and ∀x(x∈ PP∅ ↔ x==== ∅ ∨ x==== P∅). Thus,
PP∅ contains exactly two members. This is decisive for defining the pair set below.

The next axiom (again a schema) was added to those of Zermelo by Fraenkel.
AR : ∀x∃!yϕ →∀u∃v∀y(y ∈ v ↔ (∃x∈u) ϕ) (axiom of replacement).

Here ϕ = ϕ(x, y,�a) and u, v /∈ free ϕ. If ∀x∃!yϕ is provable, then we know from 2.6
that an operator x
→ Fx can be introduced. By AR, the image of a set u under
F is again a set v, as a rule denoted by {Fx | x ∈ u}. F may depend on further
parameters a1, . . . , an, so we better write F�a for F . AR is very strong; it can even
be shown that AS is derivable from it. An instructive example of an application of
AR, for which ∀x∃!yϕ is certainly provable, is provided by the formula

ϕ(x, y, a, b) := x==== ∅∧y==== a ∨ x �====∅∧y==== b.

For the operator F = Fa,b defined by ϕ, clearly holds F∅==== a and Fx==== b if x �= ∅.
Accordingly, the image of the 2-element set PP∅ under Fa,b contains precisely the two
members a, b. We therefore define {a, b} := {Fa,b(x) | x∈ PP∅} and call this the pair
set of a, b. We then put a ∪ b :=

⋃
{a, b} (while a ∩ b := {z ∈ a | z ∈ b} already exists

from AS). Further, let {a} := {a, a} and {a1, . . . , an+1} = {a1, . . . , an} ∪ {an+1} for
n � 2. Now we can write and moreover prove that P∅==== {∅}, PP∅==== {∅, {∅}}, . . .
The ordered pair of a, b is defined after Kuratowski as (a, b) := {{a}, {a, b}}.
3 A frequently used synonym for the domain of a ZFC-model. The word “function” is avoided here
because functions are specific objects of a universe, namely sets of ordered pairs.

90 3 Gödel’s Completeness Theorem

We now have at our disposal the implements necessary to develop elementary
set theory. Beginning with sets of ordered pairs it is possible to model relations
and functions and all concepts building upon them, even though the existence of an
infinite set remains unprovable. Mathematical requirements demand their existence,
though then the borders of our experience with finite sets are transgressed. The
easiest way to get infinite sets is using the set operator x
→ Sx, where Sx := x ∪ {x}.

AI : ∃u[∅∈ u∧∀x(x∈ u→ Sx∈ u)] (axiom of infinity).
Such a set u contains ∅, S∅ = ∅ ∪ {∅} = {∅}, SS∅ = {∅, {∅}}, . . . and is therefore
infinite in the naive sense. This holds in particular for the smallest set u of this
type, denoted by ω. In formalized set theory ω plays the role of the set of natural
numbers. ω contains 0 := ∅, 1 := S0 = {0}, 2 := S1 = {∅, {∅}}, etc. Generally,
n + 1 := Sn = n ∪ {n} which easily computes to n + 1 = {0, . . . , n}. Thus, natural
numbers are represented by certain variable-free set terms, called ω-terms.

In everyday mathematics the following axiom is basically dispensable:
AF : (∀x �====∅)(∃y∈x)(∀z∈x) z /∈ y (axiom of foundation or regularity).

Put intuitively: Every x �==== ∅ contains an ∈ -minimal element y. AF precludes the
possibility of “∈ -circularity” x0 ∈ · · · ∈ xn ∈ x0. In particular, there are no sets x with
x∈ x. Other consequences of AF will not be discussed here.

From the theory denoted by ZF with the axioms so far, ZFC results by adjoining
the axiom of choice, which has various equivalent formulations.

AC : ∀u[∅ /∈ u ∧ (∀x∈u)(∀y∈u)(x �====y → x ∩ y==== ∅) →∃z(∀x∈u)∃!y(y∈x∧y∈z)].
It states that for every set (or family thereof) u of disjunct nonempty sets x there
exist a set z, a choice set, that picks up precisely one element from each x in u.

The above expositions clearly show that ZFC can be understood as a first-order
theory. In some sense, ZFC is even the purest such theory, because all sophisticated
proof methods that occur in mathematics, for instance transfinite induction and
recursion and every other type of induction and recursion, can be made explit and
derived purely predicate logically in ZFC without particular difficulty.

Whereas mathematicians regularly transgress the framework of a theory, even
one that is unambiguously defined by first-order axioms, in that they make use of
combinatorial, number- or set-theoretical tools wherever it suits them, set theory,
as it stands now, imposes upon itself an upper limit. Within ZFC, all sophisticated
proof and definition techniques gain an elementary character, so to speak.

As a matter of fact, there are no pertinent arguments against the claim that the
whole of mathematics can be treated within the frame of ZFC as a single first-order
theory, a claim based on general mathematical experience that is highly interesting
for the philosophy of mathematics. However, one should not make a religion out of
this insight, because for mathematical practice it is of limited significance.

3.4 ZFC and Skolem’s Paradox 91

If ZFC is consistent—and no one really doubts this assumption although there is
no way of proving it—then by Theorem 4.1, ZFC also has a countable model. The
existence of such a ZFC-model V = (V, ∈ V) is at first glance paradoxical because
the existence of uncountable sets is easily provable within ZFC. An example is Pω.
On the other hand, because (Pω)V ⊆ V , it must be true (from outside) that (Pω)V

contains only countably many elements. Thus, the notion countable has a different
meaning “inside and outside the world V ,” which comes completely unexpectedly.
This is the so-called paradox of Skolem.

The explanation of Skolem’s paradox is that the countable model V , to put it
figuratively, is “thinned out” and contains fewer sets and functions than expected.
Indeed, roughly put, it contains just enough to satisfy the axioms, yet not, for
instance, some bijection from ωV to (Pω)V , which, seen from the outside, certainly
exists. Therefore, the countable set (Pω)V is uncountable from the perspective of
the world V . In other words, uncountability is not an absolute concept.

Moreover, the universe V of a ZFC-model is by definition a set, whereas it is easy
to prove �ZFC ¬∃v∀z z ∈ v, i.e., there is no “universal set.” Thus, seen from within,
V is too big to be a set. ¬∃v∀z z ∈ v is verified as follows: the hypothesis ∃v∀z z ∈ v

entails with AE and AS the existence of the “Russellian set” u = {x∈ v | x /∈ x}.
That is, ∃v∀z z ∈ v �ZFC ∃u∀x(x∈ u ↔ x /∈ x). On the other hand, by Example 1 on
page 58, �ZFC ¬∃u∀x(x∈ u ↔ x /∈ x), whence �ZFC ¬∃v∀z z ∈ v. Accordingly, even
the notion of a set depends on the model. There is no absolute definition of a set.

None of the above has anything to do with ZFC’s being incomplete.4 Mathematics
has no problem with the fact that its basic theory is incomplete and, in principle,
cannot be rendered complete. More of a problem is the lack of undisputed criteria
for extending ZFC in a way coinciding with truth or at least with our intuition.

Exercises

1. Let T be an elementary theory with arbitrarily large finite models. Prove
using the compactness theorem that T also has an infinite model.

2. Suppose A = (A, <) is an infinite, well-ordered set (see 2.1). Show that there
exists a non-well-ordered set elementarily equivalent to A.

3. Using the ZFC axioms, confirm the well-definedness of ω in the text. For this
assertion it suffices to prove �ZFC ∃u[∅∈ u∧∀x(x∈ u → x ∪ {x}∈ u)].

4. Let V � ZFC. Show that there exists a model V ′ � ZFC such that V ′ ⊇ V and
a U ∈ V ′ with a∈V ′

U for all a ∈ V . Then necessarily V ′ ⊃ V .

4 In 6.5 the incompleteness of ZFC and all its axiomatic extensions is proved. The most prominent
example of a sentence independent of ZFC is the continuum hypothesis stated on page 135.

92 3 Gödel’s Completeness Theorem

3.5 Enumerability and Decidability

Of all the far-reaching consequences of the completeness theorem, perhaps the most
significant is the effective enumerability of all tautologies of a countable first-order
language. Once Gödel had proved this theorem, the hope grew that the decidability
problem for tautologies might soon be resolved. Indeed, the wait was not long, and
a few years after Gödel’s result Church proved the problem to be unsolvable for
sufficiently expressive languages. This section is intended to provide only a brief
glimpse of enumeration and decision problems as they appear in logic. We consider
them more rigorously in the Chapters 5 and 6.

The term effectively enumerable will be made more precise in 6.1 by the notion
of recursive enumerability. At this stage, our explanation of this notion must be
somewhat superficial, though like that for a decidable set it is highly visualizable.
Put roughly, a set M of natural numbers, say, or syntactic objects, finite structures,
or similar objects is called effectively (or recursively) enumerable if there exist an
algorithm that delivers stepwise the elements of M . Thus, in the case of an infinite
set M , the algorithm does not stop its execution by itself.

The calculus of natural deduction enables first of all an effective enumeration of
all provable finite sequences of a first-order language with at most countably many
logical symbols, i.e., all pairs (X,α) such that X � α and X is finite, at least in
principle. First of all, we imagine all initial sequents as enumerated in an ongoing,
explicitly producible sequence S0, S1, . . . Then it is systematically checked whether
one of the sequent rules is applicable; the resulting sequents are then enumerated in a
second sequence and so on. Leaving aside problems concerning the storage capacity
of such a deduction machine, as well as the difficulties involved in evaluating the
flood of information that would pour from it, it is simply a question of organization
to create a program that enumerates all provable finite sequents.

Moreover, it can be seen without difficulty that the tautologies of a countable
language L are effectively enumerable; one need only pick out from an enumera-
tion procedure of provable sequents (X,α) those such that X = ∅. In short, the
aforementioned deduction machine delivers stepwise a sequence α0, α1, . . . (without
repetitions if so desired) that consists of exactly the tautologies of L. This would be
somewhat easier with the calculus in 3.6. However, we cannot in this way obtain
a decision procedure as to whether or not any given formula α ∈ L is a tautology,
for we do not know whether α ever appears in the produced sequence. We prove
rigorously in 6.5 that in fact such an algorithm does not exist provided L contains at
least a binary predicate or operation symbol. Decision procedures exist only for L====

(cf. 5.2) or when the signature contains only unary predicate and constant symbols,
and at most one unary operation symbol; see also [BGG].

3.5 Enumerability and Decidability 93

The deduction machine can also be applied to enumerate the theorems of a given
axiomatizable theory T , in that parallel to the enumeration process for all provable
sequents of the language, a process is also set going that enumerates all axioms of
T . It must then continually be checked for the enumerated sequents whether all
their premises occur as already-enumerated assertions; if so, then the conclusion of
the sequent in question is provable in T . The preceding considerations constitute
an informal proof of the following theorem. A rigorous proof free of merely intuitive
arguments is provided by Theorem 6.2.4.

Theorem 5.1. The theorems of an axiomatizable theory are effectively enumerable.

Almost all theories considered in mathematics are axiomatizable, including for-
malized set theory ZFC and Peano arithmetic PA. While the axiom systems of these
two theories are infinite and cannot be replaced by finite ones, these sets of axioms
are evidently decidable. Our experience hitherto shows us that all those theorems
of mathematics held to be proved are also provable in ZFC, and therefore, according
to Theorem 5.1, all mathematical theorems can in principle be stepwise generated
by a computer. This fact is theoretically important, even if it has little far-reaching
practical significance at present.

Recall the notion of a complete theory. Among the most important examples is the
theory of the real closed fields (Theorem 5.5.5). A noteworthy feature of complete
and axiomatizable theories is their decidability. We call a theory decidable if the set
of its theorems is a decidable set of formulas, and otherwise undecidable. We prove
the next theorem intuitively; it is generalized by Exercise 3. A strict proof, based on
the rigorous definition of decidability in 6.1, will later be provided by Theorem 6.4.4
on page 191.

Theorem 5.2. A complete axiomatizable theory T is decidable.

Proof. By Theorem 5.1 let α0, α1, . . . be an effective enumeration of all sentences
provable in T . A decision procedure consists simply in comparing for given α ∈ L0

the sentences α and ¬α in the nth construction step of α0, α1, . . . with αn. If α = αn

then �T α; if α = ¬αn then �T α. This process certainly terminates, because due
to the completeness of T , either α or ¬α will appear in the enumeration sequence
α0, α1, . . . of the theorems of T .

Conversely, a complete decidable theory is trivially axiomatizable (by T itself).
Thus, for complete theories, “decidable” and “axiomatizable” mean one and the
same thing. A consistent theory has a model and hence at least one completion,
i.e., a complete extension in the same language. The only completion of a complete
theory T is T itself. An incomplete theory has at least two distinct completions.
A decidable incomplete theory even possesses a decidable completion (Exercise 4).

94 3 Gödel’s Completeness Theorem

Hence, a theory all completions of which are undecidable is itself undecidable. We
will meet such theories, even finitely axiomatizable ones, in 6.5. On the other hand,
if T has finitely many completions only, T0, . . . , Tn, all of which are decidable, then
so is T.5 Indeed, according to Exercise 2, α ∈ T ⇔ α ∈ Ti for all i � n.

In the early stages in the development of fast computing machines, high hopes
were held concerning the practical carrying out of mechanized decision procedures.
For various reasons, this optimism has since been muted, though skillfully employed
computers can be helpful not only in verifying proofs but also in finding them. This
area of applied logic is called automated theorem proving (ATP). Convincing exam-
ples include computer-supported proofs of the four-colour conjecture, the Robbins
problem about a particular axiomatization of Boolean algebras, and Bieberbach’s
conjecture in function theory. ATP is used today both in hardware and software
verification, for instance, in integrated circuit (chip) design and verification. A quick
source of information about automated theorem proving is the Internet.

Despite of these applications, even a highly developed artificial-intelligence system
has presently no chance of simulating the heuristic approach in mathematics, where
a precise proof from certain hypotheses is frequently only the culmination of a series
of considerations flowing from the imagination. However, that is not to say that
such a system may not be creative in a new way, for it is not necessarily the case
that the human procedural method, influenced by all kinds of pictorial thoughts, is
the sole means to gaining mathematical knowledge.

Exercises

1. Let T ′ = T +α (α ∈ L0) be a finite extension of T . Show that if T is decidable
so too is T ′ (cf. Lemma 6.5.3).

2. Prove that a consistent theory T coincides with the intersection of all its
completions, in short T =

⋂
{T ′ ⊇ T | T ′ complete}.

3. Show that the following are equivalent for a consistent theory T :

(i) T has finitely many extensions, (ii) T has finitely many completions.

Moreover, show that a consistent theory T with n completions has 2n − 1
consistent extensions, T included (n = 1 iff T itself is complete).

4. Using the Lindenbaum construction of 1.4, show that an incomplete decidable
and countable theory T has a decidable completion ([TMR, p. 15]).

5 The elementary absolute (plane) geometry T has precisely two completions, Euclidean and non-
Euclidean (or hyperbolic) geometry. Both are axiomatizable, hence decidable. Completeness
follows in both cases from that of the elementary theory of real numbers, Theorem 5.5.5. Thus,
absolute geometry is decidable as well. Further applications can be found in 5.2.

3.6 Complete Hilbert Calculi 95

3.6 Complete Hilbert Calculi

The sequent calculus of 3.1 models natural deduction sufficiently well. But it is
nonetheless advantageous to use a Hilbert calculus for some purposes, for instance
the arithmetization of formal proofs. Such calculi are based on logical axioms and
rules of inference like modus ponens MP: α, α → β/β, also called Hilbert-style rules.
These rules can be understood as premiseless sequent rules. In a Hilbert calculus,
deductions are drawn from a fixed set of formulas X, for instance, the axioms a
theory, with the inclusion of the logical axioms, as in 1.6. In the case X = ∅ one
deduces from the logical axioms alone, and only tautologies are established.

In the following we prove the completeness of a Hilbert calculus in the logical
symbols ¬, ∧ ,∀, ==== . It will be denoted here by |∼ . MP is its only rule of inference.
The calculus refers to an arbitrary elementary language L and is essentially an
extension of the corresponding propositional Hilbert calculus treated in 1.6. Once
again, implication, defined by α → β := ¬(α∧¬β), will play a useful part.

The logical axiom system Λ of our calculus is taken to consist of all formulas
∀x1 · · · ∀xnϕ, where ϕ is a formula of the form Λ1–Λ10 below, and n � 0. For
example, due to Λ9, x==== x, ∀xx==== x, ∀y x==== x, ∀x∀y x==== x are logical axioms, even
though ∀y is meaningless in the last two formulas. One may also say that Λ is
the set of all formulas that can be derived from Λ1–Λ10 by means of the rule MQ:
α/∀xα. However, MQ is not a rule of inference of the calculus, nor is it provable.
We will later take a closer look at this rule.

Λ1: (α → β → γ) → (α → β) → α → γ, Λ2: α → β → α∧β,
Λ3: α∧β → α, α∧β → β, Λ4: (α →¬β) → β →¬α,
Λ5: ∀xα → α t

x (α, t
x collision-free), Λ6: α →∀xα (x /∈ free α)

Λ7: ∀x(α → β) →∀xα →∀xβ, Λ8: ∀yα y
x →∀xα (y �∈ var α),

Λ9: t==== t, Λ10: x==== y → α → α y
x (α prime).

It is easy to recognize Λ1–Λ10 as tautologies. For Λ1–Λ4 this is clear by 1.6. For
Λ5–Λ8 the reasoning proceeds straightforwardly by accounting for the corollary on
page 56 and the logical equivalences in 2.4. For Λ9 and Λ10 this is obvious.

Axiom Λ5 corresponds to the rule (∀1) of the calculus in 3.1, while Λ6 serves to
deal with superfluous prefixes. The role of Λ7 will become clear in the completeness
proof for |∼ , and Λ8 is part of bound renaming. Λ9 and Λ10 control the treatment
of identity. If ϕ is a tautology then, for any prefix block ∀�x, so too is ∀�xϕ. Thus,
Λ consists solely of tautologies. The same holds for all formulas derivable from Λ
using MP, for � α, α → β obviously implies � β.

Let X |∼α if there exists a proof Φ = (ϕ0, . . . , ϕn) of α from X, that is, α = ϕn,
and for all k � n either ϕk ∈ X ∪ Λ or there exists some ϕ such that ϕ and ϕ → ϕk

96 3 Gödel’s Completeness Theorem

appear as members of Φ before ϕk. This definition and its consequences are the
same as in 1.6. As is the case there, it holds that X |∼α, α → β ⇒ X |∼β. Moreover,
the induction theorem 1.6.1 also carries over unaltered, and its application will
often be announced by the heading “proof by induction on X |∼α.” For instance,
the soundness of |∼ is proved by induction on X |∼α, where soundness is defined as
usual, that is to mean X |∼α ⇒ X � α, for all X and α. In short, |∼ ⊆ �.

The completeness of |∼ can now be relatively easily be traced back to that of the
rule calculus � of 3.1. Indeed, much of the work was already undertaken in 1.6,
and we can immediately formulate the completeness of |∼ .

Theorem 6.1 (Completeness theorem for |∼). |∼ = �.

Proof. |∼ ⊆ � has already been verified. � ⊆ |∼ follows from the claim that |∼

satisfies all nine basic rules of �. This implies �⊆ |∼ , and since �= � we then have
�⊆ |∼ . For the propositional rules (∧1) through (¬2) the claim holds according to
their proof for the Hilbert calculus in 1.6. The Lemmas 1.6.2 through 1.6.5 carry
over word for word, because we have kept the four axioms on which the proofs are
based and have taken no new rules into account. (∀1) follows immediately from Λ5
using MP, and (IR) is dealt with by Λ9. Only (∀2) and (=) provide us with a little
work which, by the way, will clear up the role of axioms Λ6, Λ7, and Λ8.

(∀2): Suppose x �∈ free X. We first prove X |∼α ⇒ X |∼∀xα by induction on X |∼α.
Initial step: If α ∈ X then x is not free in α. So X |∼α →∀xα using Λ6, and
MP yields X |∼∀xα. If α ∈ Λ then also ∀xα ∈ Λ, and hence likewise X |∼∀xα.
Induction step: Let X |∼α, α → β and X |∼∀xα, ∀x(α → β) according to the induction
hypothesis. This yields X |∼∀xα, ∀xα →∀xβ by Axiom Λ7 and MP and hence the
induction claim X |∼∀xβ. Now, to verify (∀2), let X |∼α y

x and y �∈ free X ∪ var α.
By what we have just proved, we get X |∼∀yα y

x . This, MP, and X |∼∀yα y
x →∀xα

(Axiom Λ8) yield the conclusion X |∼∀xα of (∀2). Thus, |∼ satifies rule (∀2).

(=): Let α be a prime formula and X |∼s==== t, α s
x . Further, let y be a variable �= x

not appearing in s and α. Then certainly X |∼∀x∀y(x==== y → α → α y
x), because the

latter is a logical axiom in view of Λ10. By the choice of y, rule (∀1) then yields
X |∼ [∀y(x==== y → α → α y

x)] s
x = ∀y(s==== y → α s

x → α y
x).

Because of y /∈ var α, s and α y
x

t
y = α t

x , a repeated application of (∀1) gives
X |∼ [s==== y → α s

x → α y
x] t

y = s==== t → α s
x → α y

x
t
y = s==== t → α s

x → α t
x .

Since X |∼s==== t, α s
x by assumption, two applications of MP then leads to the desired

conclusion X |∼α t
x .

A special case of the completeness theorem 6.1 is the following

Corollary 6.2. For any α ∈ L, the following properties are equivalent:

3.6 Complete Hilbert Calculi 97

(i) |∼α, that is, α is derivable from Λ by means of MP only,
(ii) α is derivable from Λ1–Λ10 by means of MP and MQ,
(iii) � α, i.e., α is a tautology.

The equivalence of (i) and (iii) renders especially intuitive the possibility to con-
struct a “deduction machine” that effectively enumerates the set of all tautologies
of L. Here, we are dealing with just one rule of inference, modus ponens, so we need
just the help of a machine to list the logical axioms, a “deducer” to check whether
MP is applicable and, if so, to apply it, and an output unit that emits the results
and feeds them back into the deducer for further processing. However, similar to
the case of a sequent calculus, such a procedure is not actually practicable; the dis-
tinction between significant and insignificant derivations is too difficult to be taken
into account. Who would be interested to find in the listing such a weird looking
tautology as for instance ∃x(rx →∀y ry)?

Next we want to show that the global consequence relation �G defined in 2.5 can
also be completely characterized by a Hilbert calculus. It is necessary only to adjoin
the generalization rule MQ to the calculus |∼ . Thus, the resulting Hilbert calculus,
defined by �G , then has two rules of inference, MP and MQ. Like every Hilbert
calculus, �G is transitive, that is, X �G Y & Y �G α ⇒ X �G α. To see this, let
X �G Y , Y �G α and let Φ be a proof of α from Y . By replacing every formula ϕ ∈ Y

appearing in Φ by a proof of ϕ from X, the resulting sequence is clearly a proof of
α from X. The completeness of �G follows essentially from that of |∼ :

Theorem 6.3 (Completeness theorem for �G). �G = �G.
Proof. Certainly �G ⊆ �G, since both MP and MQ are sound for �G. Now let X �G α,
so that X G � α by (1) of 2.5. This yields X G |∼α by Theorem 6.1, and thus a fortiori
X G �G α. But since X �G X G, transitivity provides X �G α.

We now discuss a notion of equal interest for both logic and computer science.
α ∈ L0 is called generally valid in the finite if A � α for all finite structures A.
Examples of such sentences α not being tautologies can be constructed in every
signature that contains at least a unary function symbol or a binary relation symbol.
For instance, consider ∀x∀y(fx==== fy → x==== y) →∀y∃x y==== fx. This states in (A, f)
that if fA is injective, it is also surjective, which is true iff A is finite. Thus, Taut is
properly extended by the set of sentences generally valid in the finite, Tautfin.

In each signature, Tautfin is an example of a theory T with the finite model prop-
erty, i.e., every sentence α compatible with T has a finite T -model. More generally,
the theory T = ThK of any class K of finite L-structures has the finite model
property. Indeed, if T +α is consistent, i.e., ¬α /∈ T , then A � ¬α for some A ∈K,
hence A � α. This is the case, for example, for the theories FSG and FG of all finite

98 3 Gödel’s Completeness Theorem

semigroups and finite groups, respectively, in L{◦}. Both theories are undecidable.
As regards FSG, the proof is not particularly difficult; see 6.6.

Unlike Taut, as a rule, Tautfin is not axiomatizable. This is the claim of

Theorem 6.4 (Trachtenbrot). TautfinL is not (recursively) axiomatizable for any
signature L containing at least one binary operation or relation symbol.

Proof. We restrict ourselves to the first case; for a binary relation symbol, the same
follows easily by means of interpretation (Theorem 6.6.3). If TautfinL were axioma-
tizable it would also be decidable because of the finite model property, Exercise 2.
This also clearly holds for TautfinL{◦}, and by Exercise 1 in 3.5, so too for FSG,
because FSG is TautfinL{◦} extended by a single sentence, the law of associativity.
But as already mentioned, FSG is undecidable.

The theorem is in fact a corollary of much stronger results that have been estab-
lished in the meantime. For the newer literature on decision problems of this type
consult [Id]. Unlike FG, the theory of finite abelian groups, as well as of all abelian
groups, is decidable ([Sz]). The former is a proper extension of the latter; for in-
stance, ∀x∃y y + y==== x →∀x(x + x==== 0 → x==== 0) does not hold in all abelian groups,
though it does in all finite ones. Verifying this is a highly informative exercise.

As early as 1922 Behmann discovered by quantifier elimination that Taut possesses
the finite model property provided the signature contains only unary predicate sym-
bols; one can also prove this without difficulty by the Ehrenfeucht game of 5.3. In
this case then, Tautfin = Taut, because α /∈ Taut implies ¬α is satisfiable and there-
fore has a finite model. Thus, α /∈ Tautfin. This proves Tautfin ⊆ Taut and hence
Tautfin = Taut. With the Ehrenfeucht game also a quite natural axiomatization of
the theory FO of all finite ordered sets is obtained. This is an exercise in 5.3.

Exercises

1. Show that MQ is unprovable in |∼ (X |∼α⇒ X |∼∀xα does not hold in general).

2. Suppose (i) a theory T has the finite model property, (ii) the finite T -models are
effectively enumerable (more precisely, a system of representatives thereof up
to isomorphism). Show that (a) the sentences α refutable in T are effectively
enumerable, (b) if T is axiomatizable then it is also decidable.

3. Let T be a finitely axiomatizable theory with the finite model property. Show
by working back to Exercise 2 that T is decidable.

4. Show that ∀x∃y y + y==== x →∀x(x + x==== 0 → x==== 0) holds in all finite abelian
groups. Moreover, provide an example of an infinite abelian group for which
the above proposition fails.

3.7 First-Order Fragments and Extensions 99

3.7 First-Order Fragments and Extensions

Subsequent to Gödel’s completeness theorem it makes sense to investigate some
fragments and extensions of first-order languages aiming at a formal characterization
of deduction inside the fragment or extension. In this section we shall present some
results in this regard. First-order fragments are formalisms that come along without
the full means of expression in an elementary language, for instance by the omission
of some or all logical connectives, or restricted quantification. These formalisms are
interesting for various reasons, partly because of the growing interest in automatic
information processing with its more or less restricted user interface. The poorer a
linguistic fragment, the more modest the possibilities for the formulation of sound
rules. Therefore, the completeness problem for fragments is in general nontrivial.

A useful example dealt with more closely is the language of equations, whose only
formulas are equations of a fixed algebraic signature. We think tacitly of the vari-
ables in the equations as being generalized and call them identities, though we often
speak of equations. Theories with axiom systems of identities are called equational
theories and their model classes equational-defined classes or varieties.

Let Γ denote a set of equations defining an equational theory, γ a single equation,
and assume ΓG � γ. By Theorem 2.7 there is a formal proof for γ from Γ. But
because of the special form of the equations, it can be expected that one need not
the whole formalism to verify ΓG � γ. Indeed, Theorem 7.2 states that the Birkhoff
rules (B0)–(B4) below, taken from [Bi], suffice. This result is so pleasing because
operating with (B0)–(B4) remains completely inside the language of equations. The
rules define a Hilbert-style calculus denoted by �B and look as follows:

(B0) /t==== t, (B1) s==== t/t==== s, (B2) t==== s, s==== t′/t==== t′,

(B3) t1 ==== t′1, . . . , tn ==== t′n/ft1 · · · tn ==== ft′1 · · · t′n, (B4) s==== t/sσ ==== tσ.

Here σ is a global substitution, though as explained in 2.2 it would suffice to consider
just simple σ. (B0) has no premise which means that t==== t is derivable from any
set of identities (or t = t is added as an axiom to Γ). These rules are formally
stated with respect to unquantified equations. However, we think of all variables as
being generalized in a formal derivation sequence. We are forced to do this by the
soundness requirement of (B4), because (s==== t)G � sσ ==== tσ but not s==== t � sσ ==== tσ, in
general. To verify Γ �B γ ⇒ ΓG � γ, we need only to show that the property ΓG � γ

is closed under (B0)–(B4), i.e., A � t==== t (which is trivial), A � s==== t ⇒ A � t==== s,
etc. We have already come across the rules of �B in 3.1, stated there as Gentzen-style
rules; they ensure that by s ≈ t :⇔ Γ �B s==== t a congruence in the term algebra T
is defined, similar as in Lemma 2.5. (B4) states the substitution invariance of ≈,
which is to mean s ≈ t⇒ sσ ≈ tσ. Let F be the factor structure of T by ≈, and let
t denote the congruence class modulo ≈ determined by the term t, so that

100 3 Gödel’s Completeness Theorem

(1) t1 = t2 ⇔ Γ �B t1 ==== t2.
Further let w : Var → F , say xw = tx, with arbitrarily chosen tx ∈ xw. Any such
choice determines a global substitution σw : x
→ tx. Induction on t easily yields

(2) tF ,w = tσ (σ := σw).

Lemma 7.1. Γ �B t1 ==== t2 ⇔ F � t1 ==== t2.

Proof. Let Γ �B t1 ==== t2. By (B4) also Γ �B tσ1 ==== tσ2 , so that tσ1 = tσ2 . Therefore,
tF ,w
1 = tF ,w

2 using (2). Since w was arbitrary, it follows that F � t1 ==== t2. Now
suppose the latter and let κ be the so-called canonical valuation x
→ x. Here we
choose σκ = ι (the identical substitution), hence tF ,κ

i = ti by (2). F � t1 ==== t2 implies
F � tF ,κ

1 ==== tF ,κ
2 , and since tF ,κ

i = ti we get t1 = t2 and so Γ �B t1 ==== t2 by (1).

Theorem 7.2 (Birkhoff’s completeness theorem). Γ �B t1====t2 ⇔ ΓG � t1====t2.

Proof. The direction ⇒ is the soundness of �B. Now let ΓG � t1 ==== t2. According
to Lemma 7.1, certainly F � Γ, or equivalently F � ΓG. Therefore F � t1 ==== t2.
Applying Lemma 7.1 once again then yields Γ �B t1 ==== t2.

This proof is distinguished on the one hand by its simplicity and on the other by its
highly abstract character. It has manifold variations and is valid in a corresponding
sense, for example, for sentences of the form ∀�xπ with arbitrary prime formulas π of
any given first-order language. It is rather obvious how to strengthen the Birkhoff
rules to cover this more general case: Keep (B0), (B1), and (B3) and replace the
conclusions of (B3) and (B4) by arbitrary prime formulas of the language.

There is also a special calculus for sentences of the form
(3) ∀�x (γ1 ∧ · · · ∧γn → γ0) (n � 0, all γi equations),

called quasi-identities. The classes of models of axioms of the form (3) are called
quasi-varieties. The latter are highly important both in algebra and logic. (B0) is
retained and (B1)–(B3) are replaced by the following premiseless rules:

/x==== y → y==== x, /x==== y ∧y==== z → x==== z, /
∧n

i=1 xi ==== yi → f�x==== f�y.
Besides an adaptation of (B4), some rules are required for the formal handling of
the premises γ1, . . . , γn in (3), for instance their permutability (for details see e.g.,
[Se]). A highly important additional rule is here a variant of the cut rule, namely

α∧δ → γ, α → δ/α → γ (α a conjunction of equations).
The most interesting case for automated information processing, where Hilbert

rules remaining inside the fragment still provide completeness, is that of universal
Horn theories. Here, roughly speaking, the equations γi in (3) may be arbitrary
prime formulas. Horn theories are treated in Chapter 4. But for enabling a real
machine implementation, the calculus considered there (the resolution calculus) is
different from a Hilbert- or a Gentzen-style calculus.

3.7 First-Order Fragments and Extensions 101

Now we consider a few of the numerous possibilities for extending first-order
languages to increase the power of expression: We say a language L′ ⊇ L of the
same signature as L is more expressive than L if for at least one sentence α ∈ L′,
Md α is distinct from all Mdβ for β ∈ L. In L′, some of the properties of first-
order languages are lost. Indeed, the claim of the next theorem is that first-order
languages are optimal in regard to the richness of their applications.

Lindström’s Theorem (see [EFT] or [CK]). There is no language of a given
signature that is more expressive than the first-order language and for which both
the compactness theorem and the Löwenheim–Skolem theorem hold.

Many-sorted languages. In describing geometric facts it is convenient to use
several variables, for points, lines, and, depending on dimension, also for geometrical
objects of higher dimension. For every argument of a predicate or operation symbol
of such a language, it is useful to fix its sort. For instance, the incidence relation
of plane geometry has arguments for points and lines. For function symbols, the
sort of their values must additionally be given. If L is of sort k and vs

0, v
s
1, . . . are

variables of sort s (1 � s � k) then every relation symbol r is assigned a sequence
(s1, . . . , sn); in languages not containing function symbols, prime formulas beginning
with r have the form rxs1

1 · · ·xsn
n , where xsi

i denotes a variable of sort si.

Many-sorted languages represent only an inessential extension of the concept hith-
erto expounded, provided the sorts are given equal rights. Instead of a language L
with k sorts of variables, we can consider a one-sorted language L′ with additional
unary predicate symbols P1, . . . , Pk and the adoption of certain new axioms: ∃xPix

for i = 1, . . . , k (no sort is empty, otherwise it could be omitted) and ¬∃x(Pix∧Pjx)
for i �= j (sort disjunction). For example, plane geometry could also be described
in a one-sorted language with the additional predicates pt (to be a point) and li (to
be a line). Apart from a few differences in dealing with term insertion, many-sorted
languages behave almost exactly like one-sorted languages.

Second-order languages. Some frequently quoted axioms, e.g., the induction
axiom IA, may be looked upon as second-order sentences. The simplest extension
of an elementary language to one of higher order is the monadic second-order lan-
guage, a two-sorted language that has a special interpretation for the second sort.
Let us consider such a language L with variables x, y, z, . . . for individuals, variables
X, Y, Z, . . . for sets of these individuals, along with at least one binary relation sym-
bol ∈ but no function symbols. Prime formulas are x==== y, X ==== Y, and x∈ X. An
L-structure is generally of the form (A, B, ∈) where ∈ ⊆ A × B. The goal is that
by formulating additional axioms such as ∀XY [∀x(x∈ X ↔ x∈ Y) → X ==== Y] (which
corresponds to the axiom AE in 3.4), ∈ should be interpretable as the membership
relation ∈, hence B should consist of the subsets of A. This goal is not fully attain-

102 3 Gödel’s Completeness Theorem

able, but nearly so: axioms can be found such that B can be regarded only as a
subset of PA, with ∈ interpreted as ∈. This also works by adding sort variables for
members of PPA, PPPA, etc. This “completeness of the theory of types” plays a
basic role in the higher nonstandard analysis.

A more enveloping second-order language, LII , is won by adopting quantifiable
variables for any relations and operations on the domains of individuals. But even
for L = L====, LII fails to satisfy both the finiteness theorem and the Löwenheim–
Skolem theorem (Theorem 4.1). The former does not hold because a theorem αfin

can be given in LII such that A � αfin if and only if A is finite. For it is not difficult
to prove that A is finite iff A can be ordered such that every nonempty subset of
A possesses both a smallest and largest element. This property can effortlessly be
formulated by means of a binary and a unary predicate variable.

The Löwenheim–Skolem theorem is also easily refutable for LII ; one need only
write down in LII the sentence ‘there exists a continuous order on A without smallest
or largest element’. This sentence has no countable model. For if there were such a
model, it would be isomorphic to the ordered set of rationals according to a theorem
of Cantor (Example 2 in 5.2) and therefore has gaps, contradicting our assumptions.

There is still a more serious problem as regards LII : The ZFC-axioms, seen as
axioms of the underlying set theory, do not suffice to establish what a tautology in
LII should actually be. For instance, the continuum hypothesis CH (see page 135)
can be easily formulated as an LII-sentence, αCH. But CH is independent of ZFC.
Thus, if CH is true, αCH is an LII tautology, otherwise not. It does not look as
though mathematical intuition suffices to decide this question unambiguously.

New quantifiers. A simple syntactic extension L∼O of a first-order language L
is obtained by taking on a new quantifier denoted by ∼O, which formally is to be
handled as the ∀-quantifier. However, in a modelM = (A, w), a new interpretation
of ∼O is provided by means of the satisfaction clause

(0) M � ∼Oxα ⇔ {a ∈ A |Ma
x � α} is infinite.

With this interpretation, we write L∼O
0 instead of L∼O, since yet another interpretation

of∼O will be discussed. L∼O
0 is more expressive than L, as seen by the fact, for example,

that the finiteness theorem for L∼O
0 no longer holds: Let X be the collection of all

sentences ∃n (there exist at least n elements) plus αfin := ¬∼Ox x==== x (there exist
only finitely many elements). Every finite subset of X has a model, but X itself
does not. All the same, L∼O

0 still satisfies the Löwenheim–Skolem theorem. This
can be proved straightforwardly with the methods of 5.1. Once again, because
of the missing finiteness theorem there cannot be a complete rule calculus for L∼O

0 .
Otherwise, just as in 3.1, one could prove the finiteness theorem after all. However,
there are several nontrivial, correct Hilbert-style rules for L∼O

0 , for instance

3.7 First-Order Fragments and Extensions 103

(Q1) /¬∼Ox(x==== y ∨ x==== z) (x �= y, z), (Q2) ∼Oxα/∼Oyα y
x (y /∈ free α),

(Q3) ∀x(α → β)/∼Oxα →∼Oxβ, (Q4) ∼Ox∃yα,¬∼Oy∃xα/∃y∼Ox α.

Intuitively, rule (Q1) (which has no premises) says that the pair {y, z} is finite.
(Q2) is bound renaming. (Q3) says that a set containing an infinite subset is itself
infinite. (Q4) is rendered intuitive for M = (A, w) � ∼Ox∃yα,¬∼Oy∃xα and for
α = α(x, y) as follows: Let Ab = {a ∈ A | A � α(a, b)}. Then M � ∼Ox∃y α states
‘
⋃

b∈A Ab is infinite’. M � ¬∼Oy∃x α says ‘there exist only finitely many indices b

such that Ab �= ∅’, the conclusion ∃y∼Oxα therefore ‘Ab is infinite for at least one
index b’. Hence (Q4) expresses altogether the fact that the union of a finite system
of finite sets is itself finite. Now replace the satisfaction clause (0) by

(1) M � ∼Oxα ⇔ {a ∈ A |Ma
x � α} is uncountable.

Also with this interpretation, (Q1)–(Q4) are sound for L∼O
1 (= L∼O with the in-

terpretation (1)). Rule (Q4) now evidently expresses that a countable union of
countable sets is again countable. Moreover, the logical calculus �1 resulting from
the basic rules of 3.1 by adjoining (Q1)–(Q4) is, surprisingly, complete for these
semantics when restricted to countable sets X. Thus, X �1 α ⇔ X � α, for any
countable X ⊆ L∼O

1 ([CK]). This fact implies the following compactness theorem for
L∼O

1 : If every finite subset of a countable set of formulas X ⊆ L∼O
1 has a model then

so too does X. For uncountable sets of formulas this is false in general.

Programming languages. All languages hitherto discussed are of static character
inasmuch as there are spatially and temporally independent truth values for given
valuations w in a structure A. But one can also connect a first-order language L in
various ways with a programming language having dynamic character.

We describe here a simple example of such language, PL. The elements of PL
are called programs, denoted by P,Q, . . . and are defined below. The dynamic
character arises by modifying traditional semantics as follows: A program P starts
with a valuation w : Var → A (the domain of a given L-structure A) and alters
stepwise the values of the variables as a run of the program P proceeds in time. If P

terminates upon feeding in w, i.e., the calculation ends, the result is a new valuation
wP. Otherwise we take wP to be undefined. The description of this in general only
partially defined operation w
→ wP is called the procedural semantics of PL.

It is possible to meaningfully consider issues of completeness, say, for this type
of semantics, too. The syntax of PL is specified as follows: The logical signature
of L is extended by the symbols WHILE , DO , END , :==== , and ; (the semicolon serves
only as a separator for concatenated programs and could be omitted if programs are
arranged 2-dimensionally, which we will not do for the sake of brevity). Programs
on L are defined inductively as strings of symbols in the following manner:

1. For any variable x ∈ Var and term t ∈ TL, the string x :==== t is a program.

104 3 Gödel’s Completeness Theorem

2. If α is an open formula in L and P,Q are programs, so too are the strings P ; Q
and WHILEα DOP END.

No other strings are programs in this context. P ; Q is to mean that first P and
then Q are executed. Let Pn be the n-times repeated execution of P, more precisely
P0 is the empty program (wP0 = w) and Pn+1 = Pn ; P. The procedural semantics
for PL are made more precise by the following stipulations:

(a) wx :==== t = w tw
x (i.e., w alters at most the value of the variable x).

(b) If wP and (wP)Q are defined, so too is wP;Q, and wP;Q = (wP)Q.
(c) For Q := WHILEα DOP END let wQ = wPk with k specified below.

According to our intuition regarding the “WHILE loop,” k is the smallest number
such that A � α [wPi] for all i < k and A � α [wPk], provided such a k exists and all
wPi for i � k are well defined. Otherwise wQ is considered to be undefined. If k = 0,
that is, A � α [w], then wQ = w, which amounts to saying that P is not executed at
all, in accordance with the meaning of WHILE in all programming languages.

Example. Let L = L{0, S, Pd} and let A = (N, 0, S, Pd), where S and Pd respectively
denote the successor and predecessor functions, and let P be the program

z :==== x ; v :==== y ; WHILE v �====0 DO z :==== Sz ; v :==== Pd v END.

If x and y initially have the values xw = m and yw = n, the program ends with
zwP = m+n. In other words, P terminates for every input m, n for x, y and computes
the output m + n in the variable z while x, y keep their initial values.

In PL, the well-known program schema IFα THENP ELSEQ END is definable by
x :==== 0 ; WHILEα∧x==== 0 DO P ; x :==== S0 END ; WHILEx==== 0 DOQ ; x :==== S0 END, where x is
a variable not appearing in P, Q, and α.

Exercises

1. Show that a variety K is closed with respect to homomorphism, subalgebra,
and direct product.6

2. Show that L∼O
1 and LII do not satisfy the Löwenheim–Skolem theorem, and

that L∼O
1 violates the finiteness theorem for uncountable sets of formulas.

3. Express the continuum hypothesis as a theorem of LII .

4. Verify the correctness of the definition of the program IFα THENP ELSEQ END
given in the text.

5. Define the loop D0P UNTILα END by means of the WHILEα DOP END-loop.

6 If, conversely, a class K has these three properties and is closed under isomorphisms then K is
a variety. This is Birkhoff’s HSP theorem, a theorem of Universal algebra; see e.g. [Mo].

Chapter 4

The Foundations of
Logic Programming

Logic programming aims not so much at solving numerical problems in science and
technology, rather at treating information processing in general, in particular at
the creation of expert systems of artificial intelligence. A distinction has to be
made between logic programming as theoretical subject matter and the widely used
programming language for practical tasks of this kind, PROLOG. In regards to the
latter, we confine ourselves to a presentation of a somewhat simplified version, FF
nonetheless preserves the typical features.

The notions dealt with in 4.1 are of fairly general nature. Their origin lies in
certain theoretical questions posed by mathematical logic, and they took shape
before the invention of the computer. For certain sets of formulas, in particular for
sets of universal Horn formulas, which are very important for logic programming,
term models are obtained canonically. For a full understanding of 4.1, Chapters 1
and 2 should have been read, and to some extent also Chapter 3. The newcomer
need not understand all details of 4.1 at once, but should learn at least what a Horn
formula is and after a glance at the theorems may then continue with 4.2.

The resolution method and its combination with unification proposed in [Rob]
and applied in PROLOG were directly inspired by mechanical information pro-
cessing. This method is also of significance for tasks of automated theorem proving
which extends beyond logic programming. We treat resolution first in the framework
of propositional logic in 4.2. Its highlight, the resolution theorem, is proved con-
structively, without recourse to the propositional compactness theorem. In 4.3
unification is dealt with in an understandable way. 4.4 presents the combination of
resolution with unification and its application to logic programming. An elementary
introduction to this area is also offered by [Ll], while [Do] is more challenging. For
practical PROLOG programming, [CM] may be a good reference.

105

106 4 The Foundations of Logic Programming

4.1 Term Models and Horn Formulas

In the proof of Lemma 3.2.5 as well as in Lemma 3.7.1 we have come across models
whose domains are equivalence classes of terms of a first-order language L. In
general, a term model is to mean an L-model F whose domain F is the set of
congruence classes t of a congruence ≈F on the algebra T of all L-terms t. If ≈F
is the identity in T , one identifies F with T so that then t = t. Function symbols
and constants are interpreted canonically: fF(t1, . . . , tn) := ft1 · · · tn and cF := c.
No particular condition is posed on realizing the relation symbols of L. Further let
κ : x
→ x (x ∈ Var). This is called the canonical valuation. In the terminology
of 2.3, F = (F, κ), where F denotes the underlying L-structure with the domain
F = {t | t ∈ T }. We claim that independent of a specification of the rF ,

(1) tF = t for all t ∈ T ,
(2) F � ∀�xα ⇔ F � α

�t
�x for all �t ∈ T n (α open).

(1) is proved by an easy term induction (cf. (d) page 79). (2) follows from left to
right by Corollary 2.3.6. The converse runs as follows: F � α

�t
�x for all �t ∈ T n

implies F t1···tn
x1···xn

� α for all t1, . . . , tn ∈ T in view of Theorem 2.3.5 and (1). But this
means that F � ∀�xα, because the t for t ∈ T exhaust the domain of F .

Essential for both theoretical logic and automated theorem proving is the question
for which consistent formula sets X ⊆ L can a term model be constructed inside L.
For certain sets X a positive answer is given by Theorems 1.1 and 1.3 below.

Definition. The term model F = FX associated with a given set of formulas X is
that term model for which ≈FX and rFX are defined by

s ≈FX t ⇔ X � s==== t; rFXt1 · · · tn ⇔ X � rt1 · · · tn .

By (1), FX � s==== t ⇔ s = t ⇔ X � s==== t. Similarly FX � r�t ⇔ X � r�t . In
general, FX is not a model for X. What follows from our definition is only

(3) FX � π ⇔ X � π (π prime).
Most of the time X will be the axiom system of some theory T . We then also write
FT for FX and s ≈T t for s ≈FX t (s, t are equivalent in T , see page 66). An
example in which FT is indeed a model for T (a special case of Theorem 1.3) is

Example 1. Let T be the theory of semigroups in L{◦}. Every term t is equivalent
in T to a term in left association, denoted by x1 · · ·xn (◦ is not written); here
x1, . . . , xn is an enumeration of the variables of t in the order of appearance from
left to right, possibly with repetitions. In other words, t ≈T x1 · · ·xn; for instance,
v0((v1v0)v1) ≈T v0v1v0v1. Further, (x1 · · ·xn) ◦(y1 · · · ym) ≈T x1 · · ·xny1 · · · ym, as
is easily seen inductively on m. Moreover, x1 · · ·xn ≈T y1 · · · ym ⇔ m = n & xi = yi.
Therefore, one can identify the term classes modulo ≈T with the words over the

4.1 Term Models and Horn Formulas 107

alphabet Var. More precisely, the algebra F underlying FT is isomorphic to the
word-semigroup over the alphabet Var and is thereby also a model of T .

As already announced earlier, we slightly extend the concept of a model. Let Lk

and Vark be defined as in 2.2. Pairs (A, w) with dom w ⊇ Vark are called Lk-models.
Here w need not be defined for vk, vk+1, . . . , or an allocation to these variables may
have been deliberately “forgotten.” In this sense L-structures are also L0-models;
simply choose the empty valuation whenever k = 0, hence Vark = ∅. Note that an
Ln-model can be understood as an Lk-model whenever k � n.

Let Tk := {t ∈ T | var t ⊆ Vark}. To ensure that the set of ground terms T0 is
nonempty, we tacitly assume in the following that L contains at least one constant
when considering T0. Clearly Tk is a subalgebra of T , for t1, . . . , tn ∈ Tk ⇒ f�t ∈ Tk.
The concept of a term model can equally be related to Lk as follows:

Let ≈ be a congruence in Tk and Fk the factor structure Tk/≈ whose domain is
Fk = {t | t ∈ Tk}. Fk is extended canonically to an Lk-model by the valuation
x
→ x for x ∈ Vark. This Lk-model is subsequently denoted by Fk. For each k,
the following conditions are verified as with (1), (2), (3). FkX in (3k) is defined
analogously to FX but with respect to sets of formulas X ⊆ Lk.

(1k) tFk = t for all t ∈ Tk,
(2k) Fk � ∀�xα ⇔ Fk � α

�t
�x for all �t ∈ T n

k (α open),
(3k) FkX � π ⇔ X � π (π a prim formula from Lk).
Let ϕ = ∀�xα with an open formula α. Then α

�t
�x is called an instance of ϕ. And

if ti ∈ Tk for i = 1, . . . , n then α
�t
�x is called a Tk-instance, for k = 0 also a ground

instance of ϕ. Let GI(X) denote the set of ground instances of all ϕ ∈ X. Note
that GI(X) �= ∅ whenever X �= ∅ since L contains constants if k = 0 is considered.

Theorem 1.1. Let U (⊆ L) be a set of universal formulas and Ũ the set of all
instances of the formulas in U . Then the following are equivalent:

(i) U is consistent, (ii) Ũ is consistent, (iii) U has a term model in L.
The same holds if U ⊆ Lk and Ũ denotes the set of all Tk-instances of the formulas
in U . In particular, a set U ⊆ L0 of ∀-sentences is consistent iff GI(U) is consistent,
provided L contains constants.

Proof. (i) ⇒ (ii) is clear, because U � Ũ . (ii) ⇒ (iii): Let M � Ũ and F := FX
for X := {ϕ ∈ L |M � ϕ}. By (3), F � π ⇔M � π (⇔ X � π) for prime formulas
π. Induction on ∧ ,¬ yields F � ϕ⇔M � ϕ, for all open ϕ. SinceM � Ũ we thus
have F � Ũ . But this yields F � U according to (2). (iii) ⇒ (i): Trivial. For the
case U ⊆ Lk the proof runs similarly using (3k), (2k), and Fk = FkX.

By this theorem, a consistent set U of universal sentences has a term model F0.
For logic programming the important case is that in which U is ==== -free. Then U

108 4 The Foundations of Logic Programming

has a model on the set of all terms (Exercise 2 in 3.2). By choosing such M in
the proof of Theorem 1.1, we can do without a factorization in the construction of
F0X (X = {α ∈ L0 |M � α}). Such a model is called a Herbrand model for U . Its
domain T0 consists of all ground terms and is named the Herbrand universe of L.
In general, U has many Herbrand models A on the same domain T0 with the same
constants and functions: cA = c and fA(t1, . . . , tn) = f�t for all �t ∈ T n

0 . Only the
relations may vary. If U is a universal Horn theory (to be explained below), then U

has a distinguished Herbrand model, the minimal Herbrand model; see page 110.

Example 2. Let U ⊆ L{0, S, <} consist of the two ==== -free universal sentences

(a) ∀xx < Sx; (b) ∀x∀y∀z(x < y ∧ y < z → x < z).

Here the Herbrand universe T0 consists of all ground terms n (= Sn0). Obviously,
N := (N, 0, S, <) � U . Hence, we may choose N in the construction of a Herbrand
model F0 for U in the proof of Theorem 1.1. One may even say that N itself is a
Herbrand model for U and indeed the minimal one; see Example 5.

Remark 1. With Theorem 1.1 the problem of satisfiability for X ⊆ L can basically
be reduced to a propositional satisfiability problem. By Exercise 5 in 2.6, X is after
adding new operation symbols satisfiably equivalent to a set U of ∀-formulas which, by
Theorem 1.1, is in turn satisfiably equivalent to the set of open formulas Ũ . Now replace
the prime formulas π occurring in the formulas of Ũ with propositional variables pπ,
distinct variables for distinct prime formulas, as in the examples of 1.5. One then obtains
a satisfiably equivalent set of propositional formulas. This works straight on ==== -free sets
of ∀-formulas. By dealing with the congruence conditions for ==== (page 109), this method
can be generalized for sets of ∀-formulas with identity but is then more involved.

Although we will focus on a certain variant of the next theorem, its basic concern
(the construction of explicit solutions of existential assertions) is the same in logic
programming and other areas of automated information processing. Herbrand’s
theorem was originally a purely proof-theoretic statement.

Theorem 1.2 (Herbrand’s theorem). Let U ⊆ L be a set of universal formulas
and ∃�xα ∈ L for an open formula α. Finally, let Ũ be the set of all T -instances of
formulas in U . Then the following properties are equivalent:

(i) U � ∃�xα,

(ii) U �
∨

i�m α
�t i

�x
for some m and some �t0, . . . , �tm ∈ T n,

(iii) Ũ �
∨

i�m α
�t i

�x
for some m and some �t0, . . . , �tm ∈ T n.

The same holds if L is replaced here by Lk, T by Tk, and T n by T n
k , for each k � 0.

Proof. Because U � Ũ , certainly (iii)⇒(ii)⇒(i). It therefore remains to be shown
(i)⇒(iii): by (i), X = U,∀�x¬α is inconsistent, hence also Ũ ∪ {¬α

�t
�x | �t ∈ T n

k } by
Theorem 1.1. With this, (iii) follows already propositionally (Exercise 1 in 1.4).

4.1 Term Models and Horn Formulas 109

The theorem’s assumption that α is open is essential, as can be seen from the
example � ∃xα with α = ∀y(ry → rx) (Example 2 in 2.6). There are no terms
t0, . . . , tm (variables in this case) such that �

∨
i�m α ti

x , as is readily confirmed.
We now define Horn formulas for a given language L inductively. The definition

covers also the propositional case; omit everything that refers to quantification.

Definition. (a) Literals are basic Horn formulas. If α is a prime formula and β a
basic Horn formula, then α → β is a basic Horn formula. (b) Basic Horn formulas
are Horn formulas. If α, β are Horn formulas then so too is α∧β, along with ∀xα

and ∃xα. Horn formulas without free variables will be called Horn sentences.

For instance, ∀y(ry → rx) and ∀x(y ∈ x → x /∈ y) are Horn formulas. By definition,
α1 → · · · → αn → β (n � 0) is the general form of a basic Horn formula of L, where
the αi are prime formulas and β is a literal. Note that in the propositional case the
αi are propositional variables and β is a propositional literal.

We also call any formula α a (basic) Horn formula if it is equivalent to an original
(basic) Horn formula. Thus, since α1 → · · · → αn → β ≡ β ∨ ¬α1 ∨ · · · ∨ ¬αn and
by writing α0 for β in case β is prime, and β = ¬α0 otherwise, basic Horn formulas
are up to logical equivalence of the type

I: α0 ∨ ¬α1 ∨ · · · ∨ ¬αn or II: ¬α0 ∨ ¬α1 ∨ · · · ∨ ¬αn

for prime formulas α0, . . . , αn. I and II are disjunctions of literals of which at most
one is a prime formula. Basic Horn formulas are often defined in this way; but our
definition above has pleasant advantages in inductive proofs as we shall see. Basic
Horn formulas of type I are called positive and those of type II negative.

Each Horn formula is equivalent to a prenex Horn formula. If its prefix contains
only ∀-quantifiers, then the formula is called a universal Horn formula. If the kernel
of a Horn formula ϕ in prenex form is a conjunction of positive basic Horn formulas, ϕ

is termed a positive Horn formula. A propositional Horn formula, i.e., a conjunction
of propositional basic Horn formulas, can always be conceived of as a CNF whose
disjunctions contain at most one nonnegated element. It is possible to think of an
open Horn formula of L as resulting from replacing the propositional variables of
some suitable propositional Horn formula by prime formulas of L.

Example 3. (a) Identities and quasi-identities are universal Horn sentences, as
are transitivity (x � y ∧ y � z → x � z)G, reflexivity (x � x)G, and irreflexivity
(x � x)G, but not connexity (x � y ∨ y � x)G. The following congruence conditions
for ==== (where �x==== �y abbreviates

∧n
i=1 xi ==== yi) are once again Horn sentences:

(4) (x==== x)G, (x==== y ∧x==== z → y==== z)G, (�x==== �y → r�x → r�y)G, (�x==== �y → f�x==== f�y)G.
(b) ∀x∃y x ◦ y==== e is a Horn sentence. Therefore, e.g., the theory of divisible abelian
groups in L{◦, e} is a Horn theory, which in the general case is to mean a theory

110 4 The Foundations of Logic Programming

possessing an axiom system of Horn sentences. α := ∀x∃y(x �====0 → x · y==== 1), on the
other hand, is not a Horn sentence and even not equivalent to a Horn sentence in
the theory of fields, TF . Otherwise Md TF would be closed under direct products,
Exercise 1. This is not the case: Q×Q has zero divisors, for example (1, 0)·(0, 1) = 0.
Hence, Q×Q is not a field.

Theorem 1.3. Let U be a consistent set of universal Horn formulas. Then F := FU

is a model for U . In the case U ⊆ Lk, Fk := FkU is a model for U as well.

Proof. F � U follows from (∗) : U � α ⇒ F � α, for all Horn formulas α. This
is proved inductively on α. For prime formulas π, (∗) is clear, for then (3) reads as(∗

∗
)
: U � π ⇔ F � π. Let U � ¬π. Then U � π, for U is consistent. Hence F � π

by
(∗

∗
)
, and so F � ¬π. This confirms (∗) for all literals. Now let α be prime, β a

basic Horn formula, U � α → β, and assume F � α. Then U � α, hence U � β and
so F � β by the induction hypothesis. This proves F � α → β. Induction on ∧ is
clear. Finally suppose U � ∀�xα for some open Horn formula α, and let �t ∈ Tn. Since
then certainly U � α

�t
�x
, we get F � α

�t
�x

by the induction hypothesis. �t was arbitrary,
hence F � ∀�xα by (2). Thus (∗) is proved. The case U ⊆ Lk runs analogously by
considering (2k), (3k) and taking Fk for F .

Incidentally, U ’s consistency in the theorem is always secured if U consists of
positive Horn formulas; Exercise 2. Let U in Theorem 1.3 now be the axiom system
of a universal Horn theory T , that is, U consists of universal Horn sentences. The
theorem then yields FU � T . Since clearly U ⊆ Lk for each k, we likewise get
FkU � T . For more information on these particular models see Remark 2 below.

Example 4. The theory T in Example 1 is a particularly simple universal Horn
theory. FT (more precisely, its underlaying algebra F = T/≈T) was shown to be
isomorphic to the word-semigroup on the alphabet Var. The semigroup F is also
called the free semigroup with the free generators v0, v0 . . . Now F � T follows from
Theorem 1.3 without calculation. Similarly, the free semigroup with a finite number
k > 0 of free generators is constructed by considering FkT . Its underlaying algebra
is isomorphic to the word-semigroup on a k-element alphabet.

Remark 2. A universal Horn theory T like the one in Example 4 is said to be nontrivial
if �T ∀xy x==== y. The generators v0, v1, . . . of FU are then distinct and FU is called the
free model of T with the free generators vi. Similarly, FkU is the free model of T with
the free generators vi for i < k. The word “free” comes from the fact that to generate a
homomorphism, one can make “free use” of the values of the free generators. Free models
in this sense exist only for nontrivial universal Horn theories.

Let U be as in Theorem 1.3 but ==== -free and let T be axiomatized by U . Clearly,
F0U is defined only if L contains constant symbols; then F0U is a Herbrand model
for T , called the free or minimal Herbrand model for T . It will henceforth be denoted

4.1 Term Models and Horn Formulas 111

by CU or CT . The domain of CU is the set of ground terms. A not too simple an
example for the not always easy task of identifying the minimal Herbrand model for
a set U of =-free universal Horn sentences is the following one:

Example 5. Let U and N be as in Example 2. Both (a) and (b) are universal
Horn sentences. We determine precisely the minimal Herbrand model CU (whose
domain consists of the terms n) by proving N � CU , with the isomorphism n
→ n.
Since CU � m < k ⇔ U � m < k by the definition page 106, it suffices to prove
(∗): m < k ⇔ U � m < k. The direction ⇒ is shown by induction on k, beginning
with k = Sm. The induction initiation is clear since U � m < Sm by (a). Let
m < Sk, so that m < k or m = k and so U � m < k by the induction hypothesis, or
m = k. In both cases, U � m < Sk by (a) and (b). The direction⇐ is obvious since
N � U . This proves (∗). Note that U has many models on its Herbrand universe.
< may be realized by any transitive relation on N that extends <, for instance by
�N. This interpretation is excluded by adding the Horn sentence ∀xx �< x to U ,
but the minimal Herbrand model remains the same for this expansion of U .

Most useful for logic programming is the following variant of Herbrand’s theorem.
The main difference is that in case U � ∃�xγ we get a single solution γ

�t
�x
. Theorem 1.4

does also hold with the same proof if the k is dropped throughout.

Theorem 1.4. Let U ⊆ Lk (k � 0) be a consistent set of universal Horn formulas,
γ = γ0 ∧ · · · ∧γm where all γi are prime, and ∃�xγ ∈ Lk. Then are equivalent

(i) FkU � ∃�xγ, (ii) U � γ
�t
�x

for some �t ∈ T n
k , (iii) U � ∃�xγ.

In particular, for a consistent universal Horn theory T of any ==== -free language with
constants, CT � ∃�xγ is always equivalent to �T ∃�xγ.
Proof. (i)⇒(ii): Let FkU � ∃�xγ. Then FkU � γ

�t
�x

for some �t , because FkU � ¬γ
�t
�x

for all �t implies FkU � ∀�x¬γ by (2k), contradicting (i). Thus, FkU � γi
�t
�x

for all
i � m. Therefore U � γi

�t
�x

by (3k), and so U � γ
�t
�x
. (ii)⇒(iii): Trivial. (iii)⇒(i):

Theorem 1.3 states that FkU � U . Hence (iii) implies FkU � ∃�xγ. The particular
case follows from (i)⇔(iii) when choosing k = 0. Observe that CT = F0T .

Exercises

1. Show that MdT for a Horn theory T is closed under direct products and, if T

is a universal Horn theory, then also under substructures. The former means
that (∀i∈I)Ai � T ⇒ B :=

∏
i∈I Ai � T , the latter A′ ⊆ A � T ⇒ A′ � T .

2. Prove that a set of positive Horn formulas is always consistent.

3. Prove CU � (N, 0, S,�) for the set of ==== -free universal Horn sentences

U = {∀xx � x, ∀xx � Sx, ∀x∀y∀z(x � y ∧ y � z → x � z)}.

112 4 The Foundations of Logic Programming

4.2 Propositional Resolution

We recall the problem of quickly deciding the satisfiability of propositional formulas.
This problem is of eminent practical importance, since many nonnumerical (some-
times called “logical”) problems can be reduced to this. The truth table method,
practical for formulas with few variables, grows in terms of calculation effort expo-
nentially with the number of variables; even the most powerful computers of the
forseeable future will not be able to carry out the method for formulas with just 100
variables. Unfortunately, no better procedure is known, unless one is dealing with
formulas of a particular form, for instance with certain normal forms. The general
case represents an unsolved problem of theoretical computer science, not discussed
here, the so-called P=NP problem; see for instance [GJ].

For conjunctive normal forms, the best procedure for contemporary computers
is the resolution procedure introduced in the following. For the sake of a sparing
presentation one switches from a disjunction λ1 ∨ · · · ∨ λn of literals λi to the set
{λ1, . . . , λn}. In so doing, the order of the disjuncts and their possible repetition,
unessential factors for questions of satisfiability, are eliminated.

A finite, possibly empty set of literals is called a (propositional) clause. By a
clause in p1, . . . , pn is meant a clause K with var K ⊆ {p1, . . . , pn}. In the following
K, H, G, L, P, N denote clauses, K, H, P,N sets of clauses. K = {λ1, . . . , λn} cor-
responds to the formula λ1 ∨ · · · ∨ λn. The empty clause (i.e., n = 0) is denoted
by . It corresponds to the empty disjunction, which is identified with the falsum
⊥. For m > 0, K = {q1, . . . , qm,¬r1, . . . ,¬rk} where qi, rj ∈ PV is called a positive
clause, for m = 1 also definite, and for m = 0 a negative clause. These conventions
will also be adopted when the λi later denote literals of a first-order language.

Write w � K (a propositional valuation w satisfies the clause K) if K contains
some λ with w � λ. K is termed satisfiable if there is some w with w � K. Note
that the empty clause , as the definition’s wording suggests, is not satisfiable.

w is a model for a set K of clauses, if w � K for all K ∈ K. If K has a model then
K is called satisfiable. In contrast to the empty clause , the empty set of clauses
is satisfied by every valuation, again by the definition’s wording.

w satisfies a CNF α iff w satisfies all its conjuncts, and hence all of the clauses cor-
responding to these conjuncts. Since every propositional formula can be transformed
into a CNF, α is satisfiably equivalent to a corresponding finite set of clauses. For
instance, the CNF (p ∨ q) ∧ (¬p ∨ q ∨ r) ∧ (q ∨ ¬r) ∧ (¬q ∨ s) ∧ ¬s is satisfiably equiv-
alent to the corresponding set {{p, q}, {¬p, q, r}, {q,¬r}, {¬q, s}, {¬s}} of clauses.
It will turn out later that this set is not satisfiable.

We write K � H if every model of K also satisfies the clause H. A set of clauses
K is accordingly unsatisfiable if and only if K � .

4.2 Propositional Resolution 113

For λ /∈ K we will frequently denote the clause K ∪ {λ} by K,λ. Moreover, let
λ̄ = ¬p for λ = p, λ̄ = p for λ = ¬p (so that always ¯̄λ = λ), and K̄ = {λ̄ | λ ∈ K}.

The resolution calculus operates with sets of clauses and individual clauses, and
has a single rule working with these objects, the so-called resolution rule

RR: K,λ L, λ̄

K ∪ L
(λ, λ̄ /∈ K ∪ L).

The clause K∪L is also called a resolvent of the clauses K,λ and L, λ̄. The restriction
(λ, λ̄ /∈ K ∪ L) is actually not important, and can be neglected.

A clause H is called derivable from a set of clauses K, in symbols K �RR
H, if H can

be obtained from K by the stepwise application of RR; equivalently, if H belongs to
the resolution closure RcK of K, which is the smallest set of clauses H ⊇ K closed
with respect to applications of RR. This definition corresponds completely to that
of an MP-closed set of formulas in 1.6.

Example. Let K = {{p,¬q}, {q,¬p}}. Application of RR leads to the two resolvents
{p,¬p} and {q,¬q}, from which we see that a clause pair in general has several
resolvents. Every subsequent application of RR yields already available clauses, so
that RcK contains only the clauses {p,¬q}, {q,¬p}, {p,¬p}, {q,¬q}.

Applying RR to {p}, {¬p} gives the empty clause . Hence K �RR , with the
unsatifiable set of clauses K = {{p}, {¬p}}. By the resolution theorem below, the
derivability of the empty clause from a set of clauses K is characteristic of the
nonsatisfiability of K. To test this one needs only to check whether K �RR , or
∈ RcK. This is effectively decidable for finite sets K because RcK is finite.

Indeed, a resolvent that results from applying RR to clauses in p1, . . . , pn contains
at most these very same variables. Further, it is clear that there exist only finitely
many clauses in p1, . . . , pn, namely exactly 22n. But that is still an exponential
increase as n increases. And aside from this the mechanical implementation of
the resolution calculus mostly involves potentially infinite sets of predicate-logical
clauses. We consider this problem more closely at the end of 4.4.

The derivation of a clause H from a set of clauses K, especially the derivation of
the empty clause, can best be graphically represented by a so-called resolution tree.
This is a tree which branches “from above” with an endpoint H without edge exits,
also called the root of the tree. Points without entering edges are called leaves. A
point that is not a leaf has two entrances, and the points leading to them are called
their predecessors. The points of a tree bear sets of clauses in the sense that a point
which is not a leaf is a resolvent of the two clauses above it. The following figure
shows one of the many resolution trees for the already-mentioned set of clauses

K0 = {{p, q}, {¬p, q, r}, {q,¬r}, {¬q, s}, {¬s}}.

114 4 The Foundations of Logic Programming

{¬q}

{¬q, s}

{¬s}

{q}
�
��

{p, q} {¬p, q}

�
��

�
�
��

{¬p, q, r}

�
�
��

�
�
�

{q,¬r} The leaves of this tree are all occupied by
clauses in K0. It should be clear that an
arbitrary clause H belongs to the resolu-
tion closure of a set of clauses K just when
there exists a resolution tree with leaves
in K and root H. A resolution tree with
leaves in K and the root as in the figure
on the left for K = K0 is called a resolution
for K, or more exactly a successful resolu-
tion for K. By the aforementioned, K0 is
unsatisfiable, and hence so is the conjunc-
tive normal form that corresponds to the

set of clauses K0, namely (p ∨ q)∧ (¬p ∨ q ∨ r)∧ (q ∨ ¬r)∧ (¬q ∨ s)∧¬s.

Remark 1. If a resolution tree ends with a point �= , to which RR either cannot be
applied or where upon application the points are simply reproduced, then one talks of
an unsuccessful resolution. In this case, most interpreters of the resolution calculus will
“backtrack,” which means the program searches backwards along the tree for the first point
where one of several resolution alternatives was chosen, and picks up another alternative.
Some kind of selection strategy must in any case be implemented, since just as with any
logical calculus, the resolution calculus is nondeterministic, that is, no natural preferences
exist regarding the order of the derivations leading to a successful resolution, even if the
existence of such a resolution is known for other reasons.

���
{¬p3}

�

{¬p2}{p2,¬p3}

�
��

�
��

�
�
��

�
�
�

{¬p1}{p1,¬p2}We remark that despite the derivability of the empty
clause, for infinite unsatisfiable sets of clauses K there
also exist infinite resolution trees with nonrepeating points
where never appears. Such trees do not have a root. For
example, the set of clauses

K = {{p1}, {¬p1}, {p1,¬p2}, {p2,¬p3}, . . . }
is not satisfiable. Here we obtain the infinite resolution tree
in the figure on the right, occupied by leaves from K, which
has no root and does not reflect the fact that can be
derived just by a single application of RR to the first two clauses of K. In this
example the resolution calculus runs on K with a completely stupid strategy.

This and similar examples indicate that the resolution calculus is incapable in
general of deciding the satisfiability of infinite sets K of clauses. Indeed, this will
be confirmed in 4.4. Nonetheless, by Theorem 2.2 below there does exist—if K is
in actual fact unsatisfiable—a successful resolution for K that can in principle be
found in finitely many steps.

We commence the more detailed study of the resolution calculus with

4.2 Propositional Resolution 115

Lemma 2.1 (Soundness lemma). K �RR
H ⇒ K � H.

Proof. As in the case of a Hilbert calculus, it suffices to confirm the soundness of
the rule RR, that is, to prove that a model for K,λ and L, λ is also one for K ∪ L.
Thus let w � K,λ and w � L, λ̄. Case 1: w � λ. Then there must be a literal
λ′ ∈ K with w � λ′. Hence w � K and therefore w � K ∪ L. Case 2: w � λ. Then
w � λ̄. Similar to the above we get w � L. Hence w � K ∪ L as well.

For the case K �RR the lemma shows K � , that is, the unsatisfiability of K.
The converse of Lemma 2.1 is in general not valid; for instance {{p}} � {p, q}, but
{{p}} �

RR{p, q}. It does hold, though, for H = . This follows from Theorem 2.2,
also often stated as “K is unsatisfiable iff K �RR .” In its proof we construct a global
valuation w from partial valuations, defined only for p1, . . . , pn.

Theorem 2.2 (Resolution theorem). K is satisfiable if and only if K �
RR .

Proof. For satisfiable K we have K � , so K �
RR by Lemma 2.1. Now let K �

RR ,
or equivalently, /∈ H where H := RcK. We will construct a model w for H and
hence for K stepwise, i.e., the values vn = wpn will be defined inductively on n.
Let Λ(n) be the set of all literals in p1, . . . , pn, and let H(n) be the set of all K ∈ H

with K ⊆ Λ(n) such that pn or ¬pn or both belong to K. Clearly, Λ(0) = H(0) = ∅,
because variable enumeration starts with p1. Note that varH(n) ⊆ {p1, . . . , pn} and
H =

⋃
n∈NH(n). Let v1, . . . , vn already be defined so that wn := (v1, . . . , vn) � H(i)

for all i � n. This assumption holds trivially for n = 0 if we agree to say that the
“empty valuation” satisfies H(0) = ∅. Now vn+1 = wpn+1 will be defined such that

(∗) wn+1 := (v1, . . . , vn+1) � H(n+1) (induction claim).
We need to care only about those K ∈ H(n+1) containing not both pn+1 and ¬pn+1,
and no literal λ ∈ Λ(n) with wn � λ, called sensitive clauses during this proof, since
all other (insensitive) H ∈ H(n+1) are satisfied by any expansion of wn to wn+1.1

Claim: either pn+1 ∈ K for all sensitive K—then put vn+1 = 1—or else ¬pn+1 ∈ K

for all sensitive K, in which case put vn+1 = 0, so that (∗) holds in either case. To
prove the claim assume that there are sensitive K,H with pn+1 ∈ K and ¬pn+1 ∈ H

(hence ¬pn+1 /∈ K, pn+1 /∈ H). Then, applying RR to H, K, we obtain either
(contradicting /∈ H), or else a clause from H(i) for some i � n whose literals are
not satisfied by wn, a contradiction to wn � H(i). This confirms the claim. Thus,
wn � H(n) for all n, so that w = (v1, v2, . . .) is a model for the whole of H.

Remark 2. The foregoing proof is constructive, that is, if K �
RR

and theH(n) in the proof
above are computable, then a valuation satisfying K is computable as well. Moreover, we
incidentally proved the propositional compactness theorem for countable sets of formulas

1 The newcomer should write down all eight candidates for H(1) ⊆ {{p1}, {¬p1}, {p1,¬p1}}. Only
{p1} and {¬p1} are sensitive to v1 = wp1. At most one of these two clauses can belong to H(1).

116 4 The Foundations of Logic Programming

X once again. Here is the argument: every formula is equivalent to some KNF, and hence
X is satisfiably equivalent to a set of clauses KX . So if X is not satisfiable, the same
is true of KX . Consequently, KX �

RR
by Theorem 2.2. Therefore K0 �

RR
for some

finite subset K0 ⊆ KX , for there must be some successful resolution tree whose leaves are
collected in K0. Having this it is obvious that just a finite subset of X is not satisfiable,
namely the one that corresponds to the set of clauses K0.

A clause belonging to a propositional basic Horn formula is called a (propositional)
Horn clause. It is called positive or negative if the corresponding Horn formula is
positive or negative. Positive Horn clauses are of the form {¬q1, . . . ,¬qn, p} where
n � 0, negative of the form {¬q1, . . . ,¬qk}. The empty clause (k = 0) is also counted
among the negative ones. The affix propositional is omitted as long as we remain
within propositional logic.

It is important in practice that the resolution calculus can be formulated even
more specifically for Horn clauses. The empty clause, if it can be obtained from a
set of Horn clauses at all, can also be obtained using a restricted resolution rule,
which is applied only to pairs of Horn clauses where one component is positive and
the other negative. This is the rule of Horn resolution

HR :
K, p |L,¬p

K ∪ L
(K,L negative, p,¬p /∈ K ∪ L).

A positive Horn clause is clearly definite. Hence, the resolvent of an application

N
+1

�
��

N

�
��

P

� � �N2

�
��

N1

�
��

P1

�
��
N0

�
��

P0

of HR is uniquely determined and always nega-
tive. An H-Resolution tree is therefore of the sim-
ple form illustrated by the figure on the left. There
P0, . . . , P
 denote positive and N0, . . . , N
+1 negative
Horn clauses. Such a tree is called an H-resolution
for P, N (where P here and everywhere is taken to
mean a set of positive Horn clauses and N a negative
clause �=) if it satisfies the conditions (1) Pi ∈ P

for all i � �, and (2) N0 = N & N
+1 = . It is
evidently also possible to regard an H-resolution for
P, N as a sequence (Pi, Ni)i�
 with the properties
(0) Ni+1 = HR(Pi, Ni) for all i � �, (1), and (2).

Here HR(P,N) denotes the uniquely determined resolvent resulting from applying
HR to the positive clause P and the negative clause N .

The calculus operating with Horn clauses and rule HR is denoted by �HR . Before
proving its completeness we require a little preparation. Let P be a set of positive
Horn clauses. In order to gain an overview of all models w of P, consider the natural
correspondence w ←→ Vw := {p ∈ PV | w � p} between valuations w and subsets
of PV. Let w � w′ : ⇔ Vw ⊆ Vw′ . Clearly, P is always satisfied by the “maximal”
valuation w with Vw = PV (i.e., wp = 1 for all p ∈ PV). It is obvious that w � P if

4.2 Propositional Resolution 117

and only if V = Vw satisfies the following two conditions:
(a) p ∈ V provided {p} ∈ P,
(b) q1, . . . , qn ∈ V ⇒ p ∈ V , whenever n > 0 and {¬q1, . . . ,¬qn, p} ∈ P.

Of all subsets V ⊆ PV satisfying (a) and (b) there is obviously a smallest one, namely
VP :=

⋂
{Vw |w � P}. The P-model corresponding to VP is denoted by wP and called

the minimal P-model. We may define VP also as follows: Let V0 = {p ∈ PV | {p} ∈ P}
and Vk+1 = Vk ∪

{
p ∈ PV | {¬q1, . . . ,¬qn, p} ∈ P for some q1, . . . , qn ∈ Vk

}
. Then

VP =
⋃

k∈N Vk. Indeed, Vk ⊆ Vw for all k and all w � P. Hence,
⋃

k∈N Vk ⊆ VP. Also
VP ⊆

⋃
k∈N Vk holds, because w � P provided Vw =

⋃
k∈N Vk.

The minimal m with p ∈ Vm is termed the P-rank of p, denoted by ρ
P
p. Those p

with {p} ∈ P are of P-rank 0. The variables arising from these by applying (b) have
P-rank 1 if not already in V0, and so on.

Lemma 2.3. Let P be a set of positive Horn clauses and q0, . . . , qk ∈ VP. Then
holds P, N �HR , where N = {¬q0, . . . ,¬qk}.
Proof. For variables r0, . . . , rn ∈ VP set ρ

P
(r0, . . . , rn) := max{ρ

P
r0, . . . , ρP

rn}. Let
µ(r0, . . . , rn) be the number of i � n such that ρ

P
ri = ρ

P
(r0, . . . , rn). The claim

is proved inductively on ρ := ρ
P
(q0, . . . , qk) and µ := µ(q0, . . . , qk). First suppose

ρ = 0, i.e., {q0}, . . . , {qk} ∈ P. Then there certainly exists an H-resolution for
P, N , namely ({qi}, {¬qi, . . . ,¬qk})i�k. Now take ρ > 0 and w.l.o.g. ρ = ρ

P
q0.

Then there exist qk+1, . . . , qm ∈ VP such that P := {¬qk+1, . . . ,¬qm, q0} ∈ P and
ρ

P
(qk+1, . . . , qm) < ρ. Thus, ρ

P
(q1, . . . , qk, qk+1, . . . , qm) is < ρ, or it is = ρ so that

µ(q1, . . . , qm) < µ. By the induction hypothesis, in both cases P, N1 �
HR for

N1 := {¬q1, . . . ,¬qm}. Hence, an H-resolution (Pi, Ni)1�i�
 for P, N1 exists. But
then (Pi, Ni)i�
 with P0 := P and N0 := N is just an H-resolution for P, N .

Theorem 2.4 (on Horn resolution). A set K of Horn clauses is satisfiable if and
only if K �

HR .

Proof. The condition K �
HR is certainly necessary if K is satisfiable. For the

converse assume K is unsatisfiable, K = P∪N, all P ∈ P are positive, and all N ∈ N

negative. Since wP � P but wP � P∪N there is some N = {¬q0, . . . ,¬qk} ∈ N such
that wP � N . Consequently, wP � q0, . . . , qk and so q0, . . . , qk ∈ VP. By Lemma 2.3
we then obtain P, N �HR , and a fortiori K �HR .

Corollary 2.5. Let K = P∪N be a set of Horn clauses, all P ∈ P positive, and all
N ∈ N negative. Then the following conditions are equivalent:

(i) K is unsatisfiable, (ii) P, N is unsatisfiable for some N ∈ N.

Proof. (i) implies K �HR by Theorem 2.4. Hence, there is some N ∈ N and some
H-Resolution for P, N , whence P, N is unsatisfiable. (ii)⇒(i) is trivial.

118 4 The Foundations of Logic Programming

Thus, the investigation of sets of Horn clauses as regard satisfiability can com-
pletely be reduced to the case of just a single negative clause.

The hitherto illustrated techniques can without further ado be carried over to
quantifier-free formulas of a first-order language L, in that one thinks of the propo-
sitional variables to be replaced by prime formulas of L. Clauses are then finite sets
of literals in L. By Remark 1 in 4.1 a set of L-formulas is satisfiably equivalent to a
set of quantifier-free formulas, which w.l.o.g. are given in conjunctive normal form.
Splitting into conjuncts provides a satisfiably equivalent set of disjunctions of liter-
als. Converting these disjunctions into clauses, one obtains a set of clauses for which,
by the remark just cited, a consistency condition can be stated propositionally. Now,
because predicate-logical proofs are always reducible to the demonstration of cer-
tain inconsistencies by virtue of the equivalence of X � α with the inconsistency of
X,¬α, these proofs can basically also be carried out by resolution.

To sum up, resolution by Theorems 2.2 and 2.4 is not at all restricted to proposi-
tional logic but includes application to sets of literals of first-order languages. The
predicate logic version of of Theorem 2.2, Theorem 5.3, will essentially be reduced
to the former. Moreover, questions concerning predicate logic resolution can often
directly be treated propositionally, as indicated by the exercises below.

Before elaborating on this, we consider an additional aid to automated proof
procedures, namely unification. This will later be combined with resolution, and it
is this combination that makes automated proof procedures fast enough for modern
computers, equipped with efficient interpreters of PROLOG.

Exercises

1. Prove that the satisfiable set of clauses P = {{p3}, {¬p3, p1, p2}} does not have
a smallest model (the second clause in P is not a Horn clause).

2. Let pm,n,k for m, n, k ∈ N be propositional variables, S the successor function,
and P the set of all clauses belonging to the following Horn formulas:

pm,0,m ; pm,n,k → pm,Sn,Sk (m, n, k ∈ N).2

Let the standard model wSt be defined by wSt � pm,n,k ⇔ m + n = k. Show
that the minimal model wP coincides with wSt.

3. Let P be the set of Horn clauses of Exercise 2. Prove that

(a) P,¬pn,m,n+m �
HR , (b) P,¬pn,m,k �

HR ⇒ k = n + m.

(a) and (b) together can be stated as (c) P,¬pn,m,k �
HR ⇔ k = n + m.

2 In 4.4 these formulas will be interpreted as the ground instances of a logic program for computing
the sum of two natural numbers.

4.3 Unification 119

4.3 Unification
A decisive aid in logic programming is unification. This notion is meaningful for any
set of formulas, but we confine ourself to ¬-free clauses K �= of an identity-free
language. K contains only unnegated prime formulas, each starting with a relation
symbol. Such a clause K is called unifiable if a substitution σ exists, a so-called
unifier of K, such that Kσ := {λσ | λ ∈ K} contains exactly one element; in other
words, Kσ is a singleton. Here σ is the easiest be understood as a simultaneous
substitution, that is, σ is globally defined and xσ = x for almost all variables x.
Simultaneous substitutions form a semigroup with respect to composition, with the
neutral element ι (see page 48), a fact we will heavily make use of.

Example 1. Consider K = {rxfxz, rfyzu}, r and f binary. Here ω = fyz
x

ffyzz
u is

a unifier: Kω = {rfyzffyzz}, as is readily confirmed. Clearly, ω as a composition
of simple substitutions can also be understood as a global substitution.

Obviously, a clause containing prime formulas that start with distinct relation
symbols is not unifiable. A further obstacle to unification is highlighted by

Example 2. Let K = {rx, rfx} (r, f unary). Assume (rx)σ = (rfx)σ. This clearly
implies rxσ = rfxσ and hence xσ = fxσ, which is impossible, since no term can be
a proper subterm of itself. Hence, K is not unifiable.

If σ is a unifier then so too is στ for any substitution τ . Call ω a generic or a
most general unifier of K if any other unifier τ of K has a representation τ = ωσ

for some substitution σ. By Theorem 3.1 below, each unifiable clause has a generic
unifier. For instance, it will turn out below that ω in Example 1 is generic.

A renaming of variables, a renaming for short, is for the sake of simplicity a
substitution ρ such that ρ2 = ι. This definition could be rendered more generally,
but it suffices for our purposes. ρ is necessarily bijective and maps variables to
variables. If x ρ

i = yi (�= xi) and hence y ρ
i = xi for i = 1, . . . , n, and zρ = z otherwise,

that is, if ρ swaps the variables xi and yi, we shall write ρ =
(

x1···xn
y1···yn

)
.

If ω is a generic unifier of K then so too is ω′ = ωρ, for any renaming ρ. Indeed,
for any given unifier τ of K there is some σ such that τ = ωσ. For σ′ := ρσ then
τ = ωρ2σ = (ωρ)(ρσ) = ω′σ′. Choosing in Example 1 for instance ρ :=

(
y z
u v

)
, we

obtain the generic unifier ω′ = ωρ for K, with Kω′ = {rfuvffuvv}.
We now consider a procedure in the form of a flow diagram, the unification al-

gorithm, denoted by U. It checks each nonempty clause K of prime formulas of an
identity-free language for unifiability, and in the positive case it produces a generic
unifier. U uses a variable σ for substitutions and a variable L for clauses, with initial
values ι and K, respectively. Later on, L contains Kσ for suitable σ, which depends
on the state of the procedure.

120 4 The Foundations of Logic Programming

INPUT L := K. Do all α ∈ K
have the same startsymbol ?

no

no

no

OUTPUT: “K cannot
be unified”

�
yes

yes

yes

yes

OUTPUT: “K is unifiable
with the generic unifier σ”

Choose α1 �= α2 from L and
determine the first distinction
letters ζ1 in α1 and ζ2 in α2.

Is ζ1 or ζ2 a variable?

Let w.l.o.g. ζ1 = x ∈ Var and
t the subterm of α2 begining
with ζ2. Is x ∈ var t ?

�

σ := σ t
x

L := Kσ

�
�

�
	

�
�

�
	

�

�

�

�Is L a singleton?
�� ��

�

�

�

�

�

�

no

The first distinction letters of two strings are the first symbols, read from the left,
that distinguish the strings. The first letter of α ∈ L is a relation symbol. By
Exercise 1 in 2.2, any further symbol ζ in α determines uniquely at each position
of its occurrence a subterm of α whose initial symbol is ζ. The diagram has just
one (thick-lined) loop that starts and ends in the test “Is L a singleton?”. It runs
through the operation σ := σ t

x , L := Kσ which first assigns a new value to σ and
then to L. This reduces the number of variables in L since x /∈ var L because of
x /∈ var t. Therefore, U stops in any case and halts in one of the two OUTPUT
boxes of U. But we do not yet know whether U always ends up in the “right” box,
i.e., whether U answers correctly. The final value σ is printed in the lower OUTPUT
box. Let σ0 := ι and σi for i > 0 the value of σ after the ith run through the loop.

Example 3. Let U be executed on K from Example 1. The first distinction letters
of the two members α1, α2 ∈ K are ζ1 = x and ζ2 = f at the second position. The
subterm beginning with ζ2 in α2 is t = fyz. Hence σ1 = fyz

x , and after the first run
through the loop with σ := σ1, we have Kσ = {rfyzffyzz, rfyzu}. Here the first
distinction letters are f and u. The subterm beginning with f (at position 5) is
t = ffyzz. Since u /∈ var ffyzz, the loop is run through once again and we obtain
σ2 = σ1

ffyzz
u = fyz

x
ffyzz

u . This is a unifier, and U comes to a halt with OUTPUT
“K is unifiable with the generic unifier fyz

x
ffyzz

u ” according to Theorem 3.1.

Theorem 3.1. The unification algorithm U is sound, i.e., upon input of a negation-
free clause K it always answers correctly.3 U unifies with a generic unifier.

Proof. This is obvious if two elements of K are already distinguished by the first
letter. Assume therefore that all α ∈ K begin with the same letter. If U stops
3 The proof will be a paradigm for a correctness proof of an algorithm. It almost always has to be
carried out inductively on the number of runs through a loop occurring in the algorithm.

4.3 Unification 121

with the output “K is unifiable...,” K is in fact unifiable, since it must have been
previously verified that L = Kσ is a singleton. Converely, it has to be shown that
U also halts with the correct output provided K is unifiable. The latter will be our
assumption till the end of the proof, along with the choice of an arbitrary unifier τ

of K. Let i (= 0, . . . , m) denote the moment after the ith run through the loop has
been finished. i = 0 before any run. i = m after the last run is complete, in which
U gets again the question “Is L a singleton?”. We will show inductively on i that

(∗) there exists a substitution τi with σiτi = τ (i = 0, . . . , m).
This is trivial for i = 0: choose simply τ0 = τ , so that σ0τ0 = ιτ = τ . Suppose (∗)
holds for i < m. Then Kσiτi = Kτ is a singleton, but Kσi still contains two distinct
formulas α1, α2 with x at some position in α1 and t a term in α2 starting at the
same position in α2. From ατi

1 = ατi
2 (note that ατi

1 , ατi
2 ∈ Kσiτi = Kτ and Kτ is a

singleton) we get xτi = tτi . Hence, x /∈ var t, for otherwise xτi would be a proper
subterm of itself. Set τi+1 := t

x τi. Then t
x τi+1 = τi. Indeed, for y �= x we obtain

y
t
x τi+1 = yτi+1 = y

t
x τi = yτi , but in view of xτi = tτi we have also

x
t
x τi+1 = tτi+1 = t

t
x τi = tτi (since x /∈ var t)

= xτi .
t
x τi+1 = τi and σi+1 = σi

t
x yield the induction claim σi+1τi+1 = σi

t
x τi+1 = σiτi = τ .

Next we show that L = Kσm is a singleton. Assume that this is not the case and
choose α1, α2 ∈ L as in the diagram. Then the upper right test is answered “yes”
since otherwise ζ1, ζ2 would be distinct function symbols or constants not removable
by any substitution. This contradicts ατm

1 = ατm
2 . However, the lower right question

is answered “no,” because α1 starts at the first distinction position with x, hence ατm
1

with xτm , and ατm
2 (= ατm

1) with tτm . Therefore, xτm = tτm which implies x /∈ var t.
Thus, the loop runs through once again which contradicts the definition of m; hence
σm is indeed a unifier, that is, U terminates correctly in the unfiable case as well.
Moreover, σm is a generic unifier, because σmτm = τ by (∗), with the arbitrarily
chosen unifier τ . This completes the proof.

Exercises

1. Show that for prime formulas α, β without shared variables are equivalent

(i) {α, β} is unifiable, (ii) there are substitutions σ, τ such that ασ = βτ .

2. Show: σ = �t
�x is idempotent (which is to mean σ2 = σ) if and only if xi /∈ var tj,

for all i, j with 1 � i, j � n.

3. For clauses K0, K1 we term ρ a separator of K0, K1 if ρ is a renaming such
that var Kρ

0 ∩ var K1 = ∅. Let K0, K1 be negation-free. Show that if K0 ∪K1

is unifiable then so is Kρ
0 ∪K1, but not conversely, in general.

122 4 The Foundations of Logic Programming

4.4 Logic Programming

A rather general starting point in dealing with systems of artificial intelligence con-
sists in using computers to draw consequences ϕ from certain data and facts given
in the form of a set of formulas X, that is, proving X � ϕ mechanically. That this is
possible in theory was the subject of 3.5. In practice, however, such a project is in
general realizable only under certain limitations regarding the pattern of the formu-
las in X and ϕ. These limitations refer to any first-order language L adapted to the
needs of the particular problem. For logic programming the following restrictions
are characteristic:
• L is identity-free and contains at least one constant symbol,

• each α ∈ X is a positive universal Horn sentence,

• ϕ is a sentence of the form ∃�x(γ0 ∧ · · · ∧γk) with prime formulas γi.
Note that ¬ϕ is equivalent to ∀�x(¬γ0 ∨ · · · ∨ ¬γk) and hence a negative universal

Horn sentence. Because ∀-quantifiers can be distributed among conjunctions, we
may assume w.l.o.g. that each sentence α ∈ X is of the form

(∗) (β1 ∧ · · · ∧βm → β)G (β, β1, . . . , βm prime formulas, m � 0).
A finite set of sentences of this type is called a logic program and will henceforth

be denoted by the letter P . The availability of a constant symbol just ensures the
existence of a Herbrand model for P . In the programming language PROLOG, (∗)
is written without quantifiers in the following way:

β :− β1, . . . , βm (or just β :− in case m = 0).
:− symbolizes converse implication mentioned in 1.1. For m = 0 such program

clauses are called facts, and for m > 0 rules. In the following we make no distinction
between a logic program as a set of formulas and its transcript in PROLOG. The
sentence ϕ = ∃�x(γ0 ∧ · · · ∧γk) in the last item above is also called a query to P .
In PROLOG it is mostly denoted by :− γ0, . . . , γk.4 ∃�x may also be empty. The
origin of this notation lies in the equivalence of the kernel ¬γ0 ∨ · · · ∨ ¬γk of
¬ϕ ≡ ∀�x(¬γ0 ∨ · · · ∨ ¬γk) to ⊥← γ0 ∧ · · · ∧γk, omitting the writing of ⊥.

Using rules one proceeds from given facts to arrive not only at new facts but also at
answers to queries. The restriction as regards the formulas in P and the abstinence
from ==== is not really essential. This will become clear in Examples 1 and 4 and in
the considerations of this section. Whenever required, ==== can be treated as a binary
relation symbol by adjoining the Horn sentences (4) in 4.1.

4 Sometimes also ?− γ0, . . . , γk. Like many programming languages, PROLOG also has numerous
“dialects.” We shall therefore not consistently stick to a particular syntax. We also disregard
many details, for instance that variables always begin with capital letters and that PROLOG
recognizes certain unchanging predicates like read, . . . , to provide a convenient user interface.

4.4 Logic Programming 123

Program clauses and negated queries can equally well be written as Horn clauses:
β :− β0, . . . , βm as {¬β1, . . . ,¬βn, β}, and :− γ0, . . . , γk as {¬γ0, . . . ,¬γk}. For a
logic program P , the corresponding set of positive Horn clauses is denoted by P.
Confusing P and P is nearly always harmless, because the two can almost always
be identified. To justify this semantically, let A � K for an L-structure A and
K = {λ0, . . . , λk} simply mean A �

∨
i�k λi which is equivalent to A � (

∨
i�k λi)G.

For L-modelsM, letM � K have its ordinary meaningM �
∨

i�k λi.
The empty clause corresponds to ⊥, so that always A � . If an A � K exists for

all K ∈ K, then A is called a model for K and K is called satisfiable or consistent,
since this is equivalent to the consistency of the sets of sentences corresponding to
K. Further let K � H if every model for K also satisfies H. Evidently K � Kσ for
K ∈ K and arbitrary substitutions σ, since A � K ⇒ A � Kσ. The clause Kσ is
also termed an instance of K, in particular a ground instance if var Kσ = ∅.

A logic program P , considered as a set of positive Horn formulas, is always con-
sistent. All facts and rules of P are valid in the minimal Herbrand model CP , which
should be thought of as the model of a domain of objects about which one wishes
to express properties by means of sentences using P . A logic program P is always
written such that a real situation is modeled as precisely as possible by CP .

Suppose P � ∃�xγ. Then a central goal is obtaining solutions of the latter, in
particular in CP which by Theorem 1.4 always exist. Here γ

�t
�x is called a solution of

P � ∃�xγ whenever P � γ
�t
�x . One also speaks of the solutions �t

�x or �x := �t .
Logic programming follows the strategy of proving P � ϕ for a query ϕ by estab-

lishing the inconsistency of P ,¬ϕ. To verify this we know from Theorem 1.1 that
an inconsistency proof of GI(P,¬ϕ) suffices. The resolution theorem shows that
for this proof in turn, it suffices to derive the empty clause from the set of clauses
GI(P, N) corresponding to GI(P ,¬ϕ). Here GI(K) generally denotes the set of all
ground instances of members of a set K of clauses, and N = {¬γ1, . . . ,¬γn} is the
negative clause corresponding to the query ϕ, the so-called goal clause.

As a matter of fact, we proceed somewhat more artfully and work not only with
ground instances but also with arbitrary instances. Nor does the search for resolu-
tions take place coincidentally or arbitrarily, but rather with the most sparing use of
substitutions possible for the purpose of unification. Before the general formulation
of Theorem 4.2, we exhibit this method of “unified resolution” by means of two easy
examples. In the first of these, sum denotes the graph of addition in N.

Example 1. We consider the following logic program P = P+ in L{0, S, sum}:
∀xsum x0x ; ∀x∀y∀z(sum xyz → sum xSySz).

In PROLOG one may write this program slightly shorter as follows:
sum x0x :− ; sum xSySz :− sum xyz.

124 4 The Foundations of Logic Programming

The first program clause is a “fact,” the second one is a “rule.” The set of Horn
clauses corresponding to P is P = {{sum x0x}, {¬sum xyz, sum xSySz}}. P de-
scribes indeed sum = graph + in N; more precisely, CP � N := (N, 0, S, sum), that
is, CP � sum m n k ⇔ N � sum m n k (⇔ m + n = k). This is deduced similarly
as in Example 5 on page 111, but more directly from Exercise 2 in 4.2. By replac-
ing therein pm,n,k with sum m n k, the set of formulas of this exercise corresponds
precisely to the ground instances of P+.

Examples of queries to P are ∃u∃v sum u1v, ∃usum uu6, and sum n 2 n + 2 (here
the ∃-prefix is empty). For each of these three queries ϕ clearly holds CP � ϕ. Hence,
P � ϕ by Theorem 1.4. But how can this be confirmed by a computer?

As an illustration, let ϕ := ∃u∃v sum u1v. Clearly, (u, v) := (n, Sn) is a solution of

(∗) P � ∃u∃v sum u1v.

We will show that P � sum x1Sx where x occurs free in the last formula, is the
general solution of (∗). The inconsistency proof of P ,¬ϕ results by deriving
from suitable instances of P, N which will be constructed by certain substitutions.
N := {¬sum u1v} is the goal clause corresponding to ϕ.

The resolution rule is not directly applicable to P, N . But with ω0 := u
x

0
y

Sz
v it

is applicable to P ω0 , Nω0 , with the Horn clause P := {¬sum xyz, sum xSySz} ∈ P.
Indeed, one easily confirms P ω0 = {¬sum u0z, sum u1Sz} and Nω0 = {¬sum u1Sz}.
The resolvent of the pair of Horn clauses P ω0 , Nω0 is N1 := {¬sum u0z}. This can
be stated as follows: Application of RR became possible thanks to the unifiability
of the clause {sum xSySz, sum u1v}, where ¬sum xSySz belongs to P and ¬sum u1v
to N . But we have still to continue to try to get the empty clause.

Let P1 := {sum x0x} ∈ P. Then P1, N1 can be brought to resolution by unifica-
tion with ω1 := x

u
x
z . This is because P ω1

1 = {sum x0x} and N ω1
1 = {¬sum x0x}.

¬sum u0z

�
�

��
sum x0x

ω1 = x
u

x
z

¬sum u1v

�
�

��
¬sum xyz, sum xSySz

ω0 = u
x

0
y

Sz
v

Now, simply apply RR to this pair of
clauses to obtain . The figure on the
left renders this description more intu-
itive. The set braces of the clauses have
been omitted in the figure. This reso-
lution can certainly be produced by a
computer; the computer has just to look
for appropriate unifiers!

With the above, (∗) is proved by Theorem 4.2(a) below. At the same time, by
Theorem 4.2(b), we got a solution of (∗), namely (sum u1v)ω0 ω1 = sum x1Sx. The
latter is in our example a most general solution, because by substitution one can
obtain from sum x1Sx all individual solutions, namely all sentences sum n 1 Sn.

4.4 Logic Programming 125

Example 2. The logic program P = {∀x(hu x → mt x), hu Socr} formalizes the two
premises of the old classical Aristotelian syllogism All humans are mortal; Socrates

¬hu x

�
�
��

hu Socr
σ= Socr

x

¬mt x

�
�
��

¬hu x, mt x

is a human. Hence, Socrates is mortal.
Here CP is the one-point model {Socr}
because Socr is the only constant and
no functions occur. The figure on the
right shows a resolution of the query
:− mt x, with the solution x := Socr;
see also Theorem 4.2(b). The predicate
logic argument would run as follows:
∀x(hu x → mt x) implies hu Socr → mt Socr by specification. Thus, since hu Socr, MP
yields mt Socr. Proofs using MP can therefore also be gained by resolution.

Of course, the above examples are far too simple to display the efficiency of logic
programming. Here we are interested only in illustrating the methods involved.

Following these preliminary considerations we now generalize these and start with
the following definition. Its complicated look is no hindrance for programming.

Definition of the derivation rules UR and UHR of unified resolution and of unified
Horn resolution, respectively. Suppose K0, K1 are clauses and ω is any substitution.
Define K ∈ UωR(K0, K1) if there are clauses H0, H1 and ¬-free clauses G0, G1 �=
such that after a possible swapping of the two indices,

(a) K0 = H0 ∪G0 and K1 = H1 ∪G1 (G1 = {λ | λ ∈ G1}),
(b) ω is a generic unifier of G0 ∪G1 and K = H ω

0 ∪H ω
1 .

K is called a U -resolvent of K0, K1 or an application of the rule UR to K0, K1 if
K ∈ UωR(Kρ

0 , K1) for some ω and separator ρ of K0, K1.5 The restriction of UR to
Horn clauses K0, K1 (K0 positive, K1 negative) is denoted by UHR and UωR(K0, K1)
by UωHR(K0, K1). The resolvent K is then termed a UH-resolvent of K0, K1.

Note that by (b), Gω
0 = {π} = Gω

1 for some prime formula π; hence K results from
applying RR or HR, respectively. Applying UR or UHR to K0, K1 always includes
a choice of ω and ρ. In the examples we used UHR. In the first resolution step
of Example 1, ¬sum u0z ∈ Uω0HR(P ρ, N) (with ρ = ι). The splitting of K0 and
K1 according (a) above reads H0 = {¬sum xyz}, G0 = {sum xSySz}, and H1 = ∅,
G1 = {sum u1v}. UHR was used again in the second resolution step, as well as in
Example 2, strictly following the above definition instructions.

We write K �UR
H if H is derivable from the set of clauses K using UR. Accordingly

let K �UHR
H be defined for sets of Horn clauses K, where only UHR is used. Just as

in propositional logic, derivations in �UR or �UHR can be visualized by means of trees.
5 Using a separator is more general than demanding just K ∈ UωR(K0, K1); see Exercise 1.

126 4 The Foundations of Logic Programming

A (successful) U-Resolution for K is just a U -resolution tree with leaves in K and
root , the empty clause.

A UH-resolution is defined similarly; it may as well be regarded as a sequence
(P ρi

i , Ni, ωi)i�
 with Ni+1 ∈ Uωi
HR(P ρi

i , Ni) for i < � and ∈ Uω�
HR(P ρ�

 , N
). If P

is a set of positive clauses and N a negative clause, and if further Pi ∈ P holds for

�
��

N

�
��

P ρ�

ω�

� � �N2

�
��ω1

N1

�
��

P ρ1
1

�
��
N0

ω0
�
��

P ρ0
0

all i � � and N0 = N , one speaks of
a UH-resolution for P, N . In general, P

consists of the clauses of some logic pro-
gram and N is a given goal clause. In
place of UH-resolution one may also speak
of SLD-resolution (Linear resolution with
Selection function for Definite clauses).
This name has nothing to do with some
special strategy for searching a successful
resolution, implemented in PROLOG. For
details on this matter see for instance [Ll].
The figure on the left illustrates a UH-

resolution (P ρi

i , Ni, ωi)i�
 for P, N . It obviously generalizes the diagrams in the
Examples 1 and 2, which are UH-resolutions as we know.

First of all we prove the soundness of the calculus �UR. Note that this also covers
the calculus �UHR of unified Horn resolution with its more special clauses.

Lemma 4.1 (Soundness lemma). K �UR
H implies K � H.

Proof. It suffices to show that K0, K1 � H if H is a U -resolvent of K0, K1. Let
H ∈ UωR(Kρ

0 , K1), Kρ
0 = H0 ∪G0, K1 = H1 ∪G1, Gω

0 = {π} = Gω
1 , H = Hρω

0 ∪Hω
1 ,

and A � K0, K1, so that A � Kρω
0 , Kω

1 as well. Further, let w : Var → A, with
M := (A, w) � Kρω

0 = Hρω
0 ∪ {π}, M � Hω

1 ∪ {¬π}. If M � π then evidently
M � Hρω

0 . Otherwise M � ¬π, hence M � Hω
1 . So M � Hω

0 ∪ Hω
1 = H in any

case. This states that A � H, because w was arbitrary.

With respect to the calculus �UHR this lemma serves the proof of (a) in

Theorem 4.2 (Main theorem of logic programming). Let P be a logic program,
∃�xγ a query, γ = γ0 ∧ · · · ∧γk, and N = {¬γ0, . . . ,¬γk}. Then the following hold:

(a) P � ∃�xγ iff P, N �UHR (Adequacy),

(b) Let (P ρi

i , Ni, ωi)i�
 be any UH-resolution for P, N and ω := ω0 · · ·ω
, then
P � γω (Solution soundness),

(c) Let P � γ
�t
�x

with �t ∈ T n
0 . Then there exists a UH-resolution (Kρi

i , Ni, wi)i�

and some τ such that xωτ
i = ti for i = 1, . . . , n, where ω := ω0 · · ·ω
 (Solution

completeness).

4.4 Logic Programming 127

The proof, based on a substantial number of substitutions, is undertaken in 4.5.
Here are just a few comments. Since ¬∃�xγ ≡ ∀�x¬γ it is obvious that

(∗) P � ∃�xγ

is equivalent to the inconsistency of P ,∀�x¬γ, hence also to that of the corresponding
set of Horn clauses P, N . Theorem 4.2(a) states that this is equivalent to P, N �UHR ,
which is not obvious. (b) tells us how to achieve a solution of (∗) by a successful reso-
lution. Since γω in (b) may still contain free variables (like (sum u1v)ω = sum x1Sx
for ω = ω1ω2 in Example 1) and since P � γω ⇒ P � γωτ for any τ , one often
obtains whole families of solutions of (∗) in the Herbrand model CP by substituting
ground terms. By (c), all solutions in CP are gained in this way. However, the
theorem makes no claim as to whether and in what circumstances (∗) is solvable.

Logic programming is also expedient for purely theoretical purposes. For instance,
it can be used to make the notion of computable functions on N more precise. The
definition below provides just one of many similarly styled, intuitively illuminating
possibilities. We will construct an undecidable problem (Theorem 4.3 below) that
explains the difficulties surrounding a general answer to the question P � ∃�xγ.
Because in 6.1 computable functions are equated with recursive functions, we keep
things fairly brief here.

Definition. f : Nn → N is called computable6 if there is a logic program P (= Pf)
in a language that, in addition to 0 and S, contains only relation symbols, including
a symbol denoted by rf (to mean graph f), such that for all �k and m,

(1) P � rf�k m ⇔ f�k = m
(
�k = (k1, . . . , kn)

)
.

The domain of the Herbrand model CP is N and P � rf�k m ⇔ CP � rf�k m by
Theorem 1.4, so that (1) holds when just the following claim has been proved:

(2) CPf
� rf�k m ⇔ f�k = m, for all �k, m.

A function f : Nn → N satisfying (1) is certainly computable in the intuitive sense:
a deduction machine is set to list all formulas provable from P , and one simply has to
wait until a sentence r�k m appears. Then m = f�k is computed. By Theorem 4.2(a),
the left-hand side of (1) is equivalent to P, {¬r�k m} �UHR . Therefore, f is basically
also computable with the resolution calculus.

Example 3. The program P = P+ in Example 1 computes +, or more precisely,
graph +. Indeed, CP � sum k n m ⇔ k + n = m as was shown there. So (2) holds
and hence also (1). A logic program P× for computing prd := graph · arises from
P+ by adding to the program of P+ the following two program clauses:

prd x00 :− ; prd xSyu :− prd xyz, sum zxu.

6 By grounding the notion of computability in different terms one could f provisionally call LP -
computable. Our definition is equivalent to that in 6.1, but we will not make full use of this.

128 4 The Foundations of Logic Programming

Example 4. The program PS, consisting of the single fact rS xSx :− , computes the
graph rS of the successor function. Clearly, PS � rS nSn, since PS, {¬rS nSn} �UHR

(notice that is a resolvent of {rS xSx}σ and {¬rS nSn}σ with σ = Sn0
x). Let m �= Sn.

Then (N, 0, S, graph S) � PS,¬rS n m; hence PS � rS n m. This proves (1).

It is not difficult to recognize that each recursive function f can be computed by a
logic program Pf in the above sense in a language that in addition to some relation
symbols contains only the operation symbols 0, S. Exercises 2 and 3 are steps in the
proof, which proceeds by induction on the generating operations Oc, Op, and Oµ

of recursive functions from 6.1. Example 4 confirms this for the recursive initial
function S. The interested reader should study 6.1 to some extend to understand
what is going on. Thus, the concept of logic programming is very comprehensive. On
the other hand, this has the consequence that the question P � ∃�xγ is, in general,
not effectively decidable. Indeed, this is the assertion of our next theorem.

Theorem 4.3. A logic program P exists whose signature contains at least a binary
relation symbol r, but no operation symbols other than 0, S, so that no algorithm
answers the question P � ∃x rxk for each k.

Proof. Let f : N→ N be recursive, but ran f = {m ∈ N | ∃kfk = m} nonrecursive.
Such a function f exists; see Exercise 4 in 6.5. Then we get for P := Pf ,

P � ∃x rxm ⇔ CP � ∃x rxm (Theorem 1.4, r stands for rf)
⇔ CP � rk m for some k (CP has the domain N)
⇔ fk = m for some k

(
by (2)

)
⇔ m ∈ ran f.

Thus, if the question P � ∃x rxm were decidable then so too would be the question
m ∈ ran f , and this is a contradiction to the choice of f .

Exercises

1. Let H ∈ UωR(K0, K1). Show that H is a U -resolvent of K0, K1 according to
the definition, that is, there exists a (generic) ω′ and a separator ρ of K0, K1

such that H ∈ Uω′R(Kρ
0 , K1). The converse need not hold.

2. Let g : Nn → N and h : Nn+2 → N be computable by means of the logic pro-
grams Pg and Ph, and let f : Nn+1 → N arise from g, h by primitive recursion,
i.e., f(�a, 0) = g�a and f(�a, k + 1) = h(�a, k, f(�a, k)) for all �a ∈ Nn. Provide a
logic program for computing (the graph of) f .

3. Let Ph and Pgi
be logic programs for computing h : Nm → N and gi : Nn → N

(i = 1, . . . , m). Further let f be defined by f�a = h(g1�a, . . . , gm�a) for all �a ∈ Nn.
Give a logic program for computing f .

4.5 Proof of the Main Theorem 129

4.5 Proof of the Main Theorem

While we actually require the following Lemma and Theorem 5.3 below only for
the unified Horn resolution, the proofs are carried out here for the more general
U-resolution. The calculi �RRand �HR from 4.2 are given henceforth with respect to
variable-free clauses of a fixed identity-free language.

Lemma 5.1. Let K0, K1 be clauses with separator ρ and let Kσ0
0 , Kσ1

1 be variable-
free. Suppose K is a resolvent of Kσ0

0 , Kσ1
1 . Then there exist substitutions ω, τ and

some H ∈ UωR(Kρ
0 , K1) such that Hτ = K, i.e., K is a ground instance of some

U-resolvent of K0, K1. Further, for a given finite set V of variables, ω, τ can be
selected such that xωτ = xσ1 for all x ∈ V . The same holds for Horn resolution.

Proof. Suppose w.l.o.g. Kσ0
0 = L0, π and Kσ1

1 = L1,¬π for some prime formula π,
and K = L0 ∪ L1. Let Hi := {α ∈ Ki | ασi ∈ Li}, G0 := {α ∈ K0 | ασ0 = π} and
G1 := {β ∈ K1 | βσ1 = π}, i = 0, 1. Then K0 = H0 ∪G0, K1 = H1 ∪G1, Hσi

i = Li,
Gσi

i = {π}. Let ρ be a separator of K0, K1 and define σ by xσ = xρσ0 in case
x ∈ var Kρ

0 , and xσ = xσ1 otherwise. Then Kρσ
0 = Kρρσ0

0 = Kσ0
0 (consider ρ2 = ι),

along with Kσ
1 = Kσ1

1 . This leads to (Gρ
0 ∪ G1)σ = Gρσ

0 ∪ Gσ
1 = Gσ0

0 ∪ Gσ1
1 = {π},

that is, σ unifies Gρ
0 ∪ G1. Let ω be a generic unifier of this clause so that σ = ωτ

for suitable τ . Then H := Hρω
0 ∪Hω

1 ∈ UωR(Kρ
0 , K1) by definition of the rule UR.

Furthermore Hτ = K, since Kρσ
0 = Kσ0

0 . Then ωτ = σ and Kσ
1 = Kσ1

1 yield
Hτ = Hρωτ

0 ∪Hωτ
1 = Hρσ

0 ∪Hσ
1 = Hσ0

0 ∪Hσ1
1 = L0 ∪ L1 = K.

V being finite, ρ can be chosen such that V ∩ var Kρ
0 = ∅. By definition of σ and by

virtue of σ = ωτ it then follows that xωτ = xσ = xσ1 also for x ∈ V .

Lemma 5.2 (Lifting lemma). Suppose GI(K) �RR for some set of clauses K.
Then also K �UR . If K consists of Horn clauses only, then K �UHR .

Proof. We prove the claim If GI(K) �RR
K then exist H and σ with K �UR

H and
K = Hσ. For K = is this the lemma (remember that σ =). Our claim follow
straightforwardly by induction on GI(K) �RR

K; it is clear for K ∈ GI(K), and for
the inductive step (GI(K) �RR

K0, K1 and K is a resolvent of K0, K1) one merely
requires Lemma 5.1. The case for Horn clauses is completely similar.

Theorem 5.3 (U-resolution theorem). A set of clauses K is inconsistent iff
K �UR ; a set of Horn clauses K is inconsistent iff K �UHR .

Proof. If K �UR then K � by Lemma 4.1, hence K is inconsistent. Suppose
now the latter, so that the set U of ∀-sentences corresponding to K is inconsistent
as well. Then GI(U) is inconsistent according to Theorem 1.1, hence GI(K) as well.
Thus, GI(K) �RR by Theorem 2.2 and so K �UR by Lemma 5.2. For sets of Horn
clauses the proof runs similarly using the above lemma and Theorem 2.4.

130 4 The Foundations of Logic Programming

Proof of Theorem 4.2. (a): P � ∃�xγ is equivalent to the inconsistency of P ,∀�x¬γ

or of P, N . But this, by Theorem 5.3, is the same as saying P, N �UHR .
(b): Proof by induction on the length � of a successful UH-resolution (P ρi

i , Ni, ωi)i�

for P, N . Let � = 0, so that ∈ UωHR(P ρ
0 , N) for suitable ρ, ω. Then ω unifies

P ρ
0 ∪ N = P ρ

0 ∪ {γ0, . . . , γk}, i.e., P ρω
0 = {π} = γω

i for some prime formula π and
all i � k. By virtue of P0 ∈ P we obtain P � γω

i (= π) for each i � k, and so
P � γω

0 ∧ · · · ∧γω
k = γω as claimed. Now let � > 0. Then (P ρi

i , Ni, ωi)1�i�
 is a
UH-resolution for P, N1 as well. By the induction hypothesis,

(1) P � αω1···ω� whenever ¬α ∈ N1 .

It suffices to verify that P � γω
i for all i � k. To this end we distinguish two cases

for given i: if ¬γω0
i ∈ N1 then P � (γω0

i)ω1···ω� by (1), hence P � γω
i . Now suppose

¬γω0
i /∈ N1. Then γω0

i disappears in the resolution step from P ρ0
0 , N0 (= N) to N1.

So P0 takes the form P0 = {¬β1, . . . ,¬βm, β} where βρ0ω0 = γω0
i and ¬βρ0ω0

j ∈ N1

for j = 1, . . . , m. Thus (1) evidently yields P � (βρ0ω0
j)ω1···ω� , hence P �

∧m
j=1 βρ0ω

j .
At the same time P �

∧m
j=1 βρ0ω

j → βρ0ω because of P � P ρ0ω
0 . Using MP we then

obtain P � βρ0ω. From βρ0ω0 = γω0
i and an application of ω1 · · ·ω
 to both sides we

obtain βρ0ω = γω
i , thus proving P � γω

i also in the second case.
(c): Let P � γσ such that σ := �t

�x . Then P ,¬γσ is inconsistent, and by Theorem 1.1
so too is P′,¬γσ where P′ := GI(P) (consider GI(¬γσ) = {¬γσ}). According to
Theorem 2.4, there is an H-resolution B = (P ′

i , Qi)i�
 for P′, Nσ, that is, Q0 = Nσ.
Here let, say, P ′

i = P σi
i for appropriate Pi ∈ P and σi. From this we obtain

(2) for finite V ⊆ Var there exist ρi, Ni, ωi, τ such that (P ρi

i , Ni, ωi)i�
 is a UH-
resolution for P, N , and xω τ = xσ for ω := ω0 · · ·ω
 and all x ∈ V .

This completes our reasoning, since (2) yields (for V = {x1, . . . , xn}) xω τ
i = xσ

i = ti
for i = 1, . . . , n, whence (c). For the inductive proof of (2) look at the first resolution
step Q1 = HR(P ′

0, Q0) in B. By Lemma 5.1 choose ω0, ρ0, τ0, H (where K0 := P0,
K1 := N0 = N , σ1 := σ) in such a way that H ∈ UωHR(P ρ0

0 , N0) and Hτ0 = Q1, as
well as xω0τ0 = xσ for all x ∈ V . If � = 0, that is, Q1 = , then also H = and
(2) is proved with τ = τ0. Now suppose � > 0. For the H-resolution (P ′

i , Qi)1�i�

for P′, Q1 and for V ′ := var {xω0 | x ∈ V } there exist by the induction hypothesis
ρi, Ni, ωi for i = 1, . . . , � and some τ , such that (P ρi

i , Ni, ωi)1�i�
 is a UH-resolution
for P, H and simultaneously yω1···ω�τ = yτ0 for all y ∈ V ′ (instead of Q0 = Nσ here
Q1 = Hτ0). Because of var xω0 ⊆ V ′ and xω0τ0 = xσ for x ∈ V we get

(3) xωτ = (xω0)ω1···ω�τ = xω0τ0 = xσ, for all x ∈ V .
(P ρi

i , Ni, ωi)i�
 is certainly a UH-resolution. Moreover, by virtue of (3), in addition
xωτ

i = xσ
i for i = 1, . . . , n. This proves (2), hence (c), and completes the proof of the

main theorem.

Chapter 5

Elements of Model Theory

Model theory can be seen as applied mathematical logic. Here the techniques devel-
oped in mathematical logic are combined with construction methods of other areas
(such as algebra and analysis) to their mutual benefit. The following demonstra-
tions can provide only a first glimpse in this respect, a deeper understanding being
gained, for instance, from [CK] or [Ho]. For further-ranging topics, such as saturated
models, stability theory, and the model theory of languages other than elementary
ones, we refer to the special literature, [Bue], [Mar], [Pz], [Rot], [Sa], [Sh].

The theorems of Löwenheim and Skolem were first formulated in the generality
given in 5.1 by Tarski. These and the compactness theorem form the basis of model
theory, a now wide-ranging discipline that arose around 1950. Key concepts of model
theory are elementary equivalence and elementary extension. These are not only
interesting in themselves but also have multiple applications to model constructions
in set theory, nonstandard analysis, algebra, geometry and elsewhere.

Complete axiomatizable theories are decidable; see 3.5. The question of decidabil-
ity and completeness of mathematical theories and the development of well-honed
methods that solve these questions have always been a driving force for the fur-
ther development of mathematical logic. Of the numerous methods, we introduce
here the most important: Vaught’s test, Ehrenfeucht’s game, Robinson’s method of
model completeness, and quantifier elimination. For more involved cases, such as
the theories of algebraically closed and real closed fields, model-theoretical criteria
are developed and applied. For a complete understanding of the material in 5.5
the reader should to some extent be familiar with basic constructions in classical
algebra, mainly concerning the theory of fields.

Chapter 2 should have been read. From Chapter 3 we require a certain amount of
material for applications of model theory to the solution of decision problems, and
from Chapter 4 just the notion of a Horn formula.

131

132 5 Elements of Model Theory

5.1 Elementary Extensions

In 3.3 nonstandard models were obtained using a method that we now generalize.
For given L and a set A let LA denote the language resulting from L by adjoining
new constant symbols a for all a ∈ A. The symbol a should depend only on a, so
that LA ⊆ LB whenever A ⊆ B. To simplify notation we write from Theorem 1.3
onwards just a rather than a; there will be no risk of misunderstanding.

Let B be an L-structure and A ⊆ B (the domain of B). Then the LA-expansion
in which a is interpreted by a ∈ A will be denoted by BA. According to Exercise 3
in 2.3 holds for arbitrary α = α(�x) ∈ L and �a ∈ An, with α(�a) := α a1

x1 · · · an
xn

,
(1) B � α [�a]⇔ BA � α(�a).

Clearly, every sentence from LA is of the form α(�a) for suitable α(�x) ∈ L and
�a ∈ An. Instead of BA � α(�a) (which is equivalent to B � α [�a]) we later write just
BA � α(�a) or even B � α(�a), as in Theorem 1.3. Thus, B may also denote a constant
expansion of B if it is not the distinction that is to be emphasized. This notation is
somewhat sloppy but points up the ideas behind the constructions.

Note that for an L-structure A, the LA-expansion AA receives a new constant
symbol for every a ∈ A, even if some elements of A already possess names in L.
The set of all variable-free literals λ ∈ LA such that AA � λ is called the diagram
DA of A. For instance, D(R, <) contains for all a, b ∈ R the literals a==== b, a �==== b,
a < b, a ≮ b, depending on whether indeed a=b, a�=b, a<b, or a≮b for the reals
a, b. Diagrams are important for various constructions of model extensions.

The notion of an embedding ı :A → B as defined in 2.1 (that is, the image of A
under ı is an isomorphic copy of A), embraces the notion of a substructure. For
A ⊆ B, the mapping ı = idA is the trivial identical embedding of A into B.

Let L0 ⊆ L. In this chapter, the embeddability of an L0-structure A into an
L-structure B often means the embeddability of A into the L0-reduct B0 of B, and
we shall write A ⊆ B also in this case. In this sense the group Z, for example, is
embeddable into the field Q. Our first statement is

Theorem 1.1. Suppose L0 ⊆ L and let A be an L0-structure. An LA-structure B
satisfies DA if and only if ı : a
→ aB is an embedding of A in B.
Proof. Let B � DA and a, b ∈ A, a �= b. Then a �====b ∈ DA. Hence B � a �====b, or
equivalently, aB �= bB. Thus ı is injective. For r ∈ L0 and �a ∈ An it holds that

rA�a ⇔ r�a ∈ DA ⇔ B � r�a
(
since B � DA

)
⇔ rBı�a

(
ı�a := (ıa1, . . . , ıan)

)
.

Similarly ıfA�a = fBı�a is obtained, for note that whenever �a ∈ An and b ∈ A then
fA�a = b ⇔ f�a==== b ∈ DA ⇔ B � f�a==== b ⇔ fBı�a = ıb. Thus, ı is indeed an
embedding. Now suppose the latter. For variable-free terms t in L0A one easily

5.1 Elementary Extensions 133

verifies ıtA = tB, where here and elsewhere tA, tB are to mean more precisely tAA

and tBA . Since ı is injective it follows for variable-free equations in L0A that

t1 ==== t2 ∈ DA ⇔ tA
1 = tA

2 ⇔ ıtA
1 = ıtA

2 ⇔ tB
1 = tB

2 ⇔ B � t1 ==== t2.

In the same way t1 �==== t2 ∈ DA ⇔ B � t1 �==== t2 is verified, and prime sentences of the
form r�t are dealt with analogously. This proves B � DA.

Corollary 1.2. Let A be an L-structure. B � DA iff A is embeddable into B.
Moreover, B � DA ⇔ A ⊆ B provided A ⊆ B.

Indeed, by the theorem with L0 = L, the mapping ı : a
→ aB realizes the embedding,
and also the converse of the claim is obvious. ı is the identical mapping in case
A ⊆ B, which verifies the “Moreover” part. Frequent use will be made of this
corollary, without mentioning it explicitly. Taking an (algebraic) prime model for a
theory T to mean a model embeddable into every T -model, the corollary states that
AA is a prime model for DA, understood as a theory. We will use the concept of a
prime model only in this sense.1

Probably the most important concept in model theory, for which a first example
appears on the next page, is given by the following

Definition. Let A,B be L-structures. A is called an elementary substructure of B,
and B an elementary extension of A, in symbols A � B, if A ⊆ B and

(2) A � α [�a] ⇔ B � α [�a], for all α = α(�x) ∈ L and �a ∈ An.

Obviously, A � B implies A ⊆ B. Terming DelA := {α ∈ LA0 | AA � α} the
elementary diagram of A, A � B is equivalent to A ⊆ B and BA � DelA. Namely,
(2) already holds given only A � α [�a] ⇒ B � α [�a], for all α = α(�x) ∈ L, �a ∈ An.

(2) is equivalent to AA � α(�a) ⇔ BA � α(�a), by (1). And since every α ∈ LA is
of the form α(�a) for appropriate α(�x) ∈ L, �a ∈ An and n � 0, the property A � B
is also characterized by A ⊆ B and AA ≡ BA (elementary equivalence in LA).

In general, A � B means much more than A ⊆ B and A ≡ B. For instance,
let A = (N+, <) and B = (N, <). Then certainly A ⊆ B, and since A � B, also
A ≡ B. But A � B is false. For example, ∃xx < 1 holds in BA, but obviously not
in AA. The following theorem will prove to be very useful for, among other things,
the provision of nontrivial examples for A � B:

Theorem 1.3 (Tarski’s criterion). For L-structures A,B with A ⊆ B the follow-
ing conditions are equivalent:

(i) A � B,
(ii) B � ∃yϕ(�a, y) ⇒ B � ϕ(�a, a) for some a ∈ A

(
ϕ(�x, y) ∈ L, �a ∈ An

)
.

1 It must be distinguished from the concept of an elementary prime model for T , which means that
A is elementarily embeddable into every B � T in the sense of Exercise 2.

134 5 Elements of Model Theory

Proof. (i)⇒(ii): Let A � B and B � ∃yϕ(�a, y), so that also A � ∃yϕ(�a, y). Then
clearly A � ϕ(�a, a) for some a ∈ A. But A � B; hence B � ϕ(�a, a). (ii)⇒(i): Since
A ⊆ B, (2) certainly holds for prime formulas. The induction steps for ∧ ,¬ are
obvious. Only the quantifier step needs a closer look:

A � ∀yϕ(�a, y)⇔ A � ϕ(�a, a) for all a ∈ A

⇔ B � ϕ(�a, a) for all a ∈ A (induction hypothesis)
⇔ B � ∀yϕ(�a, y) (see below).

We prove the direction ⇒ in the last equivalence indirectly: Assume B � ∀yϕ(�a, y).
Then B � ∃y¬ϕ(�a, y). Hence B � ¬ϕ(�a, a) for some a ∈ A according to (ii). Thus,
B � ϕ(�a, a) cannot hold for all a ∈ A.

Interesting examples for A � B are provided in a surprisingly simple way by the
following Theorem which, unfortunately, is applicable only if B has “many automor-
phisms” as is the case in the example below, and in geometry, for instance.

Theorem 1.4. Let A ⊆ B. Suppose that for all n, all �a ∈ An, and all b ∈ B there
is an automorphism ı :B →B such that ı�a = �a, and ıb ∈ A. Then A � B.
Proof. It suffices to verify condition (ii) in Theorem 1.3. Let B � ∃yϕ(�a, y), or equi-
valently B � ϕ(�a, b) for some b ∈ B. Then B � ϕ(ı�a, ıb) according to Theorem 2.3.4,
and since ı�a = �a, we obtain B � ϕ(�a, a) with a := ıb ∈ A. This proves (ii).

Example. It is readily shown that for given a1, . . . , an ∈ Q and b ∈ R there exists
an automorphism of (R, <) that maps b to a rational number and leaves a1, . . . , an

fixed (Exercise 3). Thus, (Q, <) � (R, <). In particular (Q, <) ≡ (R, <).

Here an outlook at less simple examples of elementary extensions, considered more
closely in 5.5. Let A = (A, 0, 1, +, ·) denote the field of algebraic numbers and C
the field of complex numbers. The domain A consists of all complex numbers that
are zeros of (monic) polynomials with rational coefficients. Then A � C. Similarly,
Ar � R where Ar denotes the field of all real algebraic numbers and R is the field
of all reals. Both these facts follow from the model completeness of the theory of
algebraically closed and real closed fields, respectively, proven on page 154.

Before continuing we will acquaint ourselves somewhat with transfinite cardinal
numbers. It is possible to assign a set-theoretical object denoted by |M| not only to
finite sets but in fact to arbitrary sets M in such a way that

(3) M ∼ N ⇔ |M| = |N| (∼ means equipotency, see page 87).
|M| is called the cardinal number or cardinality of M . For a finite set M , |M| is
just the number of elements in M ; for an infinite set M , |M| is called a transfinite
cardinal number, or briefly a transfinite cardinal.

At this stage it is unimportant just how |M| is defined in detail. Significant are
(4) and (5), taken as granted, from which (6) and (7) straightforwardly follow.

5.1 Elementary Extensions 135

(4) The cardinal numbers are well-ordered according to size, i.e., each nonempty
collection of them possesses a smallest element. Here let |N| � |M| if there is
an injection from N to M . 2 In particular, |N| � |M| for any infinite M .

(5) |M ∪N| = |M ×N| = max{|M|, |N|} for any sets M and N of which at least
one is infinite.

We first prove that M∗ :=
⋃

n>0 Mn has the same cardinality as M for infinite M

(M∗ is the set of all nonempty finite sequences of elements of M). In short,

(6) |M∗| = |M| (M infinite).

Indeed, |M1| = |M|, and the hypothesis |Mn| = |M| yields |Mn+1| = |Mn×M| = |M|
by (5). Thus |Mn| = |M| for all n. Therefore |M∗| = |

⋃
n>0 Mn| = |M × N| = |M|.

One similarly obtains from (4), (5) for every transfinite cardinal κ the property

(7) If A0, A1 . . . are any sets and |An| � κ for all n ∈ N then |
⋃

n∈N An| � κ.

The smallest transfinite cardinal number is that of the countably infinite sets,
denoted by ℵ0. The next one is called ℵ1. Then follows ℵ2 etc. The Cantor–Bernstein
theorem readily shows that the power set PN and the set R have the same cardinality,
denoted by 2ℵ0 . Certainly ℵ0 < 2ℵ0 , and so clearly ℵ1 � 2ℵ0 . Cantor’s continuum
hypothesis (CH) states that ℵ1 = 2ℵ0 . CH is provably independent in ZFC; see e.g.
[Ku]. While there are axioms extending beyond ZFC that decide CH one way or
another, none of these is sufficiently plausible to be regarded as “true.” In the last
decades some evidence has been collected that suggests that 2ℵ0 = ℵ2, but this is
seemingly not yet enough to convince the majority of mathematicians.

The cardinality of a structure A is always that of its domain, that is, |A| := |A|.
The following theorem generalizes Theorem 3.4.1 page 87 essentially. The additive
“downwards” prevents a mix up of these theorems. For |B| � |L|, Theorem 1.5
ensures the existence of some A � B (in particular A ≡ B) such that |A| � |L|.

Theorem 1.5 (Löwenheim–Skolem theorem downwards). Suppose B is an L-
structure such that |L| � |B| and let A0 ⊆ B be arbitrary. Then B has an elementary
substructure A of cardinality � max{|A0|, |L|} such that A0 ⊆ A.

Proof. We construct a sequence A0 ⊆ A1 ⊆ · · · ⊆ B as follows. Let Ak be given.
For every α = α(�x, y) and �a ∈ An

k such that B � ∃yα(�a, y) we select some b ∈ B

with B � α(�a, b) and adjoin b to Ak, thus getting Ak+1. In particular, if α is f�x==== y

then certainly B � ∃y f�a==== y. Since B � ∃!y f�a==== y, there is no alternative selection,
hence fB�a ∈ Ak+1. Thus, A :=

⋃
k∈N Ak is closed under the operations of B, and

2 With this definition |M| � |N| & |N| � |M| ⇒ |M| = |N| is derivable without AC , called the
Cantor–Bernstein Theorem. Actually, the first proof without AC (more elegant than Bernstein’s)
is due to Dedekind who left it unpublished in his diary from 1887.

136 5 Elements of Model Theory

therefore defines a substructure A ⊆ B. We prove A � B by Tarski’s criterion. Let
B � ∃yα(�a, y) for α = α(�x, y) and �a ∈ An. Then �a ∈ A n

k for some k. Therefore,
there is some a ∈ Ak+1 (hence a ∈ A) such that B � α(�a, a). This proves (ii) in
Theorem 1.3 and so A � B. It remains to prove |A| � κ := max{|A0|, |L|}. There
are at most κ formulas and κ finite sequences of elements in A0. Thus, by definition
of A1, at most κ new elements are adjoined to A0. Hence |A1| � κ. Similarly,
|An| � κ is verified for each n > 0. By (7) we thus get |

⋃
n∈N An| � κ.

Combined with the compactness theorem, the above theorem yields

Theorem 1.6 (Löwenheim–Skolem theorem upwards). Let C be any infinite
L-structure and κ � max{|C|, |L|}. Then there exists an A � C with |A| = κ.

Proof. Let D ⊇ C where |D| = κ. From (6) it follows that |LD| = κ, because the
alphabet of LD has cardinality κ. Because |C| � ℵ0, by the compactness theorem,
Del C ∪{c �====d | c, d ∈ D, c �= d} has a model B. Since d
→ dB (d ∈ D) is injective we
may assume dB = d for all d ∈ D, i.e., D ⊆ B. By Theorem 1.5 with LD for L and D

for A0, there is some A � B with D ⊆ A and κ � |D| � |A| � max{|LD|, |D|} = κ.
Hence |A| = κ. From C ⊆ D and A ≡LD B � Del C it follows that A � Del C. Since
also C ⊆ D ⊆ A, the L-reduct of A is an elementary extension of C.

These theorems show in particular that a countable theory T with at least one
infinite model also has models in every infinite cardinality. Further, �T α already
holds when merely A � α for all T -models A of a single infinite cardinal number κ,
provided T has only infinite models, because under this assumption every T -model
is elementarily equivalent to a T -model of cardinality κ.

Exercises

1. Let A � C and B � C, where A ⊆ B. Prove that A � B.

2. An embedding ı :A → B is termed elementary if ıA � B, where ıA denotes
the image of A under ı. Show similarly to Theorem 1.1 that an LA-structure
B is a model of DelA iff A is elementarily embeddable into B.

3. Let a1, . . . , an ∈ Q and b ∈ R. Show that there is an automorphism of (R, <)
that maps b to a rational number and leaves all ai fixed.

4. Let A ≡ B. Construct a structure C such that A,B are both elementarily
embeddable into C.

5. Let A be an L-structure generated from G ⊆ A and TG the set of ground terms
in LG. Prove that (a) for every a ∈ A there is some t ∈ TG such that a = tA,
(b) if A � T and DA �T α (∈ LG) then DGA �T α. Here DGA := DA∩LG.

5.2 Complete and κ-Categorical Theories 137

5.2 Complete and κ-Categorical Theories

According to the definition on page 82, a theory T ⊆ L0 is complete if it is consistent
and each extended theory T ′ ⊃ T in L0 is inconsistent. A complete theory need not
be maximally consistent in the whole of L. For instance, even if T is complete, in
general neither �T x==== y nor �T x �==== y. Some equivalent formulations of complete-
ness, whose usefulness depend on the situation at hand, are presented by

Theorem 2.1. For a consistent theory T the following conditions are equivalent:3

(i) T is complete, (iv) �T α ∨ β ⇒ �T α or �T β (α, β ∈ L0),
(ii) T = ThA for every A � T , (v) �T α or �T ¬α (α ∈ L0).
(iii) A ≡ B for all A,B � T ,

Proof. (i)⇒ (ii): Since T ⊆ ThA for each model A � T , it must be that T = ThA.
(ii) ⇒ (iii): For A,B � T we have by (ii) ThA = T = ThB, and therefore A ≡ B.
(iii)⇒ (iv): Let �T α ∨ β, A � T , and A � α, say. Then B � α for all B � T by (iii),
hence �T α. (v) is a special case of (iv) because �T α ∨ ¬α, for arbitrary α ∈ L0.
(v)⇒ (i): Let T ′ ⊃ T and α ∈ T ′ \T . Then �T ¬α by (v); hence also �T ′ ¬α. But
then T ′ is inconsistent. Hence, by the above definition, T is complete.

We now present various methods by which conjectured completeness can be con-
firmed. The completeness question is important for many reasons. For example,
according to Theorem 3.5.2, a complete axiomatizable theory is decidable whatever
the means of proving completeness might have been.

An elementary theory with at least one infinite model, even if it is complete, has
many different infinite models. For instance, according to Theorem 1.6, the theory
possesses models of arbitrarily high cardinality. However, sometimes it happens that
all of its models of a given finite or infinite cardinal number κ are isomorphic. The
following definition bears this circumstance in mind.

Definition. A theory T is κ-categorical if there exists up to isomorphism precisely
one T -model of cardinality κ.

Example 1. The theory Taut==== of tautological sentences in L==== is κ-categorical for
every cardinal κ. Indeed, here models A,B of cardinality κ are naked sets and these
are trivially isomorphic under any bijection from A onto B.

The theory DO of densely ordered sets results from the theory of ordered sets
(formalized in 2.3; see also 2.1) by adjoining the axioms

∃x∃y x �====y ; ∀x∀y∃z(x < y → x < z ∧ z < y).

3 All these conditions are also equivalent (they all hold) if the inconsistent theory is taken to be
complete, which is not the case here as we already agreed upon in 3.3.

138 5 Elements of Model Theory

It is easily seen that a densely ordered set is infinite. DO can be extended by
adjoining the axioms L := ∃x∀y x � y and R := ∃x∀y y � x to the theory DO11 of
densely ordered sets with edge elements. Replacing R by ¬R results in the theory
DO10 of densely ordered sets with left but without right edge element. Accordingly
DO01 denotes the theory with right but without left, and DO00 that of dense orders
without any edge elements. The paradigm for DO00 is (Q, <).

Example 2. DO00 is ℵ0-categorical (Exercise 1 treats the other DOij). The following
proof is due to Cantor. A function f with dom f ⊆ M and ran f ⊆ N is said to
be a partial function from M to N . Let A = {a0, a1, . . . } and B = {b0, b1, . . . } be
countable DO00-models. Define f0 by f0a0 = b0 so that dom f0 = {a0}, ran f0 = {b0}
(construction step 0). Assume that in the nth step a partial function fn from
A to B with finite domain was constructed with a < a′ ⇔ fna < fna

′, for all
a, a′ ∈ dom fn (a so-called partial isomorphism), and that {a0, . . . , an} ⊆ dom fn

and {b0, . . . , bn} ⊆ ran fn. These conditions are trivially satisfied for f0. Let m be
minimal with am ∈ A\dom fn. Choose b ∈ B \ran fn such that gn := fn ∪ {(am, b)}
is also a partial isomorphism. This is possible thanks to the denseness of B. Now
let m be minimal with bm ∈ B \ran gn. Choose a suitable a ∈ A\dom gn such that
fn+1 := gn ∪ {(a, bm)} is a partial isomorphism too. This “to and fro” construction
provides both for an+1 ∈ dom fn+1 and bn+1 ∈ ran fn+1 as is readily seen. Claim:
f =

⋃
n∈N fn is an isomorphism from A onto B. Indeed, f is a function. Moreover,

dom f = A and ran f = B. The isomorphism condition x < y ⇔ fx < fy is obvious.

Example 3. The successor theory Tsuc in L{0, S} has the axioms
∀x 0 �====Sx, ∀xy(Sx==== Sy → x==== y), (∀x�====0)∃y x==== Sy,

∀x0 · · ·xn(
∧

i<n Sxi ==== xi+1 → x0 �====xn) (n = 1, 2, . . . , there are no “circles”).
Tsuc is not ℵ0-categorical, but it is ℵ1-categorical. Indeed, each model A � Tsuc with
|A| = ℵ1 consists up to isomorphism of the (countable) standard model (N, 0, S) and
ℵ1 many “threads” of isomorphism type (Z, S) where S : z
→ z +1. For if there were
only countably many such threads then the entire model would be countable. It
now easily follows that any two Tsuc-models of cardinality ℵ1 are isomorphic.

Example 4. The theory ACFp of a.c. fields of given characteristic p (page 82) is
ℵ1-categorical. We sketch here a proof very briefly because ACFp is analyzed in 5.5
in a different way. The claim follows from the facts that each field is embeddable
into an a.c. field (cf. Example 1 of 5.5) and that a transcendental extension K′ of a
field K (that is, every a ∈ K ′ \K is transcendental on K) has a transcendence basis
B, that is, a maximal system of algebraically independent elements in K ′ \K. The
isomorphism type of K′ is completely determined by the cardinality of B.

It is fairly plausible that in Examples 3 and 4 κ-categoricity holds for every cardinal
κ > ℵ0. This is no coincidence. It is explained by the following theorem.

5.2 Complete and κ-Categorical Theories 139

Morley’s theorem. If a countable theory T is κ-categorical for some κ > ℵ0 then
it is κ-categorial for all κ > ℵ0.

The proof makes use of extensive methods and must be passed over here. On the
other hand, the proof of the following theorem requires but little effort.

Theorem 2.2 (Vaught’s test). A countable consistent theory T without finite
models is complete provided it is κ-categorical for some κ.

Proof. Note first that κ � ℵ0 because T possesses no finite models. Assume that T

is incomplete. Choose some α ∈ L0 with �T α and �T ¬α. Then T, α and T,¬α are
consistent. These sets have countable infinite models by Theorem 1.5, and according
to Theorem 1.6 there are also models A and B of cardinal κ. Since A,B � T , by
hypothesis A � B, hence A ≡ B, which contradicts A � α and B � ¬α.

Example 5. (a) The theory DO00 of densely ordered sets without edge elements
has only infinite models and is ℵ0-categorical by Example 2. Hence it is complete
by Vaught’s test, confirming (Q, <) ≡ (R, <) once again. Each DOij is a complete
theory (Exercise 1). This clearly implies A ≡ B for A,B � DO iff A,B have “the
same edge configuration.” Each of the DOij, being a complete axiomatizable theory,
is hence decidable. Therefore, by Exercise 3 in 3.5, the same is true for DO.
(b) The successor theory Tsuc is ℵ1-categorical (Example 3) and has only infinite
models. Hence it is complete and as an axiomatizable theory thus decidable.
(c) ACFp is ℵ1-categorical by Example 4. Each a.c. field A is infinite. For assume
the converse, that is, A = {a0, . . . , an}. Then the polynomial 1+

∏
i�n(x−ai) would

have no root. Hence, by Vaught’s test ACFp is complete and decidable (since it is
axiomatizable). This result will be derived by quite different methods in 5.5.

The model classes of sentences are called elementary classes. These clearly include
the model classes of finitely axiomatizable elementary theories. For any theory T ,
Md T =

⋂
α∈T Md α is an intersection of elementary classes, also termed an ∆-

elementary class. Thus, the class of all fields is elementary, and that of all a.c. fields
is ∆-elementary. On the other hand, the class of all finite fields is not ∆-elementary
because its theory evidently has infinite models. An algebraic characterization of
elementary and ∆-elementary classes will be provided in 5.7.

The model classes of complete theories are called elementary types. Md T is the
union of the elementary types belonging to the completions of a theory T . For in-
stance, DO has just the four completions DOij determined by the edge configuration,
that is, by those of the sentences L, R,¬L,¬R, valid in the respective completion.
For this case, the next theorem provides more information.

Let X ⊆ L be nonempty and T a theory. Take 〈X〉 to denote the set (still
dependent on T) of all formulas equivalent in T to Boolean combinations of formulas
in X. Clearly, � ∈ 〈X〉 since � ≡T α ∨ ¬α for α ∈ X. Therefore, T ⊆ 〈X〉, because

140 5 Elements of Model Theory

α ≡T � whenever α ∈ T . Call X ⊆ L0 a Boolean basis for L0 in T if every α ∈ L0

belongs to 〈X〉. A ≡X B is to mean A � α ⇔ B � α, for all α ∈ X. Example 6(b)
below indicates how useful a Boolean base for decision problems can be.

Theorem 2.3 (Basis theorem for sentences). Let T be a theory and X ⊆ L0

a set of sentences such that A ≡X B ⇒ A ≡ B, for all A,B � T .4 Then X is a
Boolean basis for L0 in T .

Proof. Suppose α ∈ L0 and Yα := {β ∈ 〈X〉 | α �T β}. We claim that (∗): Yα �T α.
Otherwise let A � T, Yα,¬α. Then TXA := {γ ∈ 〈X〉 | A � γ} � ¬α; indeed for any
B � TXA we have B ≡X A and hence B ≡ A. Therefore γ �T ¬α for some γ ∈ TXA,
because 〈X〉 is closed under conjunctions. This yields α �T ¬γ, i.e., ¬γ ∈ Yα. Thus
A � ¬γ, in contradiction to A � γ. So (∗) holds. Hence there are β0, . . . , βm ∈ Yα

such that β :=
∧

i�m βi �T α. We know α �T βi and so α �T β as well. This and
β �T α confirms α ≡T β, and since β ∈ 〈X〉, also α ∈ 〈X〉.
Example 6. (a) For T = DO and X = {L, R} it holds that A ≡X B ⇒ A ≡ B, for
all A,B � T . Indeed, A ≡X B states that A,B possess the same edge configuration.
But then A ≡ B, because the DOij are all complete; see Example 5(a). Therefore,
L and R form a Boolean basis for L0

< in DO. This theory has four completions, and
so by Exercise 3 in 3.6, exactly 15 (= 24 − 1) consistent extensions.
(b) Let T = ACF and X = {charp | p prime}. Again, A ≡X B ⇒ A ≡ B, for all
A,B � T , because by Example 5(c) ACFp is complete for each p (including p = 0).
Hence, by Theorem 2.3, the charp constitute a Boolean basis for sentences modulo
ACF. This implies the decidability of ACF: let α ∈ L0 be given; just wait in an enu-
meration process of the theorems of ACF until a sentence of the form α↔ β appears,
where β is a Boolean combination of the charp. Such a sentence definitely appears.
Then test whether β ≡ACF �, for example by converting β into a CNF.

Corollary 2.4. Let T ⊆ L0 be a theory with arbitrarily large finite models, such
that all finite T -models with the same number of elements and all infinite T -models
are elementarily equivalent. Then it holds that

(a) the sentences ∃n form a Boolean basis for L0 in T ,
(b) T is decidable provided T is finitely axiomatizable.

Proof. Let X := {∃k | k ∈ N}. Then by hypothesis, A ≡X B ⇒ A ≡ B, for
all A,B � T . Thus, (a) follows by Theorem 2.3. By Exercise 4 in 2.3 each α

compatible with T is therefore equivalent in T to a formula of the form
∨

ν�n ∃=kν

or
∨

ν�n ∃=kν ∨ ∃m. Then both sentences clearly have a finite T -model. In other
words, T has the finite model property. Thus, (b) holds by Exercise 3 in 3.6.
4 This assumption is equivalent to the assertion {γ ∈ 〈X〉 | A � γ} is complete; see the subsequent
proof. For refinements of the theorem we refer to [HR].

5.2 Complete and κ-Categorical Theories 141

Simple examples of applications are the theories Taut==== and the theory FO of all
finite ordered sets. It is proved in the next section that the latter theory satisfies
the hypothesis of the corollary. The equivalent formulas mentioned in the proof
also permit a complete description of the elementary classes of L====. These are finite
unions of classes determined by sentences of the form ∃=k and ∃m. The elementary
classes of FO-models admit a description of similar simplicity.

These examples make the following sufficiently clear: If we know the elementary
types of a theory T then we also know their elementary classes. As a rule the
type classification, that is, finding an appropriate set X satisfying the hypothesis
of Theorem 2.3, is successful only in particular cases. The required work tends to
be extensive. We mention in this regard the theories of abelian groups, of Boolean
algebras, and of other locally finite varieties; see for instance [MV]. The above
examples are just the simplest ones.

Easy to deal with is the case of an incomplete theory T that has finitely many
completions. Example 6(a) is just a special case. According to Exercise 3 in 3.5, T

then has finitely many extensions. Moreover, all these are finite extensions. Indeed,
if T + {αi | i ∈ N} is a nonfinite extension then w.l.o.g.

∧
i<n αi �T αn, which obvi-

ously implies that T has infinitely many completions, contradicting our hypothesis.
Thus, we may assume that T1, . . . , Tm are the completions of T and that Ti = T +αi

for some αi ∈ L0. Then {α1, . . . , αm} is a Boolean basis for L0 in T . Exercise 4
provides a canonical axiomatization of all consistent extensions of T .

Exercises

1. Prove that also DO10, DO11, and DO01 are ℵ0-categorical and hence complete.
In addition, verify that these and DO00 are the only completions of DO.

2. Prove that Tsuc (page 138) is also completely axiomatized by the first two given
axioms plus IS: ϕ 0

x ∧∀x(ϕ → ϕ Sx
x) →∀xϕ; here ϕ runs over all formulas of the

language L{0, S} (the “induction schema” for L{0, S}).

3. Show that the theory T of torsion-free divisible abelian groups is ℵ1-categorical
and complete, hence decidable. This shows, in particular, the elementary
equivalence of the groups (R, 0, +) and (Q, 0, +).

4. Let T +α1, . . . , T +αm be all completions of T . Prove that T +
∨

1�ν�n αiν are
all consistent extensions of T . Here 1 � n � m and 1 � i0 < · · · < in � m.

5. Show that an ℵ0-categorical theory T with no finite models has an elementary
prime model. Example: (Q, <) is an elementary prime model for DO00.

142 5 Elements of Model Theory

5.3 Ehrenfeucht’s game

Unfortunately, Vaught’s criterion has only limited applications because many com-
plete theories are not categorical in any transfinite cardinality. Let SO denote the
theory of discretely ordered sets, i.e., of all (M, <) such that every a ∈ M has an
immediate successor provided a is not the right edge element, and likewise an im-
mediate predecessor provided a is not a left edge element. “SO” is intended to recall
“step order,” because the word “discrete” in connection with orders often has the
stronger sense “each cut is a jump.” SOij (i.j ∈ {0, 1}) is defined analogously to
DOij (see page 138). For instance, SO10 is the theory of discretely ordered sets with
left and without right edge element. Clearly (N, <) is a prime model for SO10. The
models of SO10 arise from arbitrary orders (M, <) with a left edge element by re-
placing the latter by (N, <) and every other element of M by a specimen of (Z, <).
From this it follows that SO10 cannot be κ-categorical for any κ � ℵ0. Yet this
theory is complete will be shown, and the same applies to SO00 and SO01. Only
SO11 is incomplete and is the only one of the four theories that has finite models. It
coincides with the elementary theory of all finite ordered sets, Exercise 3.

We prove the completeness of SO10 game-theoretically using a two-person game
with players I and II, Ehrenfeucht’s game Γk(A,B), which is played in k rounds,
k � 0. The A,B be given L-structures and L a relational language, i.e., L does not
contain any constant or operation symbols. With regard to our goal this presents
no real loss of generality because each structure can be converted into a relational
one by replacing its operations by the corresponding graphs. Another advantage of
relational structures used in the sequel is that there is a bijective correspondence
between subsets and substructures.

We now describe the game Γk(A,B). Player I chooses in each of the k rounds
one of the two structures A and B. If this is A, he selects some a ∈ A. Then
player II has to answer with some element b ∈ B. If player I chooses B and some
b from B then player II must answer with some element a ∈ A. This is the entire
game. After k rounds elements a1, . . . , ak ∈ A and b1, . . . , bk ∈ B have been selected,
where ai, bi denote the elements selected in round i. Player II wins if the mapping
ai
→ bi (i = 1, . . . , k) is a partial isomorphism from A to B; in other words, if the
substructure of A with the domain {a1, . . . , ak} is isomorphic to the substructure of
B with the domain {b1, . . . , bk}. Otherwise, player I is the winner.

We write A ∼k B if player II has a winning strategy in the game Γk(A,B), that
is, in every round player II can answer any move from player I such that at the end
player II is the winner. For the “zero-round game” let A ∼0 B by definition.

Example. Let A = (N, <) be a proper initial segment of B � SO10. We show that
A ∼k B for arbitrary k > 0. Player II plays as follows: If player I chooses some b1 in

5.3 Ehrenfeucht’s game 143

B in the first round then player II answers with a1 = 2k−1−1 if d(0, b1) � 2k−1−1;
otherwise with a1 = d(0, b1).5 The procedure is similar if player I begins with A. If
player I now selects some b2 ∈ B such that d(0, b2), d(b1, b2) � 2k−2−1, then player II
answers with a2 = a1 ± 2k−2 depending on whether b2 > b1 or b2 < b1, and otherwise

� �� �� �� �� �� �� �� �� � � � � � �
� � � � � b1b3b2

a3a2 a1

� � �A
B

a1 = 22−1 = 3, a2 = a1−21 = 1

with the element of the same dis-
tance from 0 or a1 as that of b2

from 0 in B respectively from b1.
Similarly in the third round etc.
The figure shows the course of a
3-round game played in the described way, in which player I has chosen from B only.
With this strategy player II wins every game as can be shown by induction on k.

In contrast to the example, for A = (N, <) and B = (Z, <) player II’s chances have
already dropped in Γ2(A,B) if player I selects 0 ∈ A in the first round. Player II will
loose already in the 2nd round. This has to do with the fact that the existence of an
edge element is expressible by a sentence of quantifier rank 2. We write A ≡k B for
L-structures A,B if A � α ⇔ B � α, for all α ∈ L0 with qr α � k. It is always the
case that A ≡0 B for all A,B, because in relational languages there are no sentences
of quantifier rank 0. Below we will prove the following remarkable

Theorem 3.1. A ∼k B implies A ≡k B. Hence, A ≡ B provided A ∼k B for all k.

For finite signatures a somewhat weaker version of the converse of the theorem is
valid as well, though we do not discuss this here. Before proving Theorem 3.1 we
demonstrate its applicability. The theorem and the above example yield (N, <) ≡k B
for all k and hence (N, <) ≡ B for every B � SO10, because (N, <) is a prime model
for SO10. Therefore SO10 is evidently complete. For reasons of symmetry the same
holds for SO01, and likewise for SO00. On the other hand, SO11 has the finite model
property according to Exercise 3. This readily implies that SO11 coincides with the
theory FO of all finite ordered sets.

For the proof of Theorem 3.1 we first consider a minor generalization of Γk(A, B),
the game Γk(A,B,�a,�b) with prior moves �a ∈ An,�b ∈ Bn. In the first round player
I selects some an+1 ∈ A or bn+1 ∈ B and player II answers with bn+1 or an+1, etc.
The game protocol consists of sequences (a1, . . . , an+k) and (b1, . . . , bn+k) at the end.
Player II has won if ai
→ bi (i = 1, . . . , n + k) is a partial isomorphism. Clearly, for
n = 0 we obtain precisely the original game Γk(A,B).

This adjustment brings about an inductive characterization of a winning strategy
for player II independent of more general concepts as follows:

5 The “distance” d(a, b) between elements a, b of some SO-model is 0 for a = b, 1 + the number of
elements lying between a and b if it is finite, and d(a, b) =∞ otherwise.

144 5 Elements of Model Theory

Definition. Player II has a winning strategy in Γ0(A,B,�a,�b) provided ai
→ bi

for i = 1, . . . , n is a partial isomorphism. Player II has a winning strategy in
Γk+1(A,B,�a,�b) if for every a ∈ A there is some b ∈ B, and for every b ∈ B some
a ∈ A, such that player II has a winning strategy in Γk(A,B,�a�a,�b�b). Here �c�c

denotes the operation of appending the element c to the sequence �c.

We shall write (A,�a) ∼k (B,�b) if player II has a winning strategy in Γk(A,B,�a,�b).
In particular A ∼k B, which is the case �a = �b = ∅, is now precisely defined.

Lemma 3.2. Let (A,�a) ∼k (B,�b) where �a ∈ An and �b ∈ Bn. Then for all ϕ = ϕ(�x)
with qr ϕ � k holds the equivalence (∗) : A � ϕ(�a)⇔ B � ϕ(�b).

Proof by induction on k. Let k = 0. Since ai
→ bi (i = 1, . . . , n) is a partial
isomorphism, (∗) is valid for prime formulas and since the induction steps in the
proof of (∗) for ¬, ∧ are obvious; it is valid also for all formulas ϕ with qr ϕ = 0.
Now let (A,�a) ∼k+1 (B,�b). The only interesting case is ϕ = ∀yα(�x, y) such that
qr ϕ = k + 1, because every other formula of quantifier rank k + 1 is a Boolean
combination of such formulas and formulas of quantifier rank � k (Exercise 5 in
2.2), and induction over ¬, ∧ in proving (∗) is harmless. Assume A � ∀yα(�a, y)
and b ∈ B. Then Player II chooses some a ∈ A with (A,�a�a) ∼k (B,�b�b), so that
according to the induction hypothesis, A � α(�a, a)⇔ B � α(�b, b). Clearly, the latter
is supposed to hold for sequences �a,�b of elements of arbitrary length. Because of
A � α(�a, a), also B � α(�b, b). Since b was arbitrary we obtain B � ∀yα(�b, y). For
reasons of symmetry, B � ∀yα(�b, y) ⇒ A � ∀yβ(�a, y) holds as well.

Theorem 3.1 is the application of the lemma for the case n = 0 and is therefore
proved. The method illustrated is wide-ranging and has many generalizations.

Exercises

1. Let A,B be two infinite densely ordered sets with the same edge configuration.
Prove that A ∼k B for all k. Hence A,B are elementarily equivalent.

2. Let A,B � SO11, k > 0 and |A|, |B| � 2k − 1. Prove that A ∼k B, so that
A ≡k B according to Theorem 3.1.

3. Infer from Exercise 2 that SO11 has the finite model property and coincides
with the elementary theory FO of all finite ordered sets.

4. Show that L, R, ∃1, ∃2, . . . constitute a Boolean basis modulo SO and use this
to prove the decidability of SO.6

6 Moreover, the theory of all linear orders is decidable (Ehrenfeucht), and thus each of its finite
extensions; but the proof is incomparably more difficult than for DO or SO.

5.4 Embedding and Characterization Theorems 145

5.4 Embedding and Characterization Theorems

Many of the foregoing theories, for instance those of orders, of groups in ·, e, −1, and
of rings, are universal or ∀-theories. In other words, they possess axiom systems of ∀-
sentences. We already know that for every theory T of this kind A ⊆ B � T implies
A � T , in short T is S-invariant. DO obviously does not have this property, and so
there cannot exist an axiom system of ∀-sentences for it. According to Theorem 4.3
the ∀-theories are completely characterized by the property of S-invariance. This
presents a particularly simple example of the model-theoretical characterization of
certain syntactic forms of axiom systems.

T ∀ := {α ∈ T | α is an ∀-sentence} is called the universal part of a theory T . Note
the distinction between the set T ∀ and the ∀-theory T ∀, which of course contains
more than just ∀-sentences. For L0 ⊆ L put T ∀

0 := L0 ∩ T ∀. If A is an L0-structure
and B an L-structure then A ⊆ B or “A is a substructure of B ” will often mean
in this section that A is a substructure of the L0-reduct of B. The phrase “A is
embeddable into B” introduced in 5.1 is to be understood similarly. Examples will
be found below. First we state the following

Lemma 4.1. Every T ∀
0 -model A is embeddable into some T -model.

Proof. It is enough to prove (∗) : T, DA is consistent, because if B � T, DA then
A is embeddable into B by Theorem 1.1. Assume (∗) is false. Then there is a
conjunction κ(�a) of sentences in DA such that κ(�a) �T ⊥, or equivalently, �T ¬κ(�a).
Here let �a embrace all the constants of LA that appear in the members of κ but
not in T . By the rule (∀) of constant-quantification from 3.2, �T ∀�x¬κ(�x). Hence
∀�x¬κ(�x) ∈ T ∀

0 and thus A � ∀�x¬κ(�x), contradicting A � κ(�a).

Lemma 4.2. Md T ∀ consists of precisely the substructures of all T -models.

Proof. Every substructure of a T -model is of course a T ∀-model. Furthermore, each
A � T ∀ is (by Lemma 4.1 for L0 = L) embeddable into some B � T , and this is
surely equivalent to B′ � B and A ⊆ B′ for some B′ � T , because Md T is always
closed under isomorphic images.

Example. (a) Let AG be the theory of abelian groups in L{◦}. A substructure of
A � AG is obviously a commutative regular semigroup. Conversely, it is not hard to
prove that every such semigroup is embeddable into an abelian group. Therefore,
the theory AG∀ coincides with the theory of the commutative regular semigroups.
Warning : noncommutative regular semigroups need not be embeddable into groups.

(b) Substructures of fields in L{0, 1, +,−, ·} are integral domains. Conversely, ac-
cording to a well-known construction every integral domain is embeddable into a
field, its quotient field. It is constructed similarly to the field Q from the ring Z.

146 5 Elements of Model Theory

By Lemma 4.2, the theories TJ of integral domains and TF of fields have the same
universal part which is axiomatized by the axioms for TJ , i.e., the axioms for com-
mutative rings with 1 and without zero-divisors. Also ACF has the same universal
part, because every field is embeddable into some algebraically closed field.

Theorem 4.3. T is a universal theory if and only if T is S-invariant.

Proof. This follows immediately from Lemma 4.2, since for an S-invariant theory
T holds that Md T = Md T ∀. In other words, T is axiomatized by T ∀.

This theorem is reminiscent of the HSP theorem cited on page 104. However, the
latter concerns identities only. It has a different proof that is akin to the proof of
the following remarkable theorem. It concerns universal Horn theories introduced in
4.1. Call T SP-invariant if Md T is closed under direct products and substructures.
Always remember that a statement like A � ϕ(�a) with �a ∈ An is to mean AA � ϕ(�a),
or equivalently, A � ϕ(�x) [�a].

Theorem 4.4. T is a universal Horn theory if and only if T is SP-invariant.

Proof.⇒: Exercise 1 in 4.1. ⇐ : Trivial if �T ∀xy x==== y, for then T is axiomatized
by ∀xy x==== y. Let T be nontrivial. Put U = {α ∈ T | α a universal Horn sentence}.
We shall prove Md T = Md U . Only Md U ⊆ Md T is not obvious. Let A � U .
To verify A � T it suffices to show (∗): T ∪ DA � ⊥, since for B � T, DA w.l.o.g.
A ⊆ B, so A � T thanks to S-invariance. Let P := {π ∈ DA | π prime}, so that
DA = P ∪{¬πi | i ∈ I} for some I �= ∅, all πi prime. We first show

(∗
∗
)
: P �T πi for

all i ∈ I. Indeed, otherwise �T κ(�a) → πi(�a) for some conjunction κ(�a) of sentences
in P , with the tuple �a of constants not in T . Therefore �T α := ∀�x(κ(�x) → πi(�x)).
Hence α ∈ U , for α is a universal Horn sentence, whence A � α. But this contradicts
A � κ(�a)∧¬πi(�a) and confirms

(∗
∗
)
. From

(∗
∗
)

follows (∗) because if Ai � T, P,¬πi,
then we have B :=

∏
i∈I Ai � T and B � P ∪ {¬πi | i ∈ I} = DA.

The following application of Lemma 4.1 aims in a somewhat different direction.

Theorem 4.5. Let L0 ⊆ L and A be an L0-structure. For T ⊆ L0 are equivalent:
(i) A is embeddable into some T -model,
(ii) any finitely generated substructure of A is embeddable into a T -model,
(iii) A � T ∀

0 (= L0 ∩ T ∀).

Proof. (i)⇒(ii): Trivial. (ii)⇒(iii): Let ∀�xα ∈ T ∀
0 with α = α(�x) quantifier-free,

�x = (x1, . . . , xn) w.l.o.g. �= ∅. Let A0 for �a = (a1, . . . , an) ∈ An be the substructure
in A generated from a1, . . . , an. By (ii), A0 ⊆ B for some model B � T . Since
B � ∀�xα, it holds that A0 � ∀�xα; therefore A0 � α(�a), so that A � α(�a) by
Theorem 2.3.2. Since both ∀�xα ∈ T ∀

0 and �a ∈ An were choosen arbitrarily, A � ∀�xα.
(iii)⇒(i): This is exactly the claim of Lemma 4.1.

5.4 Embedding and Characterization Theorems 147

Examples of applications. (a) Let T be the theory of ordered abelian groups
in L = L{0, +,−, <}. Such a group is clearly torsion-free, which is expressed by a
schema of ∀-sentences in L0 = L{0, +,−}. Conversely, Theorem 4.5 implies that a
torsion-free abelian group (the A in the theorem) is orderable, or what amounts to
the same thing, is embeddable into an ordered abelian group. One needs to show
only that every finitely generated torsion-free abelian group G is orderable. By
a well-known result from group theory, G � Zn for some n > 0. But Zn can be
ordered lexicographically as is easily seen by induction on n. For nonabelian groups,
the conditions corresponding to torsion-freeness are somewhat more involved.
(b) Without needing algebraic methods we know that there exists a set of universal
sentences in 0, 1, +,−, ·, whose adoption to the theory of fields characterizes the
orderable fields. Sufficient for this, by Theorem 4.5, is the set of all ∀-sentences in
0, 1, +,−, · provable from the axioms for ordered fields. Indeed even the schema of
sentences ‘−1 is not a sum of squares’ is enough (E. Artin).

Not just ∀-theories but also ∀-formulas can be characterized model-theoretically.
Call α(�x) S-persistent or simply persistent in T if for all A,B � T with A ⊆ B

(sp) B � α(�a)⇒ A � α(�a), for all �a ∈ An.

This property characterizes the ∀-formulas up to equivalence according to

Theorem 4.6. If α = α(�x) is persistent in T then α is equivalent to some ∀-formula
α′ in T , which can be chosen in such a way that free α′ ⊆ free α.

Proof. Let Y be the set of all formulas of the form ∀�yβ(�x, �y) with α �T ∀�yβ(�x, �y)
where β is quantifier-free; here the tuples �x and �y may be of length n � 0 and m � 0,
respectively. We prove (a): Y �T α(�x). This would complete the proof because there
then exists, thanks to free Y ⊆ {x1, . . . , xn}, a conjunction κ = κ(�x) of formulas
from Y with κ �T α. Since also α �T κ, we have α ≡T κ, and since a conjunction
of ∀-formulas κ is again equivalent to an ∀-formula, κ ∈ Y . For proving (a) assume
(A,�a) � T, Y (or A � T, Y [�a]) with �a ∈ An. We need to show that (A,�a) � α. This
follows from (b): T, α(�a), DA is consistent, for if B � T, α(�a), DA, then w.l.o.g.
A ⊆ B; hence A � α(�a) since α is persistent. If (b) were false then α(�a) �T ¬κ(�a,�b)
for some conjunction κ(�a,�b) of sentences from DA with the m-tuple �b of constants
of κ from A\{a1, . . . , an}. Thus α(�a) �T ∀�y¬κ(�a, �y). Since the a1, . . . , an do not
appear in T , we get α(�x) �T ∀�y¬κ(�x, �y) ∈ Y . Therefore, (A,�a) � ∀�y¬κ(�x, �y), or
equivalently A � ∀�y¬κ(�a, �y), in contradiction to A � κ(�a,�b).

Remark. Let T be countable and all T -models infinite. Then α is already equivalent in
T to an ∀-formula, provided α is κ-persistent; this means that (sp) holds for all T -models
A,B of some fixed cardinal κ � ℵ0. For in this case each T -model is elementarily equivalent
to a model of cardinality κ by the Löwenheim–Skolem theorems. Hence, it suffices to verify
(a) in the above proof by considering only models A,B of cardinality κ.

148 5 Elements of Model Theory

Sentences of the form ∀�x ∃�yα with kernel α are called ∀∃-sentences. Many theo-
ries, for instance of fields, of real or algebraically closed fields, of divisible groups,
are ∀∃-theories, i.e., they possess axiom systems of ∀∃-sentences. We are going to
characterize the ∀∃-theories semantically. A chain K of structures is simply a set
K of L-structures such that A ⊆ B or B ⊆ A for all A,B ∈ K. Chains are often
given as sequences A0 ⊆ A1 ⊆ A2 ⊆ · · · of structures. No matter how K is given, a
structure C :=

⋃
K can be defined in a natural way: Let C :=

⋃
{A | A ∈ K} be its

domain. Further let rC�a⇔ rA�a for �a ∈ Cn, where A ∈ K is chosen so that �a ∈ An.
Such an A ∈ K exists: Let A simply be the maximum of the chain members con-
taining a1, , . . . , an, respectively. The definition of rC is independent on the choice of
A. Indeed, let A′ ∈ K and a1, . . . , an ∈ A′. Since A ⊆ A′ or A′ ⊆ A, it holds that
rA�a ⇔ rA′

�a in either case. Finally, for function symbols f let fC�a = fA�a, where
A ∈ K is chosen such that �a ∈ An. Here too the choice of A ∈ K is irrelevant. C
was just defined in such a way that each A ∈ K is a substructure of C.
Example 1. Let Dn be the additive group of n-place decimal numbers (with at
most n decimals after the decimal point). Since Dn ⊆ Dn+1, the Dn form a chain.
Here D =

⋃
n∈NDn is just the additive group of finite decimal numbers. The cor-

responding holds if the Dn are understood as ordered sets. Because then D � DO,
while Dn � SO for all n, Md SO is not closed under union of chains.

It is easy to see that an ∀∃-sentence α = ∀x1 . . . xn∃y1 . . . ymβ(�x, �y) valid in all
members A of a chain K of structures is also valid in C =

⋃
K. For let �a ∈ Cn.

Then �a ∈ An for some A ∈ K. Hence, there is some �b ∈ Am with A � β(�a,�b). Since
A ⊆ C and β(�x, �y) is open, it follows that C � β(�a,�b). Therefore, C � ∃�yβ(�a, �y).
Now, �a is arbitrary here so that indeed C � ∀�x∃�yβ(�x, �y).

Thus, if T is an ∀∃-theory, Md T is always closed under union of chains, or as it
is said, T is inductive. Just this property is characteristic for ∀∃-theories. However,
the proof of this is no longer simple. It requires the notion of an elementary chain.
This is a set K of L-structures such that A � B or B � A, for all A,B ∈ K. Clearly,
K is then also a chain in the ordinary sense.

Lemma 4.7 (Tarski’s chain lemma). Let K be an elementary chain and put
C =

⋃
K. Then A � C for every A ∈ K.

Proof. We have to show that A � α(�a) ⇔ C � α(�a), with �a ∈ An. This follows
by induction on α = α(�x) and is clear for prime formulas. The induction steps over
∧ ,¬ are also straightforward. Let A � ∀yα(y,�a) and a0 ∈ C arbitrary. There is
certainly some B ∈ K such that a0, . . . , an ∈ B and A � B. Thus, B � ∀yα(y,�a)
and hence B � α(a0,�a). By the induction hypothesis (which is supposed to hold for
any chain members) so too C � α(a0,�a). Since a0 ∈ C was arbitrary, C � ∀yα(y,�a).
The converse C � ∀yα(y,�a)⇒ A � ∀yα(y,�a) follows similarly.

5.4 Embedding and Characterization Theorems 149

We require yet another useful concept, found in many of the examples in 5.5. Let
A ⊆ B. Then A is termed existentially closed in B, in symbols A ⊆ec B, provided

(∗) B � ∃�xϕ(�x,�a)⇒ A � ∃�xϕ(�x,�a) (�a ∈ An),
where ϕ = ϕ(�x,�a) runs through all conjunctions of literals from LA. (∗) then holds
automatically for all open ϕ ∈ LA. One sees this straight away by converting ϕ into
a disjunctive normal form and distributing ∃�x over the disjuncts.

Clearly A � B ⇒ A ⊆ec B ⇒ A ⊆ B. Moreover, ⊆ec satisfies a readily proved
chain lemma as well: If K is a chain of structures such that A ⊆ec B or B ⊆ec A for
all A,B ∈ K, then A ⊆ec

⋃
K for every A ∈ K. This is an easy exercise.

The next lemma presents various characterizations of A ⊆ec B. Let D∀A denote
the universal diagram of A, which is the set of all ∀-sentences of LA valid in A.
Clearly D∀A ⊆ DelA. In (iii) the indexing of B with A is omitted to ease legibility.

Lemma 4.8. Let A,B be L-structures and A ⊆ B. Then are equivalent
(i) A ⊆ec B, (ii) there is an A′ ⊇ B such that A � A′, (iii) B � D∀A.

Proof. (i)⇒(ii): Let A ⊆ec B. We obtain some A′ ⊇ B such that A � A′ as a
model of DelA ∪ DB (more precisely, as the L-reduct of such a model), so that it
remains only to show the consistency. Suppose the opposite, so that DelA � ¬κ(�b)
for some conjunction κ(�b) of members from DB with the n-tuple �b of all constants
of B \A in κ. Since b1, . . . , bn do not occur in DelA, we get DelA � ∀�x¬κ(�x). Thus
A � ∀�x¬κ(�x). On the other hand B � κ(�b); hence B � ∃�xκ(�x). With (i) and
κ(�x) ∈ LA also A � ∃�xκ(�x), in contradiction to A � ∀�x¬κ(�x). (ii)⇒(iii): Since
A � A′, we have A′ � DelA ⊇ D∀A. Since B ⊆ A′ � D∀A, evidently B � D∀A.
(iii)⇒(i): By (iii), A � α ⇒ B � α, for all ∀-sentences α of LA. The latter is
equivalent to B � α⇒ A � α, for all ∃-sentences of LA and hence to (i).

Theorem 4.9. A theory T is an ∀∃-theory if and only if T is inductive.

Proof. As already shown, an ∀∃-theory T is inductive. Conversely let T be induc-
tive. We show that Md T = Md T ∀∃, where T ∀∃ denotes the set of all ∀∃-theorems
provable in T . The nontrivial part is the verification of MdT ∀∃ ⊆ Md T . So let
A � T ∀∃. Claim: T ∪ D∀A is consistent. Otherwise �T ¬κ for some conjunction
κ = κ(�a) of sentences of D∀A with the tuple �a of constants in A appearing in κ
but not in T . Hence �T ∀�x¬κ(�x). Now, κ(�x) is equivalent to an ∀-formula, and so
¬κ(�x) to an ∃-formula. Thus, ∀�x¬κ(�x) belongs up to equivalence to T ∀∃. Therefore
A � ∀�x¬κ(�x), which contradicts A � κ(�a). This proves the claim.
Now let A1 � T ∪ D∀A and w.l.o.g. A1 ⊇ A. Then also A ⊆ec A1 in view of
Lemma 4.8. By the same lemma there exists an A2 ⊇ A1 with A0 := A � A2, so
that A2 � T ∀∃ as well. We now repeat this construction with A2 in place of A0

and obtain structures A3,A4 such that A2 ⊆ec A3 � T , A3 ⊆ A4 and A2 � A4.

150 5 Elements of Model Theory

Continuing this construction produces a sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · of structures
with the inclusion relation illustrated in the following figure:

A = A0
⊆ A1

⊆ A2
⊆ A3

⊆ A4
� � � ⊆ C

� �� �� �

Let C :=
⋃

i∈NAi. Clearly also C =
⋃

i∈NA2i, and because A = A0 � A2 � · · · we
get A � C by the chain lemma. At the same time we also have C =

⋃
i∈NA2i+1, and

since by construction A2i+1 � T for all i, it holds that C � T , for T is inductive. But
then too A � T because A � C. This is what we had to prove.

A decent application of the theorem is that SO10 cannot be axiomatized by ∀∃-
axioms, for SO10 is not inductive according to Example 1. SO10 is an ∀∃∀-theory,
and we see now that at least one ∀∃∀-axiom is needed in its axiomatization.

The “sandwich” construction in the proof of Theorem 4.9 can still be generalized.
We will not elaborate on this but rather add some words about so-called model
compatibility. Let T0 + T1 be the smallest theory containing T0 and T1. From the
consistency of T0 and T1 we cannot infer that T0 +T1 is consistent, even if T0 and T1

are model compatible in the following sense: every T0-model is embeddable into some
T1-model and vice versa. This property is equivalent to T ∀

0 = T ∀
1 by Lemma 4.1,

hence is an equivalence relation. Thus, the class of consistent L-theories splits
into disjoint classes of pairwise model compatible theories. That model compatible
theories need not be compatible in the ordinary sense is shown by the following

Example 2. DO and SO are model compatible (Exercise 2) but DO+SO is clearly in-
consistent. Since DO is inductive, we get another argument that SO is not inductive:
if it were inductive, DO + SO would be consistent according to Exercise 3.

Exercises

1. Let X be a set of positive sentences, i.e., the α ∈ X are constructed from prime
formulas by means of ∧ , ∨ ,∀,∃ only. Prove A � X ⇒ B � X, whenever B
is a homomorphic image of A, that is, Md X is closed under homomorphic
images. Once again the converse holds (Lyndon’s theorem; see [CK]).

2. Show that the theories DO and SO are model compatible.

3. Suppose T0 and T1 are model compatible and inductive. Show that T0 + T1 is
an inductive theory which, in addition, is model compatible with T0 and T1.

4. For inductive T show that of all inductive extensions model compatible with
T there exists a largest one, the inductive completion of T . For instance, this
is ACF for the theory TF of fields.

5.5 Model Completeness 151

5.5 Model Completeness

After [Ro1], a theory T is called model complete if for every model A � T the theory
T + DA is complete in LA. For A,B � T where A ⊆ B (hence BA � DA) the
completeness of T + DA obviously means the same as AA ≡ BA, or equivalently,
A � B. In short, a model complete theory T has the property

(∗) A ⊆ B ⇒ A � B, for all A,B � T .
Conversely, if (∗) is satisfied then T + DA is also complete. Indeed, let B � T, DA
so that w.l.o.g. A ⊆ B and hence A � B. But then all these B are elementarily
equivalent in LA to AA and therefore to each other, which tells us that T + DA
is complete. (∗) is therefore an equivalent definition of model completeness and this
definition, which is easy to remember, will be preferred in the sequel.

It is clear that if T ⊆ L is model complete then so too is every theory that extends
it in L. Furthermore, T is then inductive. Indeed, a chain K of T -models is always
elementary, by (∗). By the chain lemma 4.7 we obtain that A �

⋃
K for any A ∈ K

and so
⋃

K � T thanks to A � T , which confirms the claim. Hence, by Theorem 4.9,
only an ∀∃-theory can be model complete.

An ∀∃-theory that is not model complete is DO. Let Qa := {x ∈ Q | a � x}
for a ∈ Q. Then (Q1, <) ⊆ (Q0, <) but (Q1, <) �� (Q0, <) as is easily seen. This
choice of models also shows that the complete theory DO10 is not be model complete.
Another example is SO10, since as noticed on page 150, SO10 is not an ∀∃-theory
and hence is not model complete. Conversely, a model complete theory need not
be complete: A prominent example is ACF which will be treated in Theorem 5.4.
Nonetheless, with the following theorem the completeness of a theory can often be
obtained more easily than with other methods.

Theorem 5.1. If T is model complete and has a prime model then T is complete.

Proof. Suppose A � T and let P � T be a prime model. Then up to isomorphism
P ⊆ A, and so P � A by (∗), in particular P ≡ A. Hence, all T -models are
elementarily equivalent to each other so that T is complete.

The following theorem states additional characterizations of model completeness,
of which (ii) is as a rule more easily verifiable than the definition. The implication
(ii)⇒(i) carries the name Robinson’s test for model completeness.

Theorem 5.2. For any theory T the following items are equivalent:
(i) T is model complete,
(ii) A ⊆ B ⇒ A ⊆ec B, for all A,B � T ,
(iii) each ∃-formula α is equivalent in T to an ∀-formula β with free β ⊆ free α,
(iv) each formula α is equivalent in T to an ∀-formula β with free β ⊆ free α.

152 5 Elements of Model Theory

Proof. (i)⇒(ii): evident, since A ⊆ B ⇒ A � B ⇒ A ⊆ec B. (ii)⇒(iii): According
to Theorem 4.6 it is enough to verify that every ∃-formula α = α(�x) ∈ L is persistent
in T . Let A,B � T , A ⊆ B, �a ∈ An, and B � α(�a). Then A � α(�a), because A ⊆ec B
thanks to (ii). (iii)⇒(iv): induction on α. (iii) is used only in the ¬-step: Let α ≡ β,
β some ∀-formula (induction hypothesis). Then ¬β ≡ γ for some ∀-formula γ, hence
¬α ≡ γ. (iv)⇒(i): let A,B � T , A ⊆ B, and B � α(�a) with �a ∈ An. Then A � α(�a)
since by (iv), α(�x) ≡T β for some ∀-formula β. This shows A � B, hence (i).

Remark. If T is countable and has infinite models only, then it is possible to restrict the
criterion (ii) to models A,B of any chosen infinite cardinal number κ. Then we can prove
that an ∃-formula is κ-persistent as defined in the remark on page 148, which by the same
remark suffices to prove the claim of Theorem 5.2 and hence (iii). Once we have obtained
(iii) we have also (i). This is significant for Lindström’s criterion, Theorem 5.7.

A relatively simple example of a model complete theory is TVQ, the theory of
(nontrivial) Q-vector spaces V = (V, +, 0, Q), where 0 denotes the zero vector and
each r ∈ Q is taken to be a unary operation on the set of vectors V . TVQ formulates
the familiar vector axioms, where e.g. the axiom r(a + b)==== ra + rb is reproduced as
a schema of sentences, namely ∀a∀b r(a + b)==== ra + rb for all r ∈ Q. Let V ,V ′ � TVQ

where V ⊆ V ′. We claim that V ⊆ec V ′. By Theorem 5.2(iii), TVQ is then model
complete. For the claim let V ′ � ∃�xα, with a conjunction α of literals in x1, . . . , xn

and constants a1, . . . , am, b1, . . . , bk ∈ V . Then α is essentially a system of the form

(s)

⎧⎪⎪⎨
⎪⎪⎩

r11x1 + · · ·+ r1nxn ==== a1 s11x1 + · · ·+ s1nxn �====b1
...

...

rm1x1 + · · ·+ rmnxn ==== am sk1x1 + · · ·+ sknxn �====bk

Indeed the only prime formulas are term equations, and every term in x1, . . . , xn is
equivalent in TVQ to some term of the form r1x1 + · · · + rnxn. Without stepping
into details it is plausible by the properties of linear systems that the system (s) has
already a solution in V , if it is solvable at all; see for instance [Zi].

For the rest of this section we assume some knowledge of classical algebra where
closure constructions are frequently undertaken. For instance, a torsion-free abelian
group has a divisible closure, a field A has an algebraic closure (a minimal a.c.
extension of A), and an ordered field has a real closure; see Example 2 below. Gen-
erally speaking, we start from a theory T and A � T ∀. By a closure of A in T

we mean a T -model Ā ⊇ A such that A ⊆ B ⇒ Ā ⊆ B, for every B � T . More pre-
cisely, if A ⊆ B then there is an embedding of Ā into B leaving A pointwise fixed. In
this case we say T permits a closure operation. Supposing this, let A,B � T , A ⊂ B,
and b ∈ B \A. Then there is a smallest submodel of B containing A ∪ {b}, the T ∀-
model generated in B by A ∪ {b}, denoted by A(b). Its closure in T is denoted by
Ab. It is called an immediate extension of A in T , because of A ⊂ Ab ⊆ B.

5.5 Model Completeness 153

Example 1. Let T := ACF. A T ∀-model A is here an integral domain. T permits
a closure operation: Ā is the so-called algebraic closure of the quotient field of A.
That there exists an a.c. field Ā embeddable into every a.c. field B ⊇ A is the
claim of Steinitz’s theorem regarding a.c. fields, [Wae, p. 201]. Whenever A,B � T

with A ⊂ B and b ∈ B \A, then b is transcendental over A, since A is already a.c.
Thus a0+a1b+· · ·+anb

n �= 0, for all a0, . . . , an ∈ A with an �= 0. For this reasonA(b)
is isomorphic to the ring A(x) of polynomials

∑
i�n aix

i with the “unknown” x (the
image of b). Hence, A(b) � A(x) � A(c) provided A,B, C � T , with A ⊂ B, C and
b ∈ B \A, c ∈ C \A. The isomorphism A(b) � A(c) extends in a natural way to the
quotient fields of A(b),A(c) (represented by the field of rational functions over A)
and hence to their closures Ab and Ac. Thus, a T -model has up to isomorphism
only one immediate extension in T . Not so in the next more involved example.

Example 2. A real closed field is an ordered field A (like R) in which every poly-
nomial over A of odd degree has a zero and every a � 0 is a square in A. These
properties will turn out to be equivalent to the continuity scheme CS page 86. Let
RCF denote the theory of these fields. Although the order is definable in RCF by
x � y ↔ ∃z y−x==== z2, order should here be a basic relation. Let T := RCF. A
T ∀-model A is an ordered integral domain that determines the order of its quotient
field Q. According to Artin’s theorem for real closed fields ([Wae, p. 244]), some
Ā = Q̄ � RCF can be constructed, called the real closure of A or Q in T .
Let A,B � RCF, A ⊂ B, and b ∈ B \A. Then b is transcendental over A, because no
algebraic extension of A is orderable (this is another characterization of real closed
fields). HereA(b) is isomorphic to the ordered ringA(x) of polynomials overA. A(b)
determines the isomorphism type of its quotient field Q(b) (containing the quotients
of polynomials p(b) over A) and of Ab = Q(b). Actually, <Ab is determined by its
restriction to A∪{b}, or by the partition A = {a ∈ A | a <Ab

b}∪{a ∈ A | b <Ab
a}.

To see this note that it is provable in RCF that a polynomial p(x) with the zeros
a1, . . . , an ∈ A decomposes in A � RCF as c · q(x) · ∏n

i=1(x− ai) with c ∈ A, n � 0,
and q(x) a product of irreducible polynomials of degree 2 or perhaps =1. In Q(b)
(and Ab) holds q(b) > 0. Indeed, each irreducible factor b2 + db + e of q(b) is > 0
since b2 + db + e = (b + d

2)
2 + e− d2

4 > 0 (d, e ∈ A). Thus we know whether or not
p(b) > 0 if we know the signs of b− ai for all zeros ai of p(x) in A. This suffices to
fix the order in Q(b) as is easily seen, and hence in Ab by Artin’s theorem.

For inductive theories T that permit a closure operation, Robinson’s test for model
completeness can still be simplified as follows:

Lemma 5.3. Let T be inductive, and suppose T permits a closure operation. Assume
further that A ⊆ec A′ for all A,A′ � T for the case that A′ is an immediate extension
of A in T . Then T is model complete.

154 5 Elements of Model Theory

Proof. Let A,B � T, A ⊆ B. By Theorem 5.2(ii) it suffices to show that A ⊆ec B.
Let H be the set of all C ⊆ B such that A ⊆ec C � T . Trivially A ∈ H. Since
T is inductive, a chain K ⊆ H satisfies

⋃
K � T . One easily verifies A ⊆ec

⋃
K

as well, so that
⋃

K ∈ H. By Zorn’s lemma there is a maximal element Am ∈ H.
Claim: Am = B. Assume Am ⊂ B. Then there is an immediate extension A′

m � T

of Am such that Am ⊂ A′
m ⊆ B. Since A ⊆ec Am, and by hypothesis Am ⊆ec A′

m, we
get A ⊆ec A′

m. This, however, contradicts the maximality of Am in H. Therefore,
it must be the case that Am = B. Consequently, A ⊆ec B.

Theorem 5.4. ACF is model complete and thus so too ACFp, the theory of a.c. fields
of given characteristic p (= 0 or a prime). Moreover ACFp is complete.

Proof. LetA,B � ACF, A ⊂ B, and b ∈ B \A. By Lemma 5.3 it suffices to show that
A ⊆ec Ab. HereAb is an immediate extension ofA in ACF. Let α := ∃�xβ(�x,�a) ∈ LA,
β quantifier-free, and Ab � α. We shall prove A � α and for this we consider

X := ACF ∪DA ∪ {p(x) �====0 | p(x) a monic polynomial on A}.

With b for x one sees that (Ab, b) � X (b is trancendental over A). Let (C, c) � X,
with c for x. Since C � DA, w.l.o.g. A ⊆ C. By Example 1 Ab � Ac, and so Ac � α.
Ac ⊆ C implies C � α, for α is an ∃-sentence. Since (C, c) has been chosen arbitrarily
we obtain X � α, and from this by the finiteness theorem evidently

DA,
∧

i�k pi(x) �====0 �ACF α, for some k and monic polynomials p0, . . . , pk.

Particularization and the deduction theorem show DA �ACF ∃x
∧

i�k pi(x) �====0 → α.
Every a.c. field is infinite (Example 5(c) in 5.2), and a polynomial has only finitely
many zeros in a field. Thus, DA �ACF ∃x

∧
i�k pi(x) �==== 0. Hence, DA �ACF α and

so A � α. This proves A ⊆ec Ab and in view of Lemma 5.3 the first part of the
theorem. The algebraic closure of the prime field of characteristic p is obviously a
prime model for ACFp. Therefore, by Theorem 5.1, ACFp is complete.

The following significant theorem is won similarly. It was originally proved by
Tarski in [Ta2] by means of quantifier elimination. Incidentally, the completeness
claim is not obtainable using Vaught’s criterion, in contrast to the case of ACF.

Theorem 5.5. The theory RCF of real closed fields is model complete and complete.
It is thus identical to the theory of the ordered field of real numbers, and as a complete
axiomatizable theory it is also decidable.

Proof. Let A � RCF. It once again suffices to show that A ⊆ec Ab for an immediate
extension Ab of A in RCF. Let U := {a ∈ A | a <B b}, V := {a ∈ A | b <B a},
with B := Ab. Then U ∪ V = A. Now let Ab � ∃�xβ(�x,�a), β quantifier-free, �a ∈ Am.
The model (B, b) with b for x then clearly satisfies the set of formulas

X := RCF ∪DA ∪ {a < x | a ∈ U} ∪ {x < a | a ∈ V }.

5.5 Model Completeness 155

Suppose (C, c) � X, interpreting x as c. We may assume A ⊆ C because C � DA.
Since c /∈ U ∪ V = A, c is transcendental over A (see Example 2). Hence, the
quotient field Q(c) of A(c) is isomorphic to the field of rational functions over A
with the unknown x. The order of Q(c) is fixed by the partition A = U ∪ V coming
from Q(b). Thus, Q(b) � Q(x) � Q(c). The isomorphism Q(b) � Q(c) extends to
one between the real closures Ab and Ac. As in Theorem 5.4 we thus obtain X � α,
and so for some a1, . . . , ak, b1, . . . , bl ∈ A, where k, l � 0 but k + l > 0,

DA �RCF ∃x(
∧k

i=1 ai < x ∧
∧l

i=1 x < bi) → α (ai ∈ U, bi ∈ V).
Now, an ordered field is densely ordered without edge elements, and is infinite.
Hence, �RCF ∃x(

∧k
i=1 ai < x ∧

∧l
i=1 x < bi). This results in DA �RCF α. Therefore

A � α, and A ⊆ec Ab is proved. To verify completeness observe that RCF has a
prime model, namely the real closure of Q, the ordered field of the real algebraic
numbers. Applying Theorem 5.1 once again confirms the completeness of RCF.

A theory T is called the model completion of a theory T0 of the same language if
T0 ⊆ T and T +DA is complete for every A � T0. Clearly, T is then model complete;
moreover, T is model compatible with T0 (A � T0 implies (∃C∈Md T)A ⊆ C, since
T +DA is consistent). The existence of a model complete extension is necessary for
the existence of a model completion of T0, but not sufficient; see Exercise 1.

A somewhat surprising fact is that a model completion of T is uniquely determined
provided it exists. Indeed, let T, T ′ be model completions of T0. Both theories are
model compatible with T0, and hence with each other. T, T ′ are model complete and
therefore inductive, so that T + T ′ is model compatible with T (Exercise 3 in 5.4).
Thus, if A � T then there exist some B � T + T ′ with A ⊆ B, and since T is model
complete we obtain A � B. This implies A ≡ B � T ′, and consequently A � T ′.
For reasons of symmetry, A � T ′ ⇒ A � T as well. Therefore T = T ′.

Example 3. ACF is the model completion of the theory TJ of all integral domains
and so a fortiori of the theory TF of all fields. Indeed, let A � TJ . By Theorem 5.4,
ACF is model complete, hence also T := ACF+DA (in LA). Moreover, T is complete,
because by Example 1, T has a prime model, namely the closure Ā of A in ACF.
Using Theorem 5.5, one analogously shows that RCF is the model completion of the
theories of ordered commutative rings with unit element, and of ordered fields.

A � T is called existentially closed in T , or ∃-closed in T for short, if A ⊆ec B for
each B � T with A ⊆ B. For instance, every a.c. field A is ∃-closed in the theory
of fields. For let B ⊇ A be any field and C be any a.c. extension of B. Then A � C
thanks to the model completeness of ACF. Hence A ⊆ec B by Lemma 4.8(ii). The
following lemma generalizes in some sense the fact that every field is embeddable
into an a.c. field. Similarly, a group, for instance, is embeddable into a group that
is ∃-closed in the theory of groups.

156 5 Elements of Model Theory

Lemma 5.6. Let T be an ∀∃-theory of some countable language L. Then every
infinite model A of T can be extended to a model A∗ of T such that |A∗| = |A|,
which is ∃-closed in T .

Proof. For the proof we assume, for simplicity, that A is countable. Then LA

is also countable. Let α0, α1, . . . be an enumeration of the ∃-sentences of LA and
A0 = AA.7 Let An+1 be an extension of An in LA such that An+1 � T + αn,
as long as such an extension exists; otherwise simply put An+1 = An. Since T is
inductive, B0 =

⋃
n∈NAn � T . If α = αn is an ∃-sentence in LA valid in some

extension B � T of B0, then already An+1 � α and thus also B0 � α. Now we
repeat this construction with B0 in place of A0 with respect to an enumeration of all
∃-sentences in LB0 and obtain an LB0-structure B1 � T . Subsequent reiterations
produce a sequence B1 ⊆ B2 ⊆ · · · of LBn-structures Bn+1 � T . Let A∗ (� T) be the
L-reduct of

⋃
n∈N Bn � T and A∗ ⊆ B � T . Assume B � ∃�xβ(�a, �x), �a ∈ (A∗)n. Then

Bm � β(�a,�b) for suitable m. Hence
⋃

n∈N Bn � β(�a,�b) and so A∗ � ∃�xβ(�a, �x).

With this lemma one readily obtains the following highly applicable criterion for
proving the model completeness of certain theories, which, by Vaught’s criterion,
are always complete at the same time.

Theorem 5.7 (Lindström’s criterion). A countable κ-categorical ∀∃-theory T

without finite models is not only complete but also model complete.

Proof. Since all T -models are infinite, T has a model of cardinality κ, and by
Lemma 5.6 also one that is ∃-closed in T . But then all T -models of cardinality κ

are ∃-closed in T , because all these are isomorphic. Thus A ⊆ B ⇒ A ⊆ec B, for all
A,B � T of cardinality κ. Therefore, T is model complete according to the remark
on page 152.

Examples of applications.
(a) The ℵ0-categorical theory of atomless Boolean algebras.
(b) The ℵ1-categorical theory of nontrivial Q-vector spaces.
(c) The ℵ1-categorical theory of a.c. fields of given characteristic.

A few comments: A Boolean algebra B is called atomless if for each a �= 0 in B

there is some b �= 0 in B with b < a (< is the partial lattice order of B). The proof
of (a) is similar to that for densely ordered sets. Also (b) is easily verified. Observe
that a Q-vector space of cardinality ℵ1 has a base of cardinality ℵ1. From (c) the
model completeness of ACF follows in a new way: If A,B � ACF and A ⊆ B then
both fields have the same characteristic p. Since ACFp is model complete by (c),
A � B follows. This obviously implies that ACF is model complete as well.
7 For uncountable A we have |LA| = |A|. In this case one proceeds with an ordinal enumeration of
LA rather than an ordinary one. But the proof is almost the same.

5.6 Quantifier Elimination 157

Exercises

1. Prove that of the four theories DOij only DO00 is model complete. Moreover,
show that DO has no model completion.

2. Let T be the theory of divisible torsion-free abelian groups. Show that
(a) T is model complete,
(b) T is the model completion of the theory T0 of torsion-free abelian groups.

3. T ∗ is called the model companion of T provided T, T ∗ are model compatible and
T ∗ is model complete. Show that if T ∗ exists then T ∗ is uniquely determined,
and Md T ∗ consists of all models ∃-closed in T .

4. Prove that an ∀∃-sentence valid in all finite fields is valid in all a.c. fields. This
fact is highly useful in algebraic geometry.

5.6 Quantifier Elimination

Because ∃x(y < x ∧ x < z) ≡DO y < z, in the theory of densely ordered sets the
quantifier in the left-hand formula can be eliminated. In fact, in some theories,
including the theory DO00 (see 5.2), the quantifiers can be eliminated from every
formula. One says that T (⊆ L0) allows quantifier elimination if for every ϕ ∈ L
there exists some open formula ϕ′ ∈ L such that ϕ ≡T ϕ′. Quantifier elimination is
the oldest method of showing certain theories to be decidable and occasionally also
to be complete. Some presentations demand additionally free ϕ′ = free ϕ, but this
is irrelevant.

A theory T allowing quantifier elimination is model complete by Theorem 5.2(iv),
because open formulas are in particular ∀-formulas. T is therefore an ∀∃-theory, a
remarkable necessary condition for quantifier eliminability.

In order to confirm quantifier elimination for a theory T it suffices to eliminate
the prefix ∃x from every formula of the form ∃xα, where α is open. Indeed, think
of all subformulas of the form ∀xα in a formula ϕ as being equivalently replaced by
¬∃x¬α, so that only the ∃-quantifier appears in ϕ. Looking at the farthest-right
prefix ∃x in ϕ one can write ϕ = · · · ∃xα · · · with quantifier-free α. Now, if ∃xα is
replaceable by an open formula α′ then this process can be iterated no matter how
long it takes for all ∃-quantifiers in ϕ to disappear.

Thanks to the ∨ -distributivity of the ∃-quantifiers we may moreover assume that
the quantifier-free part α of ∃xα from which ∃x has to be eliminated is a conjunction
of literals, and that x explicitly occurs in each of these literals: simply convert α

158 5 Elements of Model Theory

into a disjunctive normal form and distribute ∃x over the disjuncts such that ∃x
stands in front of a conjunction of literals only. If x does not appear in any of these
literals, ∃x can simply be discarded. Otherwise remove the literals not containing x

beyond the scope of ∃x, observing that ∃x(α ∧ β) ≡ ∃xα ∧ β if x /∈ var β.
Furthermore it can be supposed that none of the conjuncts is of the form x==== t

with x /∈ var t. Indeed, since ∃x(x==== t ∧ α) ≡ α t
x , the quantifier has then already

been eliminated. We may also assume that x is not v0 (using bound renaming) and
that neither x==== x nor x �==== x is among the conjuncts. For x==== x can equivalently
be replaced by �, as can x �==== x by ⊥. Here one may define � and ⊥ as v0 ==== v0 and
v0 �==== v0, respectively. Replacement will then introduce v0 as a possible new free
variable, but that is harmless. If the language contains a constant c one may replace
v0 by c in the above consideration. If not, one may add a constant or even ⊥ as a
new prime formula to the language, similar to what is proposed below for DO.

Call an ∃-formula simple if it is of the form ∃x
∧

i αi, where every αi is a literal
with x ∈ var αi. Then the above considerations result in the following

Theorem 6.1. T allows quantifier elimination if every simple ∃-formula ∃x
∧

i αi

is equivalent in T to some open formula. Here without loss of generality, none of
the literals αi is x==== x, x �====x, or of the form x==== t with x /∈ var t.

Example 1. DO00 allows quantifier elimination. Because y ≮ z ≡T z < y ∨ z ==== y

and z �==== y ≡T z < y ∨ y < z and since in general (α ∨ β)∧γ ≡ (α∧γ) ∨ (β ∧γ), we
may suppose that the conjunction of the αi in Theorem 6.1 does not contain the
negation symbol. We are therefore dealing with a formula of the form

∃x(y1 < x ∧ · · · ∧ ym < x ∧ x < z1 ∧ · · · ∧ x < zk),

which is equivalent to ⊥ if x is one of the variables yi, zj. If not, it is equivalent to
� whenever m = 0 or k = 0, and in the remaining case to

∧n
i,j=1 yi < zj. That’s it.

DO itself does not allow quantifier elimination. For instance, in α(y) := ∃x x < y

the quantifier is not eliminable. If α(y) were equivalent in DO to an open formula
then A,B � DO, A ⊆ B, a ∈ A, and B � α(a) would imply A � α(a). But this is
not so for the densely ordered sets A,B with A = {x ∈ Q | 1 � x} and B = Q.
Choose a = 1. Quantifier elimination does however become possible if the signature
{<} is expanded by considering the formulas L, R as 0-ary predicate symbols. The
fact that {L, R} forms a Boolean basis for sentences in DO is not yet sufficient for
quantifier eliminability. What is needed here is a Boolean basis for the set of all
formulas (not only sentences) modulo DO.

Also the theory SO does not allow quantifier elimination in the original language,
simply because it is not an ∀∃-theory as was noticed earlier. The same holds for the
expansions SOij.

5.6 Quantifier Elimination 159

Example 2. A classic, by no means trivial, result of quantifier elimination by
Presburger refers to Th (N, 0, 1, +, <), with the additional unary predicate symbols
m (m = 2, 3, . . .), explicitly defined by m x ↔ ∃y my==== x where my denotes the
m-fold sum y + · · · + y of y. We shall prove a related result with respect to the
group Z in L{0, 1, +,−, <, 2 , 3 , . . . }. Denote the k-fold sum 1 + · · · + 1 by k in
what follows, and set (−k)x := −kx.

Let ZGE be the elementary theory in L{0, 1, +,−, <, 2 , 3 , . . . } whose axioms
subsume those for ordered abelian groups, and the axioms

∀x(0 < x↔ 1 � x), ∀x(m x↔ ∃y my==== x) and ϑm := ∀x
∨

k<m m x + k

for m = 2, 3, . . . ZGE-models, more precisely, their reducts to L := L{0, 1, +,−, <},
are called Z-groups. These are ordered with smallest positive element 1. The ϑm

state for a Z-group G that the factor groups G/mG are cyclic of order m. Here
mG := {mx | x ∈ G}. Let ZG denote the reduct theory of ZGE in L whose models
are just the Z-groups. ZGE is a definitorial and hence a conservative extension of
ZG (cf. 2.6). It will turn out that Z-groups are precisely the ordered abelian groups
elementarily equivalent to the paradigm structure (Z, 0, 1, +,−, <). Let us notice
that �ZG ηn for each n, where ηn is the formula 0 � x < n →

∨
k�n x==== k.

We are now going to prove that ZGE allows quantifier elimination. Observe first
that since t �====s ≡ZGE s < t ∨ t < s and m� t ≡ZGE

∨m−1
i=1 m t + i and m t ≡ZGE m −t

it may be assumed that the kernel of a simple ∃-formula is a conjunction of formulas
of the form nix==== t0i , n′

ix < t1i , t2i < n′′
i x, and mi n′′′

i x + t3i where x /∈ var tji . By
multiplying these formulas by a suitable number and using t < s ≡ZGE nt < ns and
m t ≡ZGE nm nt for n �= 0, one sees that all the ni, n

′
i, n

′′
i , n

′′′
i can be made equal to

some number n > 1. Clearly, in doing so, tji and the “modules” mi all change. But
the problem of elimination is thus reduced to formulas of the following form, where
the jth conjunct disappears whenever kj = 0 (j � 3):

(1) ∃x
(∧k0

i=1 nx==== t0i ∧
∧k1

i=1 t1i < nx ∧
∧k2

i=1 nx < t2i ∧
∧k3

i=1 mi nx + t3i
)
.

With y for nx and m0 = n, (1) is certainly equivalent in ZGE to
(2) ∃y

(∧k0
i=1 y==== t0i ∧

∧k1
i=1 t1i < y ∧

∧k2
i=1 y < t2i ∧

∧k3
i=1 mi y + t3i ∧ m0 y

)
.

According to Theorem 6.1 we can at once assume that k0 = 0, so that the elimination
problem, after renaming y back to x, reduces to formulas of the form

(3) ∃x
(∧k1

i=1 t1i < x ∧
∧k2

i=1 x < t2i ∧
∧k3

i=0 mi x + t3i
)

where still x /∈ var tji . Let m be the smallest common multiple of m0, . . . , mk3 .
Case 1: k1 = k2 = 0. Then (3) is equivalent in ZGE to

∨m
j=1

∧k3
i=0 mi j + t3i . Indeed

if an x such that
∧k3

i=0 mi x + t3i exists at all, then so does some x = j ∈ {1, . . . , m}.
For let j be determined by axiom ϑm so that m x + (m− j), i.e., also m x− j and
consequently mi x − j for all i � k3. Then mi x + t3i − (x − j) = j + t3i also holds
for i = 0, . . . , k3 as was claimed.

160 5 Elements of Model Theory

Case 2: k1 �= 0 and j as above. Then (3) is equivalent to
(4)

∨k1
µ=1[

∧k1
i=1 t1i � t1µ ∧

∨m
j=1(

∧k2
i=1 t1µ + j < t2i ∧

∧k3
i=0 mi t1µ + j + t3i)].

This is a case distinction according to the maximum among the values of the t1i .
From each disjunct in (4) certainly (3) follows in ZGE (consider t1i < t1µ + j). Now
suppose conversely that x is a solution of (3). Then in the case

∧k1
i=1 t1i � t1µ the µth

disjunct of (4) is also valid. For this we need only confirm t1µ + j < t2i , which comes
down to t1µ + j � x. Were x < t1µ + j, i.e., 0 < x − t1µ < j, then x − t1µ = k follows
for some k < j by ηj, that is, x = t1µ + k. Thus, mi t1µ + j − x = j − k for all i � k3.
But this yields the contradiction m j − k < m.
Case 3: k1 = 0 and k2 �= 0. The argument is analogous to Case 2 but with a
distinction according to the smallest term among the tk2

i .

From this remarkable example we obtain the following

Corollary 6.2. ZGE is model complete. ZGE and ZG are complete and decidable.

Proof. Since Z is obviously a prime model for ZG, completeness follows from model
completeness, which in turn follows from quantifier eliminability. Clearly, along
with ZGE also its reduct theory ZG is complete. Hence, as complete axiomatizable
theories, both these theories are decidable.

Remark 1. Also ZG is model complete; Exercise 1. It is in fact the model completion of
the theory of discretely ordered abelian groups because every such group is embeddable
into some Z-group (not quite easy to prove). This is a main reason for the interest in ZG.
Although model complete, ZG does not allow quantifier elimination.

We now intend to show that theories ACF and RCF of algebraically and real closed
fields respectively allow quantifier elimination, even without any expansion of their
signatures. We undertake the proof with a model-theoretical criterion for quantifier
elimination, Theorem 6.4. In its proof we will use a variant of Theorem 2.3. Call
X ⊆ L a Boolean basis for L in T if every ϕ ∈ L belongs to 〈X〉 (page 140). Let
M,M′ be L-models and write M ≡X M′ instead of (∀ϕ∈X)(M � ϕ ⇔M′ � ϕ),
andM≡M′ instead of (∀ϕ∈L)(M � ϕ⇔M′ � ϕ).

Theorem 6.3 (Basis theorem for formulas). Let T be a theory, X ⊆ L, and
suppose that M ≡X M′ ⇒ M ≡ M′, for all M,M′ � T . Then X is a Boolean
basis for L in T .

Proof. Let α ∈ L and Yα := {γ ∈ 〈X〉 | α �T γ}. One then shows that Yα �T α as
in the proof of Theorem 2.3 by arguing with a modelM rather than a structure A.
The remainder of the proof proceeds along the lines of Theorem 2.3.

A theory T is called substructure complete if for all A,B where A ⊆ B � T the
theory T +DA is complete. This is basically only a reformulation of T ’s being the
model completion of T ∀. Indeed, let T be substructure complete and A � T ∀. Then

5.6 Quantifier Elimination 161

by Lemma 4.1, A ⊆ B for some B � T , and T +DA is hence complete. Conversely,
let T be the model completion of T ∀ and A ⊆ B � T . Then A � T ∀, hence T +DA
is complete so that T is substructure complete. In view of this fact we need to pick
up only one of these properties in the next theorem. There exist yet other criteria,
in particular the amalgamability of models of T ∀; see for instance [CK].

Theorem 6.4. For every theory T in L the following properties are equivalent:
(i) T allows quantifier elimination, (ii) T is substructure complete.

Proof. (i)⇒(ii): Let A be a substructure of a T -model, α(�x) ∈ L, and �a ∈ An such
that A � α [�a]. Further let B � T, DA so that w.l.o.g. B ⊇ A. Then also B � α(�a),
because in view of (i) we may suppose that α contains no quantifiers. Since B was
arbitrary, DA �T α(�a). Hence T + DA is complete.
(ii)⇒(i): SupposeM := (A, w) � T, ϕ(�x) and let X be the set all of literals λ of L.
Claim: TXM �T ϕ(�x), where TXM := {ϕ ∈ X | M � ϕ} is the set of formulas
from X true in M. Let AE be the substructure generated from E := {a1, . . . , an}
in A, where a1 = xw

1 , . . . , an = xw
n . By (ii), T + DAE is complete and moreover

consistent with ϕ(�a) (observe AA � T + DAE + ϕ(�a)). Hence DAE �T ϕ(�a). Thus,
by the finiteness theorem, there are literals λ0(�x), . . . , λk(�x) with λi(�a) ∈ DAE and∧

i�k λi(�a) �T ϕ(�a). Therefore
∧

i�k λi(�x) �T ϕ(�x), because a1, . . . , an do not appear
in T . Certainly λi(�x) ∈ TXM for all i � k, hence TXM �T ϕ(�x). This proves the
claim. It holds for arbitrary ϕ(�x) ∈ L provided M � ϕ(�x), so that TXM is clearly
maximally consistent. This in turn implies that M ≡X M′ ⇒ M ≡ M′, for all
M,M′ � T as is easily seen. Thus, according to Theorem 6.3, the literals of L
form a Boolean basis for L in T , which obviously amounts to saying that T allows
quantifier elimination, and (i) is proved.

Corollary 6.5. An ∀-theory T permits quantifier elimination if and only if T is
model complete.

Proof. Due to A ⊆ B � T ⇒ A � T , (ii) in Theorem 6.4 is satisfied provided only
T + DA is complete for all A � T . But this is granted if T is model complete.

Example 3. Let T be the ∀-theory with two unary function symbols f, g whose
axioms state that f and g are injective, f and g are mutually inverse (∀x fgx==== x and
∀x gfx==== x), and there are no circles (cf. Example 3 in 5.2). Note that ∀y∃xfx==== y

is provable from the axiom ∀x f(gx)==== x. Hence, f and g are bijective. The T -
models consist of disjoint countable infinite “threads” which occurred also in the
just mentioned example. Hence, T is ℵ1-categorical and thus model complete by
Lindström’s criterion. By the corollary, T permits the elimination of quantifiers.

162 5 Elements of Model Theory

Theorem 6.6. ACF and RCF allow quantifier elimination.

Proof. By Theorem 6.4 it is enough to show that ACF and RCF are substructure
complete, or put another way, ACF and RCF are the model completions of ACF∀

and RCF∀, respectively. Both claims are clear from Example 3 in 5.5, since ACF∀

is identical to the theory of integral domains, and RCF∀ is nothing other than the
theory of ordered commutative rings with unit element.

This theorem was originally proved by Tarski in [Ta2]. While thanks to a host
of model-theoretical methods the above proof is significantly shorter than Tarski’s
original, the latter is still of import in many algorithmic questions. Decidability and
eliminability of quantifiers in RCF have great impact also on other fields of research,
in particular on the foundations of geometry which are not treated in this book.

Remark 2. Due to the completeness of RCF, one may also say that the first-order theory
of the ordered field R allows quantifier elimination. Incidentally, the quantifiers in RCF are
not eliminable if the order, which is definable in RCF, is not considered as a basic relation.
Also the (complete) theory T := Th (R, <, 0, 1, +,−, ·, exp) with the exponential function
exp in the language does not allow quantifier elimination. T is nonetheless model complete
as was shown in [Wi]. Because of completeness, the decision problem for T reduces to the
still unsolved axiomatization problem, whose solution hinges on the unanswered problem
concerning transcendental numbers, Schanuel’s conjecture, which lies outside the scope of
logic (consult the Internet). A particular question related to the conjecture is whether or
not ee is transcendental.

Exercises

1. Show that the theory ZG is model complete in its language, and even in the
language L{0, 1, +,−}.

2. A structure elementarily equivalent to (N, 0, 1, +, <) is called an N-semigroup.
Axiomatize the theory of N-semigroups and show (by tracing back to ZG) that
it allows quantifier elimination in L{0, 1, +, <, 1 , 2 , . . . }.

3. Let RCF◦ be the theory of real closed fields without order as a basic notion.
Prove that the ∃y is not eliminable in RCF◦ from α(x) = ∃y y · y==== x.

4. Show that RCF is axiomatized alternatively by the axioms for ordered fields
and the continuity scheme CS in 3.3 page 86.

5. Show that the theory T of divisible ordered abelian groups allows quantifier
elimination.

5.7 Reduced Products and Ultraproducts 163

5.7 Reduced Products and Ultraproducts

In order to merely indicate the usefulness of the following constructions consider for
instance Zn, a direct power of the additive group Z. By component-wise verification
of the axioms it can be shown that Zn is itself an abelian group (n � 2). But in
this and similar examples we can save ourselves the bother, because by Theorem 7.5
below a Horn sentence valid in all Ai is also valid in the product

∏
i∈I Ai, and the

group axioms are Horn sentences in each reasonable signature.
Let (Ai)i∈I be a family of L-structures and F a proper filter on I (�= ∅, cf. 1.5).

We define a relation ≈F on the domain B of the product B :=
∏

i∈I Ai by
a ≈F b ⇔ {i ∈ I | ai = bi} ∈ F.

This is an equivalence relation on the set B. Indeed, let Ia=b := {i ∈ I | ai = bi}.
≈F is reflexive (since Ia=a = I ∈ F) and trivially symmetric, but also transitive,
because Ia=b, Ib=c ∈ F ⇒ Ia=c ∈ F , thanks to Ia=b ∩ Ib=c ⊆ Ia=c.

Furthermore ≈F is a congruence in the algebraic reduct of B. To see this let f be
an n-ary function symbol and �a ≈F

�b, which for �a = (a1, . . . , an), �b = (b1, . . . , bn)
in Bn abbreviates a1 ≈F b1, . . . , an ≈F bn. Then I�a=�b :=

⋂n
ν=1 Iaν=bν belongs to F .

Since certainly I�a=�b ⊆ If�a=f�b, we get If�a=f�b ∈ F and hence fB�a ≈F fB�b.
Now let C := {a/F | a ∈ B}, where a/F denotes the congruence class of ≈F to

which a ∈ B belongs. Thus, a/F = b/F ⇔ Ia=b ∈ F . C becomes the domain of
some L-structure C in that first the operations fC are defined in a canonical way.
With �a/F := (a1/F, . . . , an/F) set fC(�a/F) := (fB�a)/F . This definition is sound
because ≈F is a congruence. For constant symbols c let of course cC := cB/F .

Similar to the identity, the relation symbols are interpreted in C as follows:

rC�a/F :⇔ Ir�a ∈ F
(
Ir�a := {i ∈ I | rAi�ai}, �ai := (a1

i , . . . , a
n
i)

)
.

Also this definition is sound, since Ir�a ∈ F and �a ≈F
�b imply Ir�b ∈ F . Indeed,

�a ≈F
�b is equivalent to I�a=�b ∈ F and it is readily verified that Ir�a ∩ I�a=�b ⊆ Ir�b.

The L-structure C so defined is called a reduced product of the Ai by the filter F

and is denoted by
∏F

i∈I Ai (some authors denote it by
∏

i∈I Ai/F). Imagining a filter
F as a system of subsets of I each of which contains “almost all indices,” one may
think of

∏F
i∈I Ai as arising from B =

∏
i∈I Ai by identification of those a, b ∈ B for

which the ith projections are the same for almost all indices i.
Let C =

∏F
i∈I Ai. For w : Var → B (=

∏
i∈I Ai) the valuation x
→ (xw)i to Ai is

denoted by wi, so that xw = (xwi)i∈I . Induction on t yields tw = (twi)i∈I . Define the
valuation w/F → C by xw/F = xw/F . This setting generalizes inductively to

(1) tw/F = tw/F , for all terms t and valuations w : Var→ B.
To verify (1) consider (f�t)w/F = fC(�t w/F) = fC(�t w/F) = fB(�t w)/F = (f�t)w/F . It is
easily seen that each w′ : Var→ C is of the form w/F for suitable w : Var→ B.

164 5 Elements of Model Theory

Let w : Var→ B and α ∈ L. Define Iw
α := {i ∈ I | Ai � α [wi]}. Then holds

(2) Iw
∃xβ ⊆ Iw′

β for some a ∈ B and w′= w a
x .

Indeed, let i ∈ Iw
∃xβ, i.e., Ai � ∃xβ [wi]. Choose some ai ∈ Ai with Ai � α [wi

ai
x]. For

i /∈ Iw
∃xβ pick up any ai ∈ Ai. Then clearly (2) holds with a = (ai)i∈I and w′=w a

x .
The case that F is an ultrafilter on I is of particular interest. By Theorem 7.1, all

elementary properties valid in almost all factors carry over to the reduced product,
which in this case is called an ultraproduct. If Ai = A for all i ∈ I then

∏F
i∈I Ai

is termed an ultrapower of A, denoted by AI/F . The importance of ultrapowers is
underlined by Shelah’s theorem (not proved here) that A ≡ B iff A and B have
isomorphic ultrapowers. The proof of Theorem 7.1 uses mainly filter properties; the
specific ultrafilter property is applied only for confirming Iw

¬α ∈ F ⇔ Iw
α /∈ F .

Theorem 7.1 (�Loś’s ultraproduct theorem). Let C =
∏F

i∈I Ai be an ultra-
product of the L-structures Ai. Then for all α ∈ L and w : Var→

∏
i∈I Ai,

(∗) C � α[w/F]⇔ Iw
α ∈ F .

Proof by induction on α. (∗) is obtained for equations t1 ==== t2 as follows:

C � t1 ==== t2 [w/F] ⇔ t
w/F
1 = t

w/F
2 ⇔ tw1/F = tw2/F

(
by (1)

)
⇔ {i ∈ I | twi

1 = twi
2 } ∈ F

(
tw = (twi)i∈I

)
⇔ {i ∈ I | Ai � t1 ==== t2 [wi]} ∈ F ⇔ Iw

t1 ==== t2
∈ F.

One similarly proves (∗) for prime formulas of the form r�t . Induction steps:

C � α∧β [w/F] ⇔ C � α, β [w/F] ⇔ Iw
α , Iw

β ∈ F (induction hypothesis)
⇔ Iw

α ∩ Iw
β ∈ F (filter property)

⇔ Iw
α ∧ β ∈ F (since Iw

α ∧ β = Iw
α ∩ Iw

β).

Further, C � ¬α [w/F] ⇔ C � α [w/F] ⇔ Iw
α /∈ F ⇔ I \Iw

α ∈ F ⇔ Iw
¬α ∈ F . Now

let Iw
∀xα ∈ F , a ∈

∏
i∈I Ai, and w′ := w a

x . Since Iw
∀xα ⊆ Iw′

α , also Iw′
α ∈ F . Hence,

C � α [w′] by the induction hypothesis. a was arbitrary, so C � ∀xα [w/F]. The
converse is with β := ¬α equivalent to Iw

∃xβ ∈ F ⇒ C � ∃xβ [w/F]. This follows
from (2) since (∗) holds by the induction hypothesis for α, hence also for ¬α.

Corollary 7.2. A sentence α is valid in the ultraproduct
∏F

i∈I Ai iff α is valid in
“almost all” Ai, that is, {i ∈ I | Ai � α} ∈ F . In particular, AI/F � α ⇔ A � α.
In other words, an ultrapower of A is elementarily equivalent to A.

The last claim is clear since the validity of α in a structure does not depend on the
valuation chosen. The ultrapower case can be further strengthened to A � AI/F

(Exercise 2), useful for the construction of special nonstandard models, for instance.
From the countless applications of ultraproducts, we present here a very short proof
of the compactness theorem for arbitrary first-order languages. The proof is tricky,
but undoubtedly the most elegant proof of the compactness theorem.

5.7 Reduced Products and Ultraproducts 165

Theorem 7.3. Let X ⊆ L and let I be the set of all finite subsets of X. Assume
that every i ∈ I has a model (Ai, wi). Then there exists an ultrafilter F on I such
that

∏F
i∈I Ai � X [w/F], where xw = (xwi)i∈I for x ∈ Var. In short, if every finite

subset of X has a model then the same applies to the whole of X.

Proof. Let Jα := {i ∈ I | α ∈ i} for α ∈ X. The intersection of finitely many
members of E := {Jα | α ∈ X} is �= ∅; for instance {α0, . . . , αn} ∈ Jα0 ∩ · · · ∩ Jαn .
By the ultrafilter theorem (page 28), there exists an ultrafilter F ⊇ E. If α ∈ X

and i ∈ Jα (that is, α ∈ i) then Ai � α [wi]. Consequently, Jα ⊆ Iw
α ; hence Iw

α ∈ F .
Therefore,

∏F
i∈I Ai � α [w/F] by Theorem 7.1 as claimed.

A noteworthy consequence of these results is the following theorem; by Shelah’s
theorem mentioned above condition (a) can be converted in a purely algebraic one.

Theorem 7.4. Let KL be the class of all L-structures, and K ⊆KL. Then

(a) K is ∆-elementary iff K is closed under elementary equivalence and under
ultraproducts,

(b) K is elementary ⇔ K is closed under elementary equivalence and both K

and \K (= KL \K) are closed under ultraproducts.

Proof. (a): A ∆-elementary class is clearly closed under elementary equivalence.
The rest of direction ⇒ holds by Theorem 7.1. ⇐ : Suppose T := ThK and A � T

and let I be the set of all finite subsets of ThA. For each i = {α1, . . . , αn} ∈ I

there exists some Ai ∈ K such that Ai � i, for otherwise
∨n

ν=1 ¬αν ∈ T , which
contradicts i ⊆ T . According to Theorem 7.3 (with X = ThA) there exists a
C :=

∏F
i∈I Ai � ThA, and if Ai ∈ K then so too C ∈ K. Since C � ThA we

know that C ≡ A, and therefore A ∈ K. This shows that A � T ⇒ A ∈ K.
Hence A � T ⇔ A ∈ K, i.e., K is ∆-elementary. (b): ⇒ is obvious by (a),
because for K = Md α we have \K = Md¬α. ⇐ : By (a), K = Md S for some
S ⊆ L0. Let I be the set of all nonempty subsets of S. We claim (∗) : there is some
i = {α0, . . . , αn} ∈ I such that Md i ⊆K. Otherwise let Ai � i such that Ai ∈ \K

for all i ∈ I. Then there exists an ultraproduct C of the Ai such that C ∈ \K and
C � i for all i ∈ I; hence C � S. This is a contradiction to MdS ⊆K. So (∗) holds.
Since also K = Md S ⊆ Md i, we obtain K = Md i = Md

∧
ν�n αν .

Application. Let K be the (∆-elementary) class of all fields of characteristic 0.
We show that K is not elementary, and thus in a new way that ThK is not finitely
axiomatizable. Let Pi denote the prime field of characteristic pi (p0=2, p1=3, . . .)
and let F be a nontrivial ultrafilter on N. We claim that the field

∏F
i∈NPi has

characteristic 0. Indeed, {i ∈ I | Pi � ¬charp} is for a given prime p certainly
cofinite and belongs to F , so that

∏F
i∈NPi � ¬charp for all p. Hence \K is not

closed under ultraproducts and so by Theorem 7.4(b), K cannot be elementary.

166 5 Elements of Model Theory

We now turn to reduced products. Everything said below on them remains valid
for direct products; these are the special case with the minimal filter F = {I}. More
precisely,

∏{I}
i∈I Ai �

∏
i∈I Ai. Filters are always proper in the sequel.

Theorem 7.5. Let C =
∏F

i∈I Ai be a reduced product, w : Var →
∏

i∈I Ai, and α a
Horn formula from the corresponding first-order language. Then

(�) Iw
α ∈ F ⇒ C � α [w/F].

In particular, a Horn sentence valid in almost all Ai is also valid in C.
Proof by induction on the construction of Horn formulas. For prime formulas the
converse of (�) is also valid, because in the proof of (∗) from Theorem 7.1 for prime
formulas no specific ultrafilter property was used. Moreover, if α is prime then
Iw
¬α ∈ F ⇒ Iw

α /∈ F ⇒ C � α [w/F] ⇒ C � ¬α [w/F]. Hence, (�) is correct for all
literals. Now suppose (�) for a prime formula α and a basic Horn formula β, and
let Iw

α → β ∈ F . We show that C � α → β [w/F]. Let C � α [w/F]. Then Iw
α ∈ F

since α is prime. Iw
α ∩ Iw

α → β ⊆ Iw
β leads to Iw

β ∈ F ; hence C � β [w/F] by the
induction hypothesis. This shows that C � α → β [w/F] and proves (�) for all basic
Horn formulas. Induction on ∧ and ∀ proceeds as in Theorem 7.1 and the ∃-step
easily follows with the help of (2) above.

According to this theorem the model classes of Horn theories are always closed
under reduced products, in particular under direct products. This result strengthens
Exercise 1 in 4.1 significantly. We mention finally that also the converse holds: every
theory with a model class closed with respect to reduced products is a Horn theory.
But the proof of this claim, presented in [CK], is essentially more difficult than that
for the similar-sounding Theorem 4.4.

Exercises

1. Show that
∏F

i∈I Ai is isomorphic to Ai0 for some i0 ∈ I if F is a trivial
ultrafilter. This applies e.g. to ultraproducts on a finite index set (Exercise 3
in 1.5). Thus, ultraproducts are interesting only if the index set I is infinite.

2. Prove that A is elementarily embeddable into every ultrapower AI/F .

3. (Basic in nonclassical logics). Let �K :=
⋂
{�A | A ∈ K} be the consequence

relation defined by a class K of L-matrices (page 40). Show that �K is finitary
if K is closed under ultraproducts (which is the case, for instance, if K = {A}
with finite A). Thus, �A is finitary for each finite logical matrix.

4. Let A,B be Boolean algebras. Prove that A � α ⇔ B � α for all universal
Horn sentences α. This holds in particular for identities and quasi-identities.
Every sentence of this kind valid in 2 is therefore valid in all Boolean algebras.

Chapter 6

Incompleteness and Undecidability

Gödel’s fundamental results concerning the incompleteness of formal systems suffi-
ciently rich in content, along with Tarski’s on the nondefinability of the notion of
truth and Church’s on the undecidability of logic, as well as other undecidability
results, are all based on essentially the same arguments. A widely known popular-
ization of Gödel’s first incompleteness theorem runs as follows:

Consider a formalized axiomatic theory T that describes a given domain of objects
A in a manner that we hope is complete. Moreover, suppose that T is capable of
talking in its language L about its own syntax and proofs from its axioms. This is
often possible if T has actually been devised to investigate other things (numbers
or sets, say), namely by means of an internal encoding of the syntax of L. Then the
sentence γ: “I am unprovable in T” belongs to L, where “I” refers precisely to the
sentence γ (clearly, this possibility of self-reference has to be laid down in detail,
which was the main work in [Go2]). Then γ is true in A but unprovable in T .

Indeed, if we assume γ is provable, then, like any other provable sentence in T ,
γ were true in A and so unprovable, since this is just what γ claims. Thus, our
assumption leads to a contradiction. Hence, γ’s assertion goes conform with truth;
more precisely, γ belongs to the sentences from L true in A. Put together, our goal
of exhaustively capturing all theorems valid in A by means of the axioms of T has
not been achieved and is in fact not achievable as we will see.

Clearly, the above is just a rough simplification of Gödel’s Theorem which does
not speak at all about a domain of objects, but is rather a proof-theoretical asser-
tion the proof of which can be carried out in the framework of Hilbert’s finitistic
metamathematics. This in turn means about the same as being formalizable and
provable in Peano arithmetic PA, introduced in 3.3.

This result was a decisive point for a well founded criticism of Hilbert’s program,
which aimed to justify infinitistic methods by means of a finitistic understanding

167

168 6 Incompleteness and Undecidability

of metamathematics. For a detailed description of what Hilbert was aiming at, see
[Kl2] or consult [HB, Vol. 1]. The paradigm of a domain of objects in the above sense
is, for a variety of reasons, the structure N = (N, 0, S, +, ·). Gödel’s theorem states
that even for N a complete axiomatic characterization in its language is impossible,
a result with far-reaching consequences. In particular, PA, which aims at telling us
as much as possible about N , is shown to be incomplete.

PA is the center point of Chapter 7. It is of special importance because classical
number theory and large parts of discrete mathematics can be developed in it; all
interesting combinatorial functions are definable. In addition, known methods for
investigating mathematical foundations can be formalized and proved in PA. These
methods have stood firm against all kinds of criticism, leaving aside some objections
concerning the unrestricted use of two-valued logic, not discussed here.

Some of the steps in Gödel’s proof require only modest suppositions regarding
T , namely the numeralwise representability of relevant syntactical predicates and
functions in T in the sense of 6.3. It was one of Gödel’s decisive discoveries that all
the predicates required in γ’s construction above are primitive recursive1 and that
all predicates and functions of this type are indeed representable in T . As remarked
by Tarski and Mostowski, the latter works even in certain finitely axiomatizable,
highly incomplete theories T and, in addition, covers all recursive functions. This
yields not only the recursive undecidability of T and all its subtheories (in particular
the theory TautL), but also of all consistent extensions of T in its language L.

From this it follows that the first incompleteness theorem as well as Church’s and
Tarski’s results can all be obtained in one go, making essential use of the fixed-point
lemma in 6.5, also called the diagonalization lemma because it is shown by some
kind of diagonalization on the primitive recursive substitution function. Its basic
idea can even be recognized in the ancient liar paradox, and is also used in the
foregoing popularization of the first incompleteness theorem.

In 6.1 we develop the theory of recursive and primitive recursive functions to
the required extent. 6.2 deals with the arithmetization of syntax and of formal
proofs. 6.3 and 6.4 treat the representability of recursive functions in axiomatic
theories. In 6.5 all the aforementioned results are proved, while the deeper-lying
second incompleteness theorem is dealt with in Chapter 7. Section 6.6 concerns the
transferability of decidability and undecidability by interpretation, and 6.7 describes
the first-order arithmetical hierarchy, which vividly illustrates the close relationship
between logic and recursion theory.
1 All these predicates are also elementary in the recursion-theoretical sense, see e.g. [Mo], although
it requires much more effort to verify this. Roughly speaking, the elementary functions are the
“not too rapidly growing” primitive recursive functions. The exponential function (m, n)
→ mn

is still elementary, however the hyperexponential function defined on page 186 is not.

6.1 Recursive and Primitive Recursive Functions 169

6.1 Recursive and Primitive Recursive Functions

In this chapter, along with i, . . . , n we take a, . . . , e to denote natural numbers, unless
stated otherwise. The set of all n-ary functions with arguments and values in N is
denoted by Fn. For f ∈ Fm and g1, . . . , gm ∈ Fn, we call h : �a
→ h(g1�a, . . . , gm�a)
the (canonical) composition of f and the gi and write h = f [g1, . . . , gm]. The arity
of h is n. Analogously, let P [g1, . . . , gm] for P ⊆ Nm and m > 0 denote the n-ary
predicate {�a ∈ Nn | P (g1�a, . . . , gm�a)}.

In an intuitive sense f ∈ Fn is computable if there is an algorithm for computing
f�a for every �a in finitely many steps. Sum and product are simple examples. There
are uncountably many unary functions on N, and because of the finiteness of every
set of computation instructions, only countably many of these can be computable.
Thus, there are noncomputable functions. This existence proof brings to mind the
one for transcendental real numbers, based on the countability of the set of algebraic
numbers. Coming up with concrete examples is, in both cases, less simple.

The computable functions in the intuitive sense have the following properties:

Oc: If h ∈ Fm and g1, . . . , gm ∈ Fn are computable, so too is f = h[g1, . . . , gm].

Op: If g ∈ Fn and h ∈ Fn+2 are computable then so is f ∈ Fn+1, determined by

f(�a, 0) = g�a; f(�a, Sb) = h(�a, b, f(�a, b)).

This are the so-called recursion equations for f . The function f is said to result
from g, h by primitive recursion, or f = Op(g, h) for short.

Oµ: Let g ∈ Fn+1 such that ∀�a∃b g(�a, b) = 0. If g is computable then so is f , given
by f�a = µb[g(�a, b)=0]. Here the right-hand term denotes the smallest b with
g(�a, b) = 0. f is said to result from g by the µ-operation.

Considering Oc, Op, and Oµ as generating operations for obtaining new functions
from already-constructed ones, we state the following definition due to Kleene:

Definition. The set of p.r. (primitive recursive) functions consists of all functions
on N that can be obtained by finitely many applications of Oc and Op starting
with the following initial functions : the constant 0, the successor function S, and
the projection functions Inν :�a
→ aν (1 � ν � n, n = 1, 2, . . .).
With the additional generating schema Oµ one obtains the set of all recursive or
µ-recursive functions. A predicate P ⊆ Nn is called p.r. or recursive (also decidable)
provided the characteristic function χ

P of P has the respective property, defined by

χ
P�a =

{
1 in case P�a,

0 in case ¬P�a.

170 6 Incompleteness and Undecidability

Remark 1. By Dedekind’s recursion theorem (see e.g. [Ra2]), Op defines exactly one
function f ∈ Fn in the sense of set theory (cf. 3.4). Note that for n = 0 the recursion
equations reduce to f0 = c and fSb = h(b, fb), where c ∈ F0 and h ∈ F2. If the condition
∀�a∃b g(�a, b) = 0 in Oµ is omitted, then f is regarded as undefined for those �a for which
there is no b with g(�a, b) = 0. In this way the so-called partially recursive functions are
defined, which, however, we will not require.

The following examples make it clear that by means of the Inν our stipulations
concerning arity in Oc and Op can be extensively relaxed. In the examples, however,
we will still adjoin the normed notation each time in parentheses.
Examples. Let S0 = I11 and Sk+1 = S[Sk], so that clearly Sk : a
→ a+k. By Oc these
functions are all p.r. The n-ary constant functions Kn

c :�a
→ c can be seen to be p.r.
as follows: K0

c = Sc[0] (c � 0), while K1
c0 = c

(
= K0

c

)
and K1

cSb = c
(

= I22(b, K
1
cb)

)
.

For n > 1 we have simply Kn
c = K1

c [I
n
1]. Further, the recursion equations

a + 0 = a
(
= I11(a)

)
; a + Sb = S(a + b)

(
= SI33(a, b, a + b)

)
show addition to be a p.r. function. Since a · 0 = 0

(
= K1

0a
)

and a · Sb = a · b + a(
= I33(a, b, a · b) + I31(a, b, a · b)

)
, it follows that · is p.r. and entirely analogously so

is (a, b)
→ ab. Also the predecessor function Pd is p.r. because
Pd 0 = 0 ; Pd(Sb) = b

(
= I21(b, Pd b)

)
.

“Cut-off subtraction” ·−, given by a ·− b = a− b for a � b and a ·− b = 0 otherwise,
is p.r. since a ·− 0 = a

(
= I11(a)

)
and a ·− Sb = Pd(a ·− b)

(
= Pd I33(a, b, a ·− b)

)
. The

absolute difference |a− b| is p.r. because of |a− b| = (a ·− b) + (b ·− a).

One sees easily that if f is p.r. (resp. recursive) then so too is every function that
results from swapping, equating, or adjoining fictional arguments. For example,
let f ∈ F2. For f1 := f [I22, I

2
1] then f1(a, b) = f(b, a); for f2 := f [I11, I

1
1] clearly

f2a = f(a, a), and for f3 := f [I31, I
3
2] finally f3(a, b, c) = f(a, b), for all a, b, c.

From now on we will be more relaxed in writing down applications of Oc or Op,
and the Inν will no longer explicitly appear. If f ∈ Fn+1 is p.r. then so is the function
(�a, b)
→

∏
k<b f(�a, k), since

∏
k<0 f(�a, k) = 1,

∏
k<Sb f(�a, k) =

∏
k<b f(�a, k) · f(�a, b).

The same holds for (�a, b)
→
∑

k<b f(�a, k), which is defined by
∑

k<0 f(�a, k) = 0 and∏
k<Sb f(�a, k) =

∑
k<b f(�a, k) + f(�a, b). The δ-function, the characteristic function

of the singleton {0}, is defined by δ0 = 1, δSn = 0 and hence is p.r. With δ we easily
obtain the characteristic function of the identity relation: χ=(a, b) = δ|a− b|. This
in turn implies that every finite subset E = {a1, . . . , an} of N is p.r. because

χ
E (a) = χ=(a, a1) + · · ·+ χ=(a, an) (= 0 for n = 0, i.e., E = ∅).

�= is p.r. because χ �=(a, b) = σ|a−b| with the signum function σ, defined by σ0 = 0,
σSn = 1. Also � is p.r. because χ�(a, b) = σ(Sb ·− a) as is easily verified.

Very important is the closure of the set of p.r. functions with respect to definition
by p.r. (resp. recursive) case distinction: If P, g, h are p.r. (resp. recursive) then so

6.1 Recursive and Primitive Recursive Functions 171

is f , defined by f�a = g�a · χ
P�a + h�a · δχP�a. Written in the familiar form,

f�a =

{
g�a in case P�a,

h�a in case ¬P�a.

A simple example is (a, b)
→ max(a, b), defined by max(a, b) = b if a � b and
max(a, b) = a otherwise. Almost all functions considered in number theory are p.r.,
in particular the prime enumeration n
→ pn (with p0 = 2, p1 = 3, . . .). The same is
true for standard predicates like (divides) and prim (to be a prime number). This
will all be verified after some general remarks.

Of fundamental importance is the hypothesis that recursive functions exhaust all
the computable functions over N. This hypothesis is called Church’s thesis; all
undecidability results are based on it. Though it is not at all obvious from looking
at the definition of the recursive functions, all the variously defined computability
concepts turn out to be equivalent, providing evidence in favor of the thesis. One of
these concepts is computability by means of a Turing machine ([Tu]), a particularly
simple abstract model of automated information processing. Also programming
languages may be used to define computability, for instance PROLOG; see 4.4.

Below we compile a list of the easily provable basic facts about p.r. and recursive
predicates needed in the following. Further insights, above all concerning the form
of their defining formulas, will emerge in 6.3 and thereafter. P, Q, R now denote
exclusively predicates of N. In order to simplify the notation of properties of such
predicates, we use as metatheoretical abbreviations the prefixes (∃a<b), (∃a�b),
(∀a<b), and (∀a�b) as in (B) below. Their meaning is self-explanatory.

(A) The set of p.r. (resp. recursive) predicates is closed under forming the com-
plement, union, and intersection of predicates of the same arity, as well as under
insertion of p.r. (resp. recursive) functions, and finally under swapping, equating,
and adjoining fictional arguments. This is proved as follows: for P ⊆ Nn, δ[χP] is
exactly the characteristic function of ¬P := Nn \P ; furthermore χ

P∩Q = χ
P · χ

Q

and χ
P∪Q = sg[χP +χ

Q] as well as χ
P [g1,...,gm] = χ

P [g1, . . . , gm]. Since χgraph f (�a, b) is
the same as χ=(f�a, b), graph f is p.r. if f is (though the converse need not hold, see
the end of this section). All other mentioned closure properties are simply obtained
from the corresponding properties of the characteristic functions.

(B) Let P, Q, . . . ⊆ Nn+1. If Q(�a, b) ⇔ (∀k<b)P (�a, k), R(�a, b) ⇔ (∃k<b)P (�a, k),
Q′(�a, b) ⇔ (∀k�b)P (�a, k), and R′(�a, b) ⇔ (∃k�b)P (�a, k) we say that Q, R, Q′, R′

result from P by bounded quantification. If P is p.r. so too are all these predicates,
because χ

Q(�a, b) =
∏

k<b
χ

P (�a, k) and χ
R(�a, b) = sg(

∑
k<b

χ
P (�a, k)), and similarly

if Q, R are replaced by Q′, R′. The proofs of these equations are so simple that we
pass over them. Briefly, the set of p.r. (resp. recursive) predicates is closed under
bounded quantification. For instance, since a b ⇔ (∃k�b)[a · k = b], also is p.r.

172 6 Incompleteness and Undecidability

So too is the predicate prim, because prim p⇔ p �= 0, 1 & (∀a<p)[a p⇒ a=1]. Note
that a p⇒ a = 1 is equivalent (at the metatheoretical level) to a� p∨∨∨ a = 1 and is
therefore the union of p.r. predicates. Hence, this predicate is indeed p.r.

(C) Suppose P ⊆ Nn+1 satisfies ∀�a∃b P (�a, b) and let f(�a) = µk[P (�a, k)] be the
smallest k such that P (�a, k). Then by Oµ, if P is recursive so too is f , because
f�a = µk[δχP (�a, k) = 0]; however, in general f is no longer p.r. provided P is p.r.
This does hold, though, for the bounded µ-operation: if P ⊆ Nn+1 is p.r. so too is
the function f defined by f(�a, m) = µk�m[P (�a, k)]. Here let

µk�m[P (�a, k)] =

{
the smallest k � m such that P (�a, k), if such a k exists,

m otherwise.
Clearly f(�a, 0) = 0, and f(�a, Sm) = f(�a, m) if (∃k�m)P (�a, k), and f(�a, Sm) = Sm
otherwise. To convert this into a normed recursion we define a p.r. function g by

g(�a, m, b) =

{
b if (∃k�m)P (�a, k),

Sm otherwise.
Then f(�a, Sm) = g(�a, m, f(�a, m)) is easily confirmed. Therefore, f is indeed p.r.

Let h ∈ Fn be p.r. and define µk�h�a[P (�a, k)] := µk�m[P (�a, k) & m = h�a]. Then

0,0

0,1

0,2

0,3

1,0

1,1

1,2

2,0

2,1

3,0

� � ��
��

�
��

�
��

�
��

�
��

�
��� �

�
���

�
�

�
�

�
���

also �a
→ µk�h�a[P (�a, k)] is p.r. A useful application is
the pairing function ℘, a bijective mapping from N2 to
N, defined by ℘(a, b) =

∑
i�a+b i + a. It enumerates the

pairs (a, b) as in the figure (Exercise 2). One can see in
yet another way that ℘ is p.r. By a well-known arith-
metical formula, ℘(a, b) = 1

2(a + b)(a + b + 1) + a. Using
the bounded µ-operation we get the following equation:
℘(a, b) = µk�(3a + b + 1)2 [2k = (a + b)2 + 3a + b].

Here another application of the bounded µ-operation: let lcm{aν | ν�n} denote
the least common multiple of a0, . . . , an. Then n
→ lcm{fν | ν�n} is p.r. provided
f is, simply because of the equation lcm{fν | ν�n} = µk�

∏
ν�n

fν [(∀ν�n)fν k].

Still another application of the bounded µ-operation is a rigorous proof that the
prime number enumeration is p.r. If p is prime than p!+1 is certainly not divisible by
a prime q � p, for q p!+1 and q p! yield q p!+1−p! = 1 and hence the contradiction
q 1. Thus, a prime divisor of p! + 1 is a new prime. What is important here is that
the smallest prime following p is � p!+1. Therefore, the function n
→ pn is uniquely
characterized by the equations

(∗) p0 = 2 ; pn+1 = µq�pn!+1[q prim & q > pn].
Also (∗) is an application of Op, because with f : (a, b)
→ µq�b[q prim & q > a],
g : (a, b)
→ f(a, b! + 1) is p.r. as well, and the second equation in (∗) can be written
pn+1 = g(n, pn) as is easily verified. Hence, n
→ pn is indeed p.r.

6.1 Recursive and Primitive Recursive Functions 173

Remark 2. Unlike the set of p.r. functions, the set of µ-recursive functions can no longer
be effectively enumerated; indeed, not even all unary ones: if (fn)n∈N were such an effective
enumeration then f : n
→ fn(n)+1 would be computable and hence recursive by Church’s
thesis. Thus, f = fm for some m, so that fm(m) = f(m) = fm(m) + 1, a contradiction.
While this seemingly speaks against the thesis, it can in fact be eliminated from the
argument using some basic recursion theory. (C) clarifies the distinction between p.r. and
recursive functions to some extent. The former can be computed with an effort that can
in principle be estimated in advance, whereas the existence condition in the unbounded µ-
operation may be nonconstructive, so that even crude estimations of the effort required for
computation are impossible. It is wrong to think that non-p.r. computable functions are
“growing too fast.” There are examples of such functions taking values from {0, 1} only.
On the other hand, it is simply impossible to compute the digits of f6 for the p.r. function

f : n
→ 22
···

2︸︷︷︸
n

. While f5 has “only” 19 729 digits, the number f6 is already astronomical.

The following considerations are required in 6.2. They concern the encoding of
finite sequences of numbers of arbitrary length. There are basically several possi-
bilities for doing this. One of these is to use the pairing function ℘ (or a similar
one, cf. [Shoe]) repeatedly. Here we choose the particularly intuitive encoding from
[Go2], based on the prime enumeration n
→ pn and the unique prime factorization.

Definition. 〈a0, . . . , an〉 := pa0+1
0 · · · pan+1

n (=
∏

i�n pai+1
i) is called the Gödel number

of the sequence (a0, . . . , an). The empty sequence has the Gödel number 1, also
denoted by 〈〉. Let GN denote the set of all Gödel numbers.

Clearly, 〈a0, . . . , an〉 = 〈b0, . . . , bm〉 ⇒ m = n & ai = bi for i = 1, . . . , n. Also,
(a0, . . . , an)
→ 〈a0, . . . , an〉 is certainly p.r. and by (A), (B) above, so is GN, since

a ∈ GN ⇔ a �= 0 & (∀p�a)(∀q�p)[prim p, q & p a ⇒ q a].

We now create a small provision of p.r. functions useful for the encoding of syntax
in 6.2. Using (C) we define a p.r. function a
→ �a as follows:

�a = µk�a[pk� a].

We call �a for a Gödel number a the “length” of a, since clearly �1 = 0, and for
a = 〈a0, . . . , an〉 =

∏
i�n pai+1

i we have �a = n + 1, because k = n + 1 is the smallest
index such that pk� a. Note that k � a is satisfied since pa� a in view of pa > a.
Also the binary operation (a, i)
→ (((a)))i is p.r. where the term (((a)))i is defined by

(((a)))i = µk�a[pk+2
i � a].

This is the “component-recognition function.” pk+1
i a and pk+2

i � a imply k = (((a)))i,
hence (((〈a0, . . . , an〉)))i = ai for all i � n. This function, printed bold in order to catch
the eye, always begins counting the components of a Gödel number with i = 0.
Therefore, (((a)))last := (((a)))
a ·−1 is the last component of a Gödel number a �= 1. Which

174 6 Incompleteness and Undecidability

values (((a)))i and � have if their arguments are not Gödel numbers is not important;
some authors redefine them so that their value is 0 in this case.

From the above definitions it follows that a =
∏

i<
a p
(((a)))i+1
i for Gödel numbers a

including a = 1. Next we define the arithmetical concatenation ∗ by
a ∗ b = a ·

∏
i<
b p

(((b)))i+1

a+i for a, b ∈ GN and a ∗ b = 0 otherwise.

Obviously, 〈a1, . . . , an〉 ∗ 〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉, so that GN is closed
under ∗ . Moreover, a, b � a ∗ b whenever a, b ∈ GN as immediately follows from the
definition of ∗ . Note also that a ∗ b ∈ GN⇒ a, b ∈ GN, for arbitrary a, b. Clearly, ∗
is p.r. This function is useful for, among other things, a powerful generalization of
Op, the course-of-values recursion explained below.

To every f ∈ Fn+1 corresponds a function f̄ ∈ Fn+1 given by

f̄(�a, 0) = 〈〉
(
= 1

)
; f̄(�a, b) = 〈f(�a, 0), . . . , , f(�a, b− 1)〉 for b > 0.

f̄ encodes the course of values of f . Now let F be a given function in Fn+2. Then
just as for Op there is exactly one f ∈ Fn+1 satisfying the functional equation

Oq : f(�a, b) = F (�a, b, f̄(�a, b)).

Namely, it holds that f(�a, 0) = F (�a, 0, 〈〉) = F (�a, 0, 1), f(�a, 1) = F (�a, 1, 〈f(�a, 0)〉),
f(�a, 2) = F (�a, 2, 〈f(�a, 0), f(�a, 1)〉), etc. In Oq, f(�a, b) in general depends for b > 0
on all values f(�a, 0), . . . , f(�a, b−1), not just on f(�a, b−1) as in Op. Therefore Oq is
called the schema of course-of-values recursion. A simple example is the Fibonacci
sequence (fn)n∈N, defined by f0 = 0, f1 = 1 and fn = f(n − 1) + f(n − 2) for
n � 2. The F in “normal form” Oq is given here by F (b, c) = b for b � 1 and
F (b, c) = (((c)))b−1 + (((c)))b−2 otherwise. Indeed, f0 = 0 = F (0, f̄0), f1 = 1 = F (1, f̄1),
and fn = f(n− 1) + f(n− 2) = (((f̄n)))n−1 + (((f̄n)))n−2 = F (n, f̄n) whenever n � 2.

Op is a special case of Oq. If f = Op(g, h) and F is defined by the equations
F (�a, 0, c) = g(�a) and F (�a, Sb, c) = h(�a, b, (((c)))b), then f also satisfies Oq with this F

as may straightforwardly be checked while observing that f(�a, b) = (((f̄(�a, Sb))))b .

Theorem 1.1. Let f satisfy Oq. If F is primitive recursive then so too is f .

Proof. Since 〈c0, . . . , cb〉 = 〈c0, . . . , cb−1〉 ∗ 〈cb〉 for b > 0, the function f̄ satisfies

f̄(�a, 0) = 1; f̄(�a, Sb) = f̄(�a, b) ∗ 〈f(�a, b)〉 = f̄(�a, b) ∗ 〈F (�a, b, f̄(�a, b))〉.

The second equation can be written f̄(�a, Sb) = h(�a, b, f̄(�a, b)), where h defined by
h(�a, b, c) = c∗〈F (�a, b, c)〉. With F also the function h is p.r. Hence, by Op, f̄ is p.r.
But then also f , because in view of Oq, f is a composition of p.r. functions.

We now make precise the intuitive notion of recursive (or effective) enumerability.
M ⊆ N is called r.e. (recursively enumerable) if there is some recursive R ⊆ N2 such
that M = {b ∈ N | (∃a∈N)Rab}. In short, M is the range of some recursive relation.

6.1 Recursive and Primitive Recursive Functions 175

Since a ∈M ⇔ (∃b∈N)R′ab where R′ab⇔ Rba, M is at the same time the domain
of some recursive relation.

It is readily shown that M �= ∅ is r.e. if and only if M = ran f for some recursive
f ∈ F1; Exercise 4. This characterization corresponds perfectly to our intuition:
stepwise computation of f0, f1, . . . provides an effective enumeration of M in the
intuitive sense. This enumeration can be carried out by a computer that puts out
f0, f1, . . . successively and does not stop its execution by itself.

The empty set is r.e. because it is the domain of the empty binary relation, which is
recursive, and even p.r. since its characteristic function is the constant function K2

0.
In view of the above characterization of r.e. sets M �= ∅, one could have defined these
from the outset as the ranges of unary recursive functions. But the first definition
has the advantage of immediately expanding to the n-dimensional case given below,
and it avoids a case distinction as to whether or not M is empty.

More generally, a predicate P ⊆ Nn is called r.e. provided P�a ⇔ (∃x∈N)Q(x,�a)
for some (n + 1)-ary recursive predicate Q. Note that a recursive predicate P is r.e.
Indeed, P�a ⇔ (∃b∈N)P ′(b,�a); here P ′(b,�a) ⇔ P�a (adjoining a fictional variable).
It is not quite easy to present an ad hoc example of an r.e. predicate that is not
recursive. But such examples arise in a natural way in 6.5, where we will show the
undecidability of several axiomatic theories.

It is easily seen that a function f ∈ Fn is recursive provided graph f is, simply be-
cause f�a = µb[graph f(�a, b)] (or in strict terms of Oµ, f�a = µb[δχgraph f (�a, b) = 0]),
that is, f can immediately be isolated from graph f with the µ-operator. Conversely,
if f is recursive then so is graph f , because χgraph f (�a, b) = χ=(f�a, b). This equation
also shows that graph f is p.r. whenever f is p.r. On the other hand, it is highly
interesting to notice that there is a function f ∈ F1 (and not only one) whose graph
is p.r. although f itself is not p.r. Much preparation is needed for getting such an
example, namely the f constructed in Exercise 4 in 6.5.

Exercises

1. Let a � fa for all a. Prove that if f is p.r. (resp. recursive) then so is ran f .
Show the same for f ∈ Fn whenever a1, . . . , an � f�a for all �a ∈ Nn.

2. Prove in detail that the pairing function ℘ : N2 → N is bijective and that its
diagram in the figure on page 172 is correct.

3. Since ℘ : N2 → N is bijective, there are functions κ1, κ2 ∈ F1 such that
℘(κ1n, κ2n) = n, for all n. Prove that κ1, κ2 are p.r. (one need not exhibit
explicit terms for these functions).

4. Let ∅ �= M ⊆ N. Show M is r.e. iff M = ran f for some recursive f ∈ F1.

176 6 Incompleteness and Undecidability

6.2 Arithmetization

Roughly put, arithmetization (or Gödelization) is the description of the syntax of a
formal language L and of formal proofs from an axiom system by means of arith-
metical operations and relations on natural numbers. It presupposes the encoding
of strings from the alphabet of L by natural numbers. Syntactical functions and
predicates correspond in this way to well-defined functions and predicates on N.

Thus many goals at once become attainable. First of all, the intuitive idea of a
computable word function can be made more precise using the notion of recursive
functions. Second, syntactical predicates like for instance ‘x ∈ var α’ can be replaced
by corresponding predicates of N. Third, using encoding, statements about syntac-
tical functions, predicates and formal proofs can be formulated in theories T ⊆ L
able to speak about arithmetic, and perhaps be proved in T .

We demonstrate the arithmetization of syntax using as an example the language
L = Lar whose extralogical symbols are 0, S, +, · . This is the language of Peano
arithmetic PA. However, the same procedure can be carried out analogously for
other formal languages, as will be apparent in the course of our considerations.

The first step is to assign uniquely to every basic symbol ζ of L a number �ζ, its
symbol code. The following table provides an example for L = Lar :

ζ ==== ¬ ∧ ∀ () 0 S + · v0 v1

�ζ 1 3 5 7 9 11 13 15 17 19 21 23
· · ·

Next we encode the string ξ = ζ0 · · · ζn by its Gödel number, which is the number
〈�ζ0, . . . , �ζn〉 = p1+
ζ0

0 · · · p1+
ζn
n . The empty string gets the Gödel number 1.

Example. The term 0 and the prime formula 0==== 0 have the still comparatively
small Gödel numbers 21+
0 = 214 and 214 · 32 · 514, respectively. The term 1 has the
Gödel number 216 · 314. This encoding is not particularly economical, but that need
not concern us here. Nor is it a problem that the symbol code of ==== is the same as
the Gödel number of the empty string. For note that ==== , considered as a string of
length 1, has the Gödel number 22 = 4.

In the following, ξ, η, ϑ denote strings (or words) of the basic symbols of L; the
set of these strings is denoted by SL. Let ξ̇ be the Gödel number of ξ, and ṫ, α̇

therefore that of the the term t and the formula α, respectively. If we write ξη

for the concatenation of ξ, η ∈ SL, then obviously (ξη)· = ξ̇ ∗ η̇, where ∗ is the
arithmetical concatenation from 6.1. ṠL = {ξ̇ | ξ ∈ SL} is a p.r. subset of the set of
all Gödel numbers. Indeed, since L-symbols are encoded by odd numbers,

n ∈ ṠL ⇔ n ∈ GN & (∀k<�n) 2� (((n)))k.

At least for the time being, it is necessary to distinguish between the symbol ζ

and the string ζ, which actually means the single-element sequence (ζ). The Gödel

6.2 Arithmetization 177

number of the string ζ is 21+
ζ . For example, the prime term 0 (which is a one-letter
string) has the Gödel number 0̇ = 21+
0, while the symbol 0 has the symbol code 13.
Similarly, we must distinguish between vi as a term and vi as a symbol. The term
vi and the symbol vi are equally denoted only for faster readability.

Remark 1. One could, right from the beginning, identify symbols with their codes and
strings with their Gödel numbers, so that ϕ̇ = ϕ and ṫ = t for formulas ϕ and terms t,
and syntactical predicates are arithmetical from the outset. We postpone this until we
have convinced ourselves that syntax can indeed adequately be encoded in arithmetic.
Further, the alphabet of Lar could easily be replaced by a finite one, consisting, say, of
the symbols ==== ,¬, . . . , ·, v, in that v0 is replaced by the string v0, v1 by vS0, and so on.
Other encodings found in the literature arise from the identification of the letters in such
alphabets with the digits of a suitable number base.

In the following, let Ẇ = {ξ̇ | ξ ∈ W} for sets W ⊆ SL of words. A corresponding
notation will be used for many-place word predicates P . We call P p.r. or recursive
whenever Ṗ is p.r. or recursive, respectively. So, for example, if we talk about a
recursive axiom system X ⊆ L, it is always understood that Ẋ is recursive. Other
properties, such as recursively enumerable or representable, can be transfered to
word predicates by means of the above or a similar arithmetization.

All these remarks refer not just to L = Lar , but to an arbitrary arithmetizable
(or gödelizable) language L, by which we simply mean that L possesses finitely
or countably many specified basic symbols, so that each string can be assigned a
number code in a computable way. In this way, the concepts of an axiomatizable or
decidable theory, already used in 3.3, obtain an absolutely precise meaning.

Of course, one must distinguish between the axioms and theorems of an axiomatic
theory; the axiom systems of familiar theories like PA and ZFC are readily seen to
be p.r., while these theories considered as sets of theorems are shown in 6.5 to be
undecidable and cannot even be extended in any way to decidable theories.

The main goal now is the arithmetization of the formal proof method. We use �
from now on to denote the Hilbert calculus of 3.6 consisting of the axiom system Λ
with the axiom schemas Λ1–Λ10 given there and MP as the only rule of inference,
based on some fixed arithmetizable language L.

Just as for strings, for a finite sequence Φ = (ϕ0, . . . , ϕn) of L-formulas we call
Φ̇ := 〈ϕ̇0, . . . , ϕ̇n〉 its Gödel number. This includes in particular the case that Φ is
a proof from X (⊆ L) in the sense of 3.6, which in the general case also contains
formulas from Λ. Note that Φ̇ �= ξ̇ for all ξ ∈ SL, because (((Φ̇)))0 = ϕ̇0 is even, so that
2 (((Φ̇)))0, whereas 2� (((ξ̇)))0 because the symbol codes are odd. This is the case in our
example language Lar and may actually be presupposed throughout. Thus, we can
comfortably distinguish the Gödel numbers of formulas and terms from the Gödel
numbers of finite sequences of formulas.

178 6 Incompleteness and Undecidability

Now let T (⊆ L0) be a theory axiomatized by some fixed axiom system X ⊆ T .
Examples are PA or ZFC. The language L∈ is obviously simpler than Lar , which of
course simplifies encoding. A proof Φ = (ϕ0, . . . , ϕn) from X is also called a proof
in T . Here and elsewhere X is tacitly understood to be an essential part of T . First
define the p.r. functions ¬̃, ∧̃ , →̃ as follows: ¬̃a := ¬̇ ∗ a, a ∧̃ b := (̇ ∗ a ∗ ∧̇ ∗ b ∗)̇

and a →̃ b := ¬̃(a ∧̃ ¬̃b) (argument parentheses in the last expression should not be
mixed up with parentheses belonging to the alphabet of L).

Let proofT denote the unary arithmetical predicate that corresponds to the syn-
tactical predicate ‘Φ is a proof in T from X’. We denote the arithmetical predicates
corresponding to ‘Φ is a proof for ϕ’ (the last component of Φ) and to ‘there is a
proof for ϕ in T ’ by bewT and bwbT , respectively (coming from beweis=proof and
beweisbar=provable). The precise definitions of these predicates look as follows:

(1) proofT (b) ⇔ b ∈ GN & b �= 1
& (∀k<�b)[(((b)))k ∈ Ẋ ∪ Λ̇∨∨∨ (∃ i, j < k)(((b)))i = (((b)))j →̃ (((b)))k],

(2) bewT (b, a) ⇔ proofT (b) & a = (((b)))last , (3) bwbT a ⇔ ∃b bewT (b, a).

Since bwbT is a unary predicate, we may omit the argument parentheses in writing
bwbT a. Easily obtained from (1), (2), and (3) are

(4) �T α ⇔ bewT (n, α̇) for some n ⇔ bwbT α̇,

(5) bewT (c, a) & bewT (d, a →̃ b)⇒ bewT (c ∗ d ∗ 〈b〉, b), for all a, b, c, d,

(6) bwbT a & bwbT (a →̃ b)⇒ bwbT b, for all a, b,

(7) bwbT α̇ & bwbT (α → β)· ⇒ bwbT β̇, for all α, β ∈ L.

(4) is clear, for �T α iff there is a proof Φ for α iff ∃n bewT (n, α̇) (choose n = Φ̇).
(5) tells us in arithmetical language the familiar story that joining together proofs
for α, α → β and tacking on β yields a proof for β. (5) immediately yields (6) by
particularization, and (6) implies (7) since (α → β)· = α̇ →̃ β̇.

Remark 2. We will not need (5)–(7) until 7.1. But it is instructive for our later transfer
of proofs to PA to verify (5) first naively. This is simple when we use the following facts:
for all a, b ∈ GN, �(a ∗ b) = �a + �b, (((a ∗ b)))i = ai for i < �a, (((a ∗ b)))
a+i = bi for i < �b, and
�〈c〉 = 1, (((〈c〉)))0 = c for all c ∈ N. Since it would impede the proof of (5), we did not add
(∀k<b)(((b)))k ∈ L̇ to the right-hand side of (1). This is in fact not necessary, since induction
on the length of the proof code b readily shows that proofT (b) implies (∀k<�b)(((b)))k ∈ L̇.
Here we need a, a →̃ b ∈ L̇ ⇒ b ∈ L̇, for all a, b ∈ N; Exercise 2.

Now we really get down to work and show that the syntactic basic notions up to
the predicate bewT are p.r. In 6.5 basically only their recursiveness is important;
not until Chapter 7 do we make essential use of their p.r. character. We return to
our example L = Lar , because the proofs of the following lemmas are not entirely

6.2 Arithmetization 179

independent of the language’s syntax and the selected encoding, though they can
be proved for other arithmetizable languages in nearly the same way.

In addition to the already-defined ¬̃, ∧̃ , and →̃ , we define n =̃=== m := n ∗ =̇=== ∗m

(= n ∗ 22 ∗m) and ∀̃(i, n) := ∀̇ ∗ i ∗ n. ∃̃ is defined similarly. Finally, for S, +, · let
S̃n = Ṡ ∗ n, n+̃m = (̇ ∗ n ∗ +̇ ∗m ∗)̇, and similarly for ·. Then (s==== t)· = ṡ =̃=== ṫ and
(St)· = S̃ṫ hold, for example, as does (∀xα)· = ∀̃ẋα̇ (= ∀̃(ẋ, α̇)). All these functions
are obviously primitive recursive.

The set V of variable terms is p.r. because n ∈ V̇ ⇔ (∃k�n) n = 222+2k. Thus
Tprim := V ∪{0}, the set of all prime terms of L, is p.r. as well. For arbitrary strings
ξ, η let ξ � η mean ξ̇ � η̇. For example, ξ � η holds if ξ is a substring of η, in
particular if ξ denotes a subformula of the formula η. This follows immediately from
the property a, b � a ∗ b for Gödel numbers a, b, which was noted on page 174.

Lemma 2.1. The set T of all terms is primitive recursive.

Proof. By the recursive definition of T , t ∈ T if and only if

t ∈ Tprim ∨∨∨ (∃ t1, t2 < t)[t1, t2 ∈ T & (t = St1 ∨∨∨ t = (t1 + t2)∨∨∨ t = (t1 · t2))].

Therefore the corresponding arithmetical equivalence holds as well, namely
(∗) n ∈ Ṫ ⇔ n ∈ Ṫprim ∨∨∨ (∃ i, k < n)[i, k ∈ Ṫ & Q(n, i, k)]

where Q(n, i, k)⇔ (n = S̃i∨∨∨ n = i+̃k∨∨∨ n = ĩ·k). We now show how to convert this
“informal definition” of Ṫ , which on the right-hand side makes use of elements of Ṫ
smaller than n only, into a course-of-values recursion for χ

Ṫ , whence χ
Ṫ , and so T

would turn out to be p.r. Consider the p.r. predicate P defined by

P (a, n) ⇔ n ∈ Ṫprim ∨∨∨ (∃ i, k < n)[(((a)))i = (((a)))k = 1 & Q(n, i, k)].

We claim that the characteristic function f := χ
Ṫ satisfies

Oq: fn = χ
P (f̄n, n)

(
f̄n = 〈f(0), . . . , f(n− 1)〉

)
and hence is p.r. by Theorem 1.1. Indeed, since fi = fk = 1⇔ i, k ∈ Ṫ , we have

n ∈ Ṫ ⇔ n ∈ Ṫprim ∨∨∨ (∃ i, k < n)[fi = fk = 1 & Q(n, i, k)]
(
by (∗)

)
⇔ P (f̄n, n)

(
because (((f̄n)))i = fi and (((f̄n)))k = fk

)
.

From this equivalence it clearly follows that fn = 1⇔ χ
P (f̄n, n) = 1, which in turn

implies Oq since both f and χ
P take values from {0, 1} only.

Lemma 2.2. The set L (= Lar) of all formulas is primitive recursive.
Proof. Lprim is p.r. because n ∈ L̇prim ⇔ (∃ i, k < n)[i, k ∈ Ṫ & n = i =̃=== k]. If
we consider ẋ < ξ̇ for every ξ ∈ SL and x ∈ var ξ (because then ξ = ηxθ for some
strings η, θ ∈ SL), then the predicate ‘ϕ ∈ L’ clearly satisfies the condition

ϕ ∈ Lprim ∨∨∨ (∃α, β, x < ϕ)[α, β ∈ L & x ∈ V & (ϕ = ¬α∨∨∨ ϕ = (α∧β)∨∨∨ ϕ = ∀xα)].

180 6 Incompleteness and Undecidability

This “informal definition” can then be transformed just as in Lemma 2.1 into a
course-of-values recursion of the characteristic function of L̇ using the characteristic
function of the certainly p.r. predicate P given by

P (a, n) ⇔ n ∈ L̇prim ∨∨∨ (∃ i, k, j < n)[(((a)))i = (((a)))k = 1 & j ∈ V̇
& (n = ¬̃i∨∨∨ n = i ∧̃ k ∨∨∨ n = ∀̃jk)].

Beginning with the substitution ξ
→ ξ t
x , which is interesting both for formulas

and terms, we may now define a ternary p.r. function (m, i, k)
→ [m]ki so that
(∗) [ξ̇]ṫẋ = (ξ t

x)· for all ξ ∈ L ∪ T .
For this we first translate the equations of the recursive definition for ξ t

x into
corresponding requirements for [m]ki . For all m ∈ L̇ ∪ Ṫ , i ∈ V̇ and k ∈ N let

[m]ki = k if i = m ∈ Ṫprim, [m]ki = m if i �= m ∈ Ṫprim, [¬̃m]ki = ¬̃[m]ki ,
[S̃m]ki = S̃[m]ki , [m+̃n]ki = [m]ki +̃[n]ki and similarly for ·, ∧ and ==== ,
[∀̃jm]ki = ∀̃(j, m) for j = i, [∀̃jm]ki = ∀̃(j, [m]ki) for j �= i.

For all remaining triples m, i, k let [m]ki = 0. It is left to the reader to construct
(using p.r. case distinction) a course-of-values recursion for the determination of
[m]ki such that the given conditions and hence (∗) are satisfied.

As was already noticed the predicate ‘x occurs in ξ’, or ‘x ∈ var ξ’ for short, is p.r.
since x ∈ var ξ ⇔ x ∈ V & (∃ η, ϑ � ξ)(ξ = ηxϑ). Replacing here ηxϑ by η∀xϑ

makes it clear that ‘x ∈ bnd α’ is p.r. as well. The binary predicate ‘x ∈ free α’
is also p.r. because x ∈ free α ⇔ x ∈ V & α 0

x �= α (⇔ x ∈ V & [α̇]0̇ẋ �= α̇).
Consequently L0 is p.r. With these preparations we now prove

Lemma 2.3. The set Λ of logical axioms is primitive recursive.

Proof. Λ1 is p.r. because ϕ ∈ Λ1 if and only if

(∃α, β, γ < ϕ)[α, β, γ ∈ L & ϕ = (α → β → γ) → (α → β) → (α → γ)].

To characterize the corresponding arithmetical predicate we use the p.r. function
→̃ . One reasons similarly for Λ2–Λ4. For a p.r. characterization of Λ5 use the fact
that the ternary predicate ‘α, t

x collision-free’ is p.r. For ‘α, t
x collision-free’ holds

iff (∀y<α)(y ∈ bnd α & y ∈ var t⇒ y = x). Further, the predicate ‘ϕ = ∀xα → α t
x ’

which depends on ϕ, α, x, t, is p.r., as can be seen by applying (m, i, k)
→ [m]ki .
Hence, Λ5 is p.r. as well, because ϕ ∈ Λ5 if and only if
(∃α, x, t < ϕ)(α ∈ L & x ∈ V & t ∈ T & ϕ = ∀xα → α t

x & α, t
x collision-free).

Similarly it is shown that Λ6–Λ10 are p.r. Thus, each of the schemas Λi is p.r. and
therefore so is Λ0 := Λ1 ∪ · · · ∪ Λ10. But then the same holds for Λ itself, because
k
→ �vk is surely p.r. and every α ∈ Λ can be written α = ∀�xα0 with some (possibly
empty) prefix ∀�x and for some α0 ∈ Λ0, and then it must hold that

6.2 Arithmetization 181

n ∈ Λ̇ ⇔ n ∈ L̇ & (∃m, k < n)(n = m ∗ k & 2 �m & k ∈ Λ̇0

& (∀i<�m)[2 i & (((m)))i = �∀ ∨∨∨ 2� i & (∃k�n)(((m)))i = �vk].

The second line of this formula tells us that m is the Gödel number of a prefix
∀x1 · · · ∀xl. This is a string of length m = 2l.

All of the above holds completely analogously for every arithmetizable language.
Hence, given a p.r. or recursive axiom system X, X ∪ Λ is p.r. (resp. recursive) as
well. This applies in particular to the axiom systems of PA and ZFC. These are p.r.
like every other common axiom system, despite the difference in their strengths.
The proof is carried out in a manner fairly similar to that of Lemma 2.3.

The main result of this section that now follows, is completely independent of the
strength of an axiomatic theory T . The strength of a theory T first comes into the
picture when we want to prove something about bewT and bwbT within T itself.

Theorem 2.4. Let X be a p.r. axiom system for a theory T of an arithmetizable
language. Then the predicate bewT is p.r. The same holds if we substitute here
“recursive” for “primitive recursive.” T is in either case recursively enumerable.

Proof. Definition (2) on page 178 shows that bewT is p.r. Because of (3) on the
same page, Ṫ = {a ∈ L̇0 | bwbT a} is the range of a (primitive) recursive relation and
thus is r.e. Clearly, the last part of the theorem is proved in the same manner.

Theorem 2.4 can be strengthened only in particular circumstances, for example, if
T is complete. Although bewT is a (primitive) recursive predicate for each axiomatic
arithmetizable theory T , bwbT need not be recursive as, for example, in the case
T = Q. This is a famous finitely axiomatizable theory presented in the next section
whose particular role for applied recursion theory was revealed in [TMR].

Exercises

1. Prove that if a theory T has a recursively enumerable axiom system X, then
T also possesses a recursive axiom system (W. Craig).

2. Let L = Lar . Prove (a) a ∗ b ∈ ṠL ⇔ a, b ∈ ṠL, (b) ¬̃a ∈ L̇ ⇔ a ∈ L̇,
a ∧̃ b ∈ L̇ ⇔ a, b ∈ L̇, and (c) a →̃ b ∈ L̇ ⇔ a, b ∈ L̇, for all a, b ∈ N.

3. Let T (⊆ L0
ar) be axiomatizable and α ∈ L0

ar . (a) Define a binary p.r. function
f such that bewT+α(Φ̇, ϕ̇) ⇒ bewT (f(Φ̇, α̇), (α → ϕ)·) (arithmetization of the
deduction theorem). (b) Show that bwbT+α ϕ̇ ⇔ bwbT (α → ϕ)·.

4. Show that the set of quantifier-free sentences of Lar true in N is p.r. That the
corresponding does not hold for the set all sentences of Lar will be shown in
Section 6.5.

182 6 Incompleteness and Undecidability

6.3 Representability of Arithmetical Predicates

First of all we consider the finitely axiomatized theory Q with the axioms

Q1: ∀x Sx �====0, Q2: ∀x∀y(Sx==== Sy → x==== y), Q3: (∀x �====0)∃y x==== Sy,

Q4: ∀x x + 0==== x, Q5: ∀x∀y x + Sy==== S(x + y),
Q6: ∀x x · 0==== 0, Q7: ∀x∀y x · Sy==== x · y + x.

These axioms characterize Q as a modest subtheory of Peano arithmetic PA. Both
theories are formalized in Lar , the first-order language in 0, S, +, ·, and are subthe-
ories of ThN , where N as always denotes the standard model (N, 0, S, +, ·). In Q,
PA and related theories in Lar , let � and < be defined by x � y ↔ ∃z z + x==== y and
x < y ↔ x � y ∧x �====y, respectively. As in 3.3, the term Sn0 is denoted by n.

From the results of this and the next section, not only will the recursive unde-
cidability of Q be derived, but also that of every subtheory and every consistent
extension of Q, see 6.5. If we were interested only in undecidability results, we
could simplify the proof of the representation theorem 4.2 by noting that all recur-
sive functions can already be obtained with Oc and Oµ from the somewhat larger
set of initial functions 0, S, In

ν , +, ·, ·−. But even ignoring the considerable effort re-
quired to prove the eliminability of the schema Op at the price of additional initial
functions, such an approach would blur the distinction between primitive recursive
and µ-recursive functions, relevant for some details in Chapter 7.
∀xx �====Sx is easily provable in PA by induction, but Q is too weak to allow a proof

of this sentence. Its unprovability follows from the fact that (N ∪ {∞}, 0, S, +, ·)
satisfies all axioms of Q, but not ∀xx �==== Sx. Here ∞ is a new object and the
operations S, +, · are extended to N ∪ {∞} by putting S∞ =∞, ∞ · 0 = 0, and

∞+ n = n +∞ =∞+∞ = n ·∞ =∞ · m =∞, for all n and all m �= 0.

This model shows the unprovability in Q of many familiar laws of arithmetic, which
tell us that N is an ordered commutative semiring with smallest element 0 and unit
element 1 := S0, with the order defined as in Q above. These laws are collected in
the following axiom system defining a still finitely axiomatizable theory N ⊆ Lar :

N0: x + 0==== x N1: x + y==== y + x N2: (x + y) + z ==== x + (y + z)
N3: x · 1==== x N4: x · y==== y · x N5: (x · y) · z ==== x · (y · z)
N6: x · (y + z)==== x · y + x · z N7: x � y ∨ y � x N8: x + y==== x + z → y==== z

N9: x < y ↔ Sx � y N10: x � 0 → x==== 0 N11: 0 �= 1

∀-quantifiers in the axioms are omitted. N is, like Q, a subtheory of PA, but with
stricter axioms. These are all provable in PA, see Exercise 2 in 3.3. The axioms of
Q are derivable in N. For instance, �N Sx �==== 0, since Sx==== 0 implies x < 0 by N9;
hence x==== 0 by N10, but S0==== 0 contradicts N11. Thus, Q ⊆ N ⊆ PA.

6.3 Representability of Arithmetical Predicates 183

In this section we simply write �α for �Q α and α � β for α �Q β etc. We also write
occasionally α � β � γ for α � β & β � γ, � t1 ==== t2 ==== t3 for � t1 ==== t2 ∧ t2 ==== t3, and
� α ≡ β instead of � α & α ≡ β, just for brevity. The use of � in the subtle deriva-
tions carried out below helps one see what is going on and makes the metainduction
used there more vivid. Some of the proofs can be seen as “transplanting inductions
from PA into the metatheory.” For instance, consider ∀xx �==== Sx which is provable
in PA but unprovable in Q. Nontheless, we still can prove by metainduction on n

that n �====Sn is provable in Q, for all n. � 0 �====S0 is clear by Q1. The induction step
� n �====Sn ⇒ � Sn �====SSn follows from n �====Sn � Sn �====SSn. This in turn follows from
Sn==== SSn � n==== Sn, an application of Q2. We now shall prove

C0: � Sx + n==== x + Sn,

C1: � m + n==== m + n, m · n==== m · n, C2: � n �====m for n �= m,

C3: � m � n for m � n, C4: � m � n for m � n,

C5: x � n � x==== 0 ∨ · · · ∨ x==== n, C6: � x � n ∨ n � x.

From C5 follows x < n � x==== 0 ∨ · · · ∨ x==== n− 1, or x < n �
∨

i<n x==== i for short,
which is ⊥ for n = 0. The proofs of C0–C6 will be carried out by induction (more
precisely, metainduction) on n. Always remember that 0 = 0 and Sn = Sn.

C0: Clear for n = 0, because � Sx + 0==== Sx==== S(x + 0)==== x + S0 by Q4 and Q5.
Our induction hypothesis is � Sx + n==== x + Sn. This yields, in view of axiom Q5,
the induction claim � Sx + Sn==== S(Sx + n)==== S(x + Sn)==== x + SSn.

C1: By Q4, � m + 0==== m, and since m = m + 0 we get � m + 0==== m + 0. The
induction hypothesis � m + n==== m + n yields � m + Sn==== S(m + n)==== Sm + n, by
Q5, and the last term is the same as m + Sn. This proves the induction step.
Analogously we derive � m · n==== m · n with Q6, Q7 and what was shown already.

C2: Clear for n = 0, for then m = Sk for some k, and so � 0 �====m by Q1. Assume
that Sn �= m. By Q1, � Sn �==== m in case m = 0. Otherwise m = Sk for some k, so
that n �= k, hence � n �====k by the induction hypothesis. Thus, � Sn �====m by Q2.

C3: m � n implies k + m = n for some k, hence k + m = n. Thus, � k + m==== n

by C1. Therefore � ∃z z + m==== n, which just means � m � n.
C4: m � n⇒ m �= 0, hence m = Sk, some k. Let m � 0. Then � m � 0 because

m � 0 � Sk � 0 � ∃v v+Sk==== 0 � ∃v S(v+k)==== 0 � ⊥ by Q1. Now let m � Sn. Then
k � n and so � k � n by the induction hypothesis, which yields � m � Sn by Q2.

C5: Clear for n = 0, because x �==== 0, x � 0 � ∃vSv==== 0 � ⊥ by Q3, Q5, Q1. The
induction claim is equivalent to x �====0,x � Sn �

∨n+1
i=1 y==== i. It is derived as follows:

x �====0, x � Sn � ∃y(x==== Sy ∧y � n) (Q3, Q5, and Q2)
� ∃y(x==== Sy ∧

∨
i�n y==== i) (induction hypothesis)

� ∃y(x==== Sy ∧
∨n+1

i=1 Sy==== i) ≡Q
∨n+1

i=1 x==== i.

184 6 Incompleteness and Undecidability

C6: Clear for n = 0 since � 0 � x. Further, n < x � ∃ySy + n==== x � ∃yy + Sn==== x,
by Q3 and C0, provided one has first shown � 0 + n==== n by induction on n. Thus,
n < x � Sn � x. C5, C3 leads to x � n � x � Sn. This and the former yield the
inductive step, because x � n ∨ n � x � x � n ∨ n < x � x � Sn ∨ Sn � x.

With these preparations we now give the following crucial definition, in which
T ⊇ Q is supposed for simplicity’s sake. This will cover all our applications.

Definition. P ⊆ Nn is called numeralwise representable2 or simply representable in
T ⊇ Q if there is some α = α(�x) (a representing formula) such that

R+: P�a ⇒ �T α(�a) ; R−: ¬P�a ⇒ �T ¬α(�a).

Examples. The identity relation {(a, a) | a ∈ N} is represented by x==== y, because
� a==== b is trivial if a = b, and � a �==== b is derivable for a �= b by C2. By C3 and
C4 the formula x � y represents the �-predicate (“in Q” is often omitted). x �==== x

represents the empty set, represented as well by each sentence α with ¬α ∈ Q.

For consistent T ⊇ Q, whenever R+, R− are valid then so too are their converses,
so that in fact P�a ⇔ �T α(�a) and ¬P�a ⇔ �T ¬α(�a). Note that a P ⊆ Nn,
represented by α(�x), is recursive by Church’s thesis: simply turn on the enumeration
machine for Q and wait until α(�a) or ¬α(�a) appears. The set of n-ary representable
predicates is closed under union, intersection, and complement, as well as swapping,
equating, and adjoining fictional arguments. If P,Q are represented respectively by
α(�x), β(�x), then so too are P ∩Q by α(�x) ∧ β(�x) and ¬P by ¬α(�x), etc.

A predicate P represented in Q by α is clearly representable by the same α in any
consistent extension of Q, in particular in ThN . But this just means definability of
P in N by α in the sense of 2.3, because N � α [�a] is equivalent to N � α(�a). In
short, definability of P inN and representability of P in ThN coincide. In the main,
however, we consider representability in Q to obtain some strong results needed
in 6.5. We always have to look carefully at the representing formulas.

One could define f ∈ Fn to be representable if graph f is representable. However,
it turns out that this definition is equivalent to a stronger notion of representability
for functions that will be introduced after some additional preparation.

Predicates and functions definable inN , that is, by 0, S.+, ·, are called arithmetical
after [Go2]. From now on this word will always have this meaning. The arithmetical
predicates encompass the representable ones. In order to discover more about these
objects we consider their defining formulas more closely. Prime formulas in Lar

are equations, also called Diophantine equations. If δ(�x, �y) is such an equation and
P�a⇔ N � ∃�yδ(�a, �y), then P is called Diophantine. A simple example is �, because

2 In [Go2] representable predicates are called entscheidungsdefinit, in [HB] vertretbar, in [Kl1]
numeralwise expressible, in [TMR] definable, in [Hej] decidable, and in [En] representable.

6.3 Representability of Arithmetical Predicates 185

a � b ⇔ ∃y y + a = b (this notation is an informal and faster legible substitute for
the lengthy a � b ⇔ N � ∃y y + a==== b). In fact, all predicates definable in N by
∃-formulas ∃�yϕ from Lar with kernel ϕ are Diophantine. The proof is not difficult:
Think of ϕ as being constructed from literals by means of ∧ , ∨, and use the following
equivalences in an inductive proof on ϕ of what has been claimed:

s �==== t ≡N ∃z(Sz + s==== t ∨ Sz + t==== s),
s1 ==== t1 ∨ s2 ==== t2 ≡N s1s2 + t1t2 ==== s1t2 + s2t1,

s1 ==== t1 ∧ s2 ==== t2 ≡N s 2
1 + t 2

1 + s 2
2 + t 2

2 ==== 2(s1t1 + s2t2).
A classification of arithmetical formulas and predicates helpful not only for the sake
of representability is given by the following definition, to be generalized in 6.7:

Definition. A formula is called ∆0 or a ∆0-formula if it is generated from prime
formulas of Lar by ∧ ,¬, and bounded quantification, i.e., if α is a ∆0-formula then
so is (∀x�t)α

(
:= ∀x(x�t → α)

)
; here t is any Lar -term with x /∈ var t. Let ϕ be ∆0.

Then every formula of the form ∃�xϕ is called a Σ1-formula while ∀�xϕ is said to be a
Π1-formula. Further: P ⊆ Nn is said to be ∆0, Σ1, or Π1 whenever P is defined in
N by a ∆0-formula, Σ1-formula, or Π1-formula, respectively. ∆0, Σ1, and Π1 denote
the sets of ∆0-, Σ1- and Π1-predicates. In addition, ∆1 := Σ1 ∩ Π1.

We will call a formula ∆0, Σ1 or Π1 also if it is equivalent to one of the above.
In this sense, for instance, if α is ∆0 then so too are (∃x�t) α

(
≡ ¬(∀x�t)¬α

)
and

(∀x<t)α
(
≡ (∀x�t)(x==== t ∨ α)

)
. Note that ∆1 consists of the predicates, that are

both Σ1- and Π1-definable, with possibly distinct formulas. Obviously, Π1 consists
of the complements of the P ∈ Σ1. There are no ∆1-formulas; there is no meaningful
definition of such formulas as we will see. By Exercise 3 in 2.4, Σ1 and Π1 are closed
under union and intersection of predicates of the same arity, and ∆1 moreover under
complements, as is ∆0. Note that if P ∈ Nm and g1, . . . , gm ∈ Fn are Σ1 so too is
Q = P [g1, . . . , gm], because Q�a⇔ ∃�y(

∧n
i=1 yi=gi�a & P�y).

Examples. Diophantine equations are the simplest ∆0-formulas. To these belong
the formulas y==== t(�x) with y /∈ var t, which define the term functions �a
→ tN (�a).
Since a b ⇔ (∃c�b)(a · c = b), divisibility and thus also the predicate prim are ∆0.
Because ℘(a, b) = c ⇔ 2c = (a + b)2 + 3a + b, the graph of the pairing function ℘

is ∆0. The same holds for the relation of two numbers being coprime, denoted by⊥
and defined by a⊥b :⇔ (∀c � a + b)(c a, b ⇒ c = 1), that is, a, b have no common
prime factor. Diophantine predicates are trivially Σ1. Surprisingly, by Theorem 5.6
the converse holds as well, although it had been conjectured for some time that
the set P2 := {a ∈ N | (∀p�a)(prim p & p a ⇒ p = 2)} of all powers of 2 was not
Diophantine. P2 is obviously ∆0. Note that this does not yet mean that the graph
of n
→ 2n is ∆0, although the latter is in fact the case; see Remark 1.

186 6 Incompleteness and Undecidability

Remark 1. More generally, the predicate ‘ab = c’ is ∆0, though it is difficult to prove this
fact. Indeed, even the proof in 6.4 that this predicate is arithmetical requires effort. Earlier
results from Bennet, Paris, Pudlak, among others, are generalized in [BD] as follows: if
f ∈ Fn+1 (more precisely, graph f) is ∆0 then so is g : (�a, n)
→

∏
i�n f(�a, i), and the

recursion equation g(�x, Sy)==== g(�x, y)·f(�x, y) is provable in I∆0. This theory is an important
weakening of PA. It results from N by adjoining the induction schema restricted to ∆0-
formulas. I∆0 plays a role in various questions, e.g., in complexity theory ([Kr]). Induction
on the ∆0-formulas readily shows that all ∆0-predicates are p.r. The converse does not
hold; an example is the graph of the very rapidly growing hyperexponentiation, defined by

hex(a, 0) = 1 and hex(a, Sb) = ahex(a,b). Stated more suggestively, hex(a, n) = aa···
a

︸ ︷︷ ︸
n

.

A model-theoretical glance at Q facilitates a quick proof of the following interesting
theorem. It claims that even the seemingly weak theory Q is Σ1-complete. This
result is significantly strengthened for T = PA in 7.1, where it is shown that the
Σ1-completeness of PA is provable within PA. If stated as “�Q α or �Q ¬α, for ∆0-
sentences α” Theorem 3.1 could also be shown with proof-theoretical means. The
reader may try to prove this on his own, to compare the proof-theoretic approach
and the model-theoretic approach chosen here. C1 and C2 guarantee that n
→ nA

provides an embedding of N in any model A of Q. Thus, N is a prime model of Q
in the sense of 5.1, so that w.l.o.g. N ⊆ A. Moreover, by C5, A is an end extension
of N , which is to mean that the elements of A\N are located “at the end” of A;
more precisely, a �A b and b ∈ N imply a ∈ N, for all a ∈ A.

Theorem 3.1 (on the Σ1-completeness of Q). Every Σ1-sentence true in N is
already provable in Q and hence in each extension T ⊇ Q.

Proof. It is enough to show for an arbitrary A � Q with N ⊆ A,
(∗) N � α ⇔ A � α, for all ∆0-sentences α.

Indeed, let N � ∃�xϕ(�x) where ϕ(�x) is ∆0 and N � α := ϕ(�a), say. Then, by (∗),
A � α for each A � Q. Thus, �Q α and hence �Q ∃�xϕ(�x). Clearly, (∗) holds for all
prime sentences α. The induction steps for ∧ ,¬ are obvious. It remains to verify the
step for bounded quantification. Let N � (∀x�t)β(x) ∈ L0

ar where β(x) is ∆0 and
(necessarily) var t = ∅, so that

(∗
∗
)
: a �N tN ⇒ N � β(a), for all a ∈ N. To prove

A � (∀x�t)β(x), let w : Var → A, a := xw, and a �A tA. Clearly tA = tN ∈ N.
Since A is an end extension of N , we get a ∈ N. Hence, N � β(a) by

(∗
∗
)
, and

so A � β(a) by the induction hypothesis. This proves A � (∀x�t)β and hence the
direction ⇒ of our induction step. The converse is obvious since N ⊆ A.

If ϕ(�x) is ∆0 then N � ϕ(�a) ⇒ �Q ϕ(�a) and N � ¬ϕ(�a) ⇒ �Q ¬ϕ(�a) by the
theorem, because both ϕ(�a) and ¬ϕ(�a) are trivially Σ1. Thus, we obtain

Corollary 3.2. A ∆0-formula represents in Q the predicate that it defines in N .

6.3 Representability of Arithmetical Predicates 187

Lemma 3.3. Let P ⊆ Nn+1 be represented by α(�x, y). Then both (∃z<y)α(�x, z) and
(∀z<y)α(�x, z) represent the predicates Q and R, where

Q(�a, b) :⇔ (∃c<b)P (�a, c) and R(�a, b) :⇔ (∀c<b)P (�a, c).

Proof. R+: Suppose Q(�a, b), hence P (�a, c) for some c < b. Then �c < b ∧ α(�a, c).
Consequently, � (∃z<b)α(�a, z). To prove R− suppose ¬Q(�a, b), hence ¬P (�a, i) for
all i < b. Thus,

∨
i<b z ==== i � ¬α(�a, z). By C5 we have z < b �

∨
i<b z ==== i and so

z < b �¬α(a, z). Therefore, � (∀z<b)¬α(�a, z) ≡ ¬(∃z<b)α(�a, z). This proves R−.
For the predicate R it is enough to notice that R(�a, b)⇔ ¬(∃c<b)¬P (�a, c).

Since (∃z�y)α ≡ (∃z<y)α ∨ α z
y , the lemma shows that, for representable P , the

predicates defined by (∃c�b)P (�a, c) and (∀c�b)P (�a, c) are representable as well.
Following [Go2] and [TMR], we now define the notion of a representable function.

Although representability of f is much stronger a notion than representability of
graph f , Lemma 3.4(b) will show that both properties coincide.

Definition. f ∈ Fn is representable in T (if “in T” is omitted we always mean
T = Q and write � for �Q) if there is a formula ϕ(�x, y) such that for all �a ∈ Nn,

R+ : �T ϕ(�a, f�a), R= : ϕ(�a, y) �T y==== f�a.

If ϕ is ∆0 (resp. Σ1 or Π1) then f is said to be ∆0- (resp. Σ1- or Π1-) representable.
A similar phrase is used for predicates. In particular, P ⊆ Nn is ∆1-representable if
P is both Σ1- and Π1-representable.

Since R= is equivalent to �T ϕ(�a, y) → y==== f�a, it is easily seen that R+ and R=

together are replaceable by the single condition y==== f�a ≡T ϕ(�a, y) for all �a. If f is
represented by ϕ(�x, y) then graph f is represented by the same formula, because if
b �= f�a and so � b �====f�a by C2, then � ¬ϕ(�a, b) by R=, so that R− holds.

Lemma 3.4. (a) Let P ⊆ Nn+1 be represented by α(�x, y) and suppose ∀�a∃bP (�a, b).
Then ϕ(�x, y) := α(�x, y)∧ (∀z<y)¬α(�x, z) represents f : �a
→ µb[P (�a, b)]. If P is
∆0-representable (that is, represented by some ∆0-formula) then so is f . If P is
∆1-representable then f is Σ1-representable. (b) f is representable provided graph f

is representable. (c) If f is Σ1-representable then f is Π1-representable as well.
(d) If χ

P is Σ1-representable then P is ∆1-representable.

Proof. By Lemma 3.3, ϕ(�x, y) represents the predicate defined by ϕ(�x, y) and this
is clearly graph f . Hence, R+ holds. To verify R= it has to be shown that

(∗) α(�a, y) ∧ (∀z<y)¬α(�a, z) �y==== f�a.

Suppose b := f�a. Then b < y � (∃z<y)α(�a, z), because � α(�a, b). Contraposition
yields (∀z<y)¬α(�a, z) � b ≮ y. By C5 and R− we have y < b �

∨
i<b y==== i � ¬α(�a, y).

Hence α(�a, y) � y ≮ b. So α(�a, y)∧ (∀z<y)¬α(�a, y) � y ≮ b ∧ b ≮ y � y==== b by C6.

188 6 Incompleteness and Undecidability

This proves (∗). Clearly, ϕ in (a) is ∆0 if α is ∆0. Let P be represented at the
same time by the Π1-formula β. Repeating the above with α(�x, y)∧ (∀v<y)¬β(�x, v)
(a Σ1-formula by Exercise 2) in place of ϕ, yields the additional claim. (b) follows
from applying (a) to P = graph f while noting that f�a = µb[P (�a, b)]. (c): Let the
Σ1-formula ϕ(�x, y) represent f and z /∈ var ϕ. Then ϕ′(�x, y) := ∀z(ϕ(�x, z) → z ==== y)
is a Π1-formula that represents f as well: Application of R= results in � ϕ′(�a, f�a)
which confirms R+ for ϕ′, and because of � ϕ(�a, f�a), we obtain R= for ϕ′ from

ϕ′(�a, y) = ∀z(ϕ(�a, z) → y==== z) � ϕ(�a, f�a) → y==== f�a � y==== f�a.
(d): Let χ

P be Σ1-represented by ϕ(�x, y). Then P is clearly Σ1-represented by
ϕ(�x, 1) and Π1-represented by ¬ϕ(�x, 0).

Remark 2. graph℘ is represented in Q by α(x, y, z) = z ·2==== (x+y)·S(x+y)+x·2. Thus,
by Lemma 3.4(a), ℘ is represented by the ∆0-formula α(x, y, z) ∧ (∀u<z)¬α(x, y, u). We
mention that in PA (but not in Q) even the quantifier-free α represents the function ℘.

Lemma 3.5. (a) Let P ⊆ Nk be represented by α(�y), and gi ∈ Fn represented by
γi for i = 1, . . . , k. Then β(�x) := ∃�y [

∧
i γi(�x, yi) ∧ α(�y)] represents the predicate

Q := P [g1, . . . , gk]. If the γi are Σ1 and P is ∆1-representable then so is Q. (b) If
h ∈ Fm and g1, . . . , gm ∈ Fn are representable then so is f = h[g1, . . . , gm].

Proof. Let bi := gi�a, so that � γi(�a, bi) for i = 1, . . . , k and let �b = (b1, . . . , bk). If
Q�a holds, hence P�b, then � α(�b), whence �

∧
i γi(�a, bi) ∧ α(�b), and so � β(�a). But

if ¬Q�a and thus ¬P�b, then clearly � ¬α(�b). Using R= for the γi, this then yields∧
i γi(�a, yi) �

∧
i yi ==== bi � ¬α(�y). Hence � ∀�y [

∧
i γi(�a, yi) →¬α(�y)] ≡ ¬β(�a). If the

γi and also α are Σ1, then so too is β. If P is represented by the Π1-formula α′(�x)
at the same time, then Q is represented by the Π1-formula ∀�y [

∧
i γi(�x, yi) → α′(�y)],

as is easily seen. (b) results without difficulty from (a) applied to graphh.

Exercises

1. Suppose α is a ∆0-formula so that ∃�xα is Σ1 and ∀�xα is Π1. Construct
∆0-formulas β and γ such that ∃�xα ≡N ∃xβ and ∀�xα ≡N ∀xγ (quantifier
compression). Each ∆0-predicate is p.r. (Remark 1). Hence, each Σ1-predicate
P is r.e. and w.l.o.g. of the form (∃b∈N)Q(�a, b) with Q ∈ ∆0.

2. Show that Σ1 is closed under bounded quantification, that is, if α = α(�x, y)
defines some Σ1-predicate, then so do (∀z<y)α z

y and (∃z<y)α z
y . The analogue

holds for Π1 and hence also for ∆1.

3. Prove that α(�x)∧y==== 1 ∨ ¬α(�x)∧y==== 0 represents χ
P provided α represents P .

4. Show that every ∆0-formula is equivalent to a formula constructed from literals
by means of ∧ , ∨, and the bounded quantifiers (∀x�t) and (∃x�t).

6.4 The Representability Theorem 189

6.4 The Representability Theorem

For the representability of all recursive or just all p.r. functions, it is helpful to have
a representable function g ∈ F2 that satisfies the following: for every n and every
sequence c0, . . . , cn there exists a number c such that (∗) : g(c, i) = ci for all i � n.
In short, c can be chosen such that the values g(c, 0), g(c, 1), . . . , g(c, n) are the
given ones. Now, there are many p.r. functions g that can do this. For instance, if
g : (c, i)
→ (((c)))i then (∗) holds with c = p1+c0

0 · · · p1+cn
n . Initially there is no obvious

way to show the representability of such a function g in Q or in some extension of
Q within the frame of the language Lar . Therefore, K. Gödel, who around 1930 was
working on this and related problems, in the words of A. Mostowski “phoned with
God.” Although nowadays several possibilities are known, we follow the original,
which has not lost any of its attraction.

Let α(a, b, i) := rem(a : (1 + (1 + i)b)), where rem(c : d) denotes the remainder of
c divided by d (�= 0) and rem(c : 0) := 0. Note that rem(c : d) is well defined since
for c, d (�= 0) there are unique q, r ∈ N with r < d such that c = qd + r (this can
readily be shown by induction on c). Clearly, graphα has the ∆0-definition

α(a, b, i) = k ⇔ (∃c�a)[a = c(1 + (1 + i)b) + k & k < 1 + (1 + i)b].

Hence, the function α is ∆0-representable by Lemma 3.4(a). The same holds for
the pairing function ℘. Because ℘ is bijective there are unary functions κ1, κ2 such
that ℘(κ1k, κ2k) = k for all k. Their explicit form is insignificant; we just require
the obvious property κ1k, κ2k � k. The function β : (c, i)
→ α(κ1c, κ2c, i) is called
the β-function. Since β(c, i) = k ⇔ (∃a�c)(∃b�c)[℘(a, b) = c & α(a, b, i) = k],
graphβ is ∆0. Hence, by Lemma 3.4, β is represented by a ∆0-formula, which is
denoted by beta. Omitting the argument parentheses in beta, this means that

(1) �Q beta c i y ↔ y==== β(c, i), for all c, i ∈ N.

The following simple number-theoretical facts known for ages will be applied in
proving the property of the β-function stated in Lemma 4.1 below.

Euclid’s lemma. Let a, b be positive and coprime (a⊥b). Then there exist x, y ∈ N
such that xa + 1 = yb. (The converse is obvious: c a, b⇒ c yb−xa=1⇒ c=1.)

Proof by <-induction on s = a + b. Trivial for s � 2, i.e., a = b = 1. Let s > 2.
Then a �= b, say a > b, and a − b⊥b as well (p a − b, b ⇒ p a − b + b = a). Since
(a−b)+b < s, there are x, y ∈ N with x(a−b)+1 = yb by the induction hypothesis.
Hence, xa + 1 = y′b with y′ = x + y. The case a < b is treated similarly.

Chinese remainder theorem. Let ci < di for i = 0, . . . , n and let d0, . . . , dn be
pairwise coprime. Then there exists some a ∈ N such that rem(a : di) = ci for
i = 0, . . . , n.

190 6 Incompleteness and Undecidability

Proof by induction on n. For n = 0 this is clear putting a = c0. Now suppose the
assumptions hold for n > 0. By the induction hypothesis, rem(a : di) = ci for some
a and all i < n. Further, k := lcm{dν | ν<n} and dn are coprime (Exercise 1). Thus,
by Euclid’s lemma, there are numbers x, y ∈ N such that xk +1 = ydn. Multiplying
both sides by cn(k−1)+a gives x′k+cn(k−1)+a = y′dn with new values x′, y′ ∈ N.
Let a′ := (x′ + cn)k + a = y′dn + cn. Then rem(a′ : di) = rem(a : di) = ci for all
i < n (because di k). But also rem(a′ : dn) = cn, since cn < dn.

Unlike those in most textbooks of number theory, the proof above is constructive
and easily transferable to PA as will be shown in 7.1. In logic it is occasionally not
just important what you prove, but how you prove it.

Lemma 4.1 (on the β-function). For every n and every sequence c0, . . . , cn there
exists some c such that β(c, i) = ci for i = 0, . . . , n.

Proof. It suffices to provide numbers a and b such that α(a, b, i) = ci for all i � n.
Because of β(℘(a, b), i) = α(a, b, i) the claim is then satisfied with c = ℘(a, b). Let
m = max{n, c0, . . . , cn} and b := lcm{i + 1 | i � m}.3 We claim that the numbers
di := 1 + (1 + i) · b > ci (i � n) are pairwise coprime. Indeed, let p be a prime
factor of di. Then p > m, for otherwise p b di−1, contradicting p di. If p di, dj for
i < j � n, then p dj − di = (j − i)b. But since p� b in view of p > m, it follows
that p j − i � n � m < p. Thus j − i = 0. Hence, d0, . . . , dn are pairwise coprime.
By the Chinese remainder theorem there is an a such that rem(a : di) = ci, that is,
α(a, b, i) = ci for i = 0, . . . , n.

Remark 1. Already at this stage we gain the interesting insight that the exponential
function (a, b)
→ ab is explicitly definable in N , namely by the Σ1-formula

δexp(x, y, z) := ∃u[β(u, 0)==== S0 ∧ (∀v<y)β(u, Sv)==== β(u, v) · x ∧ β(u, y)==== z].

More precisely, δexp is the description of a Σ1-formula arising after the elimination of the
occurring β-terms by means of (1) and the use of further ∃-quantifiers. By induction on
b one sees that N � δexp(a, b, c) implies ab = c. Suppose conversely that ab = c. Then
Lemma 4.1 guarantees a sought-for u such that N � δexp(a, b, c): simply choose u such
that β(u, i) = ai for all i � b. This argument is generalized in Theorem 4.2 below.

For simplicity, we assume T ⊇ Q in Theorem 4.2 below, though it holds as well
if Q is merely interpretable in T in the sense of 6.6, for instance in ZFC. For the
derivation of undecidability results or a simplified version of the first incompleteness
theorem, the “Moreover” part of the theorem is not needed.

Theorem 4.2 (Representability theorem). Each recursive function f—and
hence every recursive predicate—is representable in an arbitrary consistent axiomatic
extension T ⊇ Q. Moreover, f is Σ1-representable.
3 Here Gödel chooses b = m!, but our choice later alleviates the proof of this lemma in PA.

6.4 The Representability Theorem 191

Proof. It suffices to construct a Σ1-formula that represents f in Q. For the initial
functions 0, S, In

ν we may choose the formulas v0 ==== 0, v1 ==== Sv0 and vn ==== vν . Now let
f = h[g1, . . . , gm] and suppose β(�y, z) and γi(�x, yi) are Σ1-formulas which represent
h and the gi. Then ϕ(�x, z) := ∃�y [

∧
i γi(�x, yi) ∧ β(�y, z)] is such a formula for f

(Lemma 3.5). Next let f = Op(g, h) and f, g both be Σ1-representable. Then the
predicate P , defined by P (�a, b, c)⇔ β(c, 0) = g�a ∧ (∀v<b)β(c, Sv) = h(�x, v, β(c, v)),
clearly results from a ∆0- and hence ∆1-definable predicate by the insertion of Σ1-
representable functions, and hence is ∆1-representable according to Lemma 3.5(a).
Obviously P (�a, b, c) is equivalent to

(∗) β(c, i) = f(�a, i) for all i � b.
By Lemma 4.1, for given �a, b there is some c satisfying (∗), hence ∀�a, b∃cP (�a, b, c).
Thus, f̃ :�a
→ µcP (�a, b, c) is Σ1-representable by Lemma 3.4. Since P (�a, b, f̃(�a, b)),
(∗) holds with c = f̃(�a, b). This, for i = b, yields f(�a, b) = β(f̃(�a, b), b). Thus, as
a composition of Σ1-representable functions, f is Σ1-representable. Finally, let f

result from g by Oµ, that is, f�a = µb[P (�a, b)], where P (�a, b) ⇔ g(�a, b) = 0 and g is
Σ1-representable. By Lemma 3.4(c), g is Π1-representable, too. This clearly implies
that P is ∆1-representable. Hence, f is Σ1-representable by Lemma 3.4(a).

Let T ⊇ Q be a theory in Lar . To ϕ ∈ Lar corresponds within T the term n

with n := ϕ̇, which will be denoted by �ϕ� (or ϕ̇) and called the Gödel term of
ϕ. For example, �v0 ==== 0� is v̇0 =̃=== 0̇ (= 222 · 32 · 514). Analogously �t� is defined for
terms t. For instance, �1� = �S0� = 216 · 314. If T is axiomatized, also �Φ� = Φ̇
for proofs Φ in T is well defined. For instance, (v0 ==== v0) is for such a T a trivial
proof of length 1 by axiom Λ9 in 3.6. Its Gödel term is 2v̇0 =̃=== v̇0 + 1 . The predicate
bewT is p.r. (Theorem 2.4), hence Σ1-representable (Theorem 4.2), by the formula
bewT (y, x), say. Define bwbT (x) := ∃y bewT (y, x). Then Theorem 4.2 and (4) from
page 178 obviously yield the following important

Corollary 4.3. Let T ⊇ Q be axiomatizable. Then �T ϕ ⇒ �T bewT (n, �ϕ�) for
some n (hence �T ϕ⇒ �T bwbT (�ϕ�)), and �T ϕ⇒ �T ¬ bewT (n, �ϕ�) for all n.

Theorem 4.2 has several other important consequences, for example Theorem 4.5
below. Before stating it we will acquaint ourselves with a method of eliminating
Church’s thesis from certain intuitively clear arguments that demand justification
when “decidable” is identified with “recursive.” Clearly, such an elimination must
in principle always be possible if the thesis is to retain its legitimacy. For instance,
Church’s thesis was essentially used in the proof of Theorem 3.5.2. We reformulate
it together with a rigorous proof.

Theorem 4.4. A complete axiomatizable theory T is recursive.

Proof. Because of completeness, f : a
→ µb[a ∈ L̇0 ⇒ bewT (b, a)∨∨∨bewT (b, ¬̃a)] is a
well defined function. To see this, denote the recursive predicate in square brackets

192 6 Incompleteness and Undecidability

by P (a, b); then ∀a∃bP (a, b) (note that P (a, 0) in case a /∈ L̇0). By Oµ, then, f

is recursive. Note that (∗): a ∈ Ṫ ⇔ a ∈ L̇0 & bewT (fa, a) immediately implies
the recursiveness of T . In order to prove (∗) let a ∈ Ṫ , so certainly a ∈ L̇0. Then
for b = fa, the smallest b such that bewT (b, a)∨∨∨ bewT (b, ¬̃a), the first disjunct must
hold, because due to the consistency of T , no c ∈ N with bewT (c, ¬̃a) can exist at
all. Hence, bewT (fa, a). The ⇐-direction in (∗) is obvious.

This proof illustrates sufficiently well the distinction between a primitive recursive
and a recursive decision procedure. Even when X and thus the predicate P in the
proof above are primitive recursive, the defined recursive function f need not be so,
because the completeness of T may have been established in a nonconstructive way.
The use of Church’s thesis in the proofs of (i)⇒(ii) and (iii)⇒(ii) of the following
theorem can be eliminated in almost exactly the same manner as above, although
then the proof would lose much of its transparency.

Theorem 4.5. For a predicate P ⊆ Nn and any consistent axiomatizable theory
T ⊇ Q the following are equivalent:

(i) P is representable in T , (ii) P is recursive, (iii) P is ∆1.

Proof. (i)⇒(ii): Suppose P is represented in T by α(�x). Given �a we set going
the enumeration machine of T and wait until α(�a) or ¬α(�a) appears. Thus, P is
decidable and hence recursive by Church’s thesis. (ii)⇒(i),(iii): By Theorem 4.2, χ

P

is representable in T by a Σ1-formula, hence P is ∆1-representable by Lemma 3.4(d)
and of course by the corresponding formulas also defined in N . Thus, P ∈ ∆1.
(iii)⇒(ii): Let P be defined by the Σ1-formula α(�x) and the Π1-formula β(�x). Given
�a we kick start the enumeration machine for Q and wait until one of the Σ1-sentences
α(�a) or ¬β(�a) appears. In the first case P�a holds; in the second it does not. The
procedure terminates because Q is Σ1-complete by Theorem 3.1.

This theorem tells us that in all consistent axiomatic extensions of Q exactly the
same predicates are representable, namely the recursive ones. Moreover, ∆1 contains
precisely the recursive predicates, from which it easily follows that Σ1 consists just
of the r.e. predicates (observe Exercise 2 in 6.3). Theorem 4.5 clarifies fairly well the
close relationship between logic and recursion theory. It is independent of Church’s
thesis. Even if the thesis for some theoretical or practical reason had to be revised,
the distinguished role of the µ-recursive functions would not be affected.

Remark 2. The above results allows us to define recursive or decidable predicates directly
as follows: P ⊆ Nn is recursive iff there is some finitely axiomatizable theory in which
P is representable. We need only to notice that a predicate representable in any finitely
axiomatizable theory in which representability makes sense, is recursive by Church’s thesis.
In this and the previous section we met several formulas or classes of those that represent
predicates in Q and hence are recursive. It would of course be nice to provide a somewhat

6.4 The Representability Theorem 193

more surveyable system of formulas that represent the recursive predicates, or at least
that define them in N . Unfortunately, such a system of formulas cannot be recursively
enumerated. Indeed, suppose there is such an enumeration. Let α0, α1, . . . be the resulting
sub-enumeration of its members in L1

ar . These define in N the recursive sets. Then also
{n ∈ N | n /∈ αN

n } is recursive, hence is defined in N by αm, say, so that n ∈ αN
m ⇔ n /∈ αN

n .
However, this equivalence yields for n = m the contradiction m ∈ αN

m ⇔ m /∈ αN
m .

In 6.5 we need a p.r. “substitution” function and in 7.1 a generalization of it. Let
cf n := (n)· denote the Gödel number of the “cipher term” n (= Sn0). Then n
→ cf n

is p.r. since cf 0 = 0̇ and cf Sn = Ṡ ∗ cf n. Let sbx(m, n) = [m]cfnẋ and define the p.r.
function sb�x ∈ Fn+1 as follows: sb�x(m,�a) = sbxn(sbx1,...,xn−1(m, a1, . . . , an−1), an),
n > 1. Here the xi denote arbitrary but distinct variables. The function sb�x may
also be denoted by sbx1···xn . In order to have it defined for all sequences �x including
the empty one, set sb∅(m) = m. Let α̇�x(�a) denote the Gödel number of the formula
α�x(�a) that arises from α by stepwise substituting ai at the free occurrences of xi in
α for i = 1, . . . , n (see also page 48). Then we obtain

Theorem 4.6. sb�x(α̇,�a) = α̇�x(�a), for arbitrary α ∈ L and all �a ∈ Nn.

Proof. Since α�x(�a) results from applying simple substitutions stepwise, we need
only show that sbx(α̇, a) = α̇x(a) for all α ∈ L, x ∈ Var, and a ∈ N. This is done
by induction on α, starting with the proof of sbx(ṫ, a) = ṫx(a); see Exercise 3.

Example. Let α be Sx==== y. Then sbx(α̇, a) = (Sa==== y)· for all a ∈ N. Furthermore,
sbxy(α̇, a, Sa) = (Sa==== Sa)· = S̃ cf a =̃=== cf Sa = S̃ cf a =̃=== S̃ cf a, because cf Sa = S̃ cf a.
But sbx((α Sx

y)·, a) = S̃ cf a =̃=== S̃ cf a as well. Hence sbxy(α̇, a, Sa) = sbx((α Sx
y)·, a).

The example is generalized in Exercise 3, where we write �x in place of �a. This
simplifies the formulation of item (b) of the exercise. Therein the tuple �x ′ may of
course be empty, in which case (b) reduces to sb�x(α̇, �x) = α̇.

Exercises

1. Let a, b, a0, . . . , an (n > 0) be positive natural numbers and p a prime. Prove
(a) p ab ⇒ p a ∨∨∨ p b, (b) p lcm{aν | ν�n} ⇒ p aν for some ν � n, and
(c) lcm{aν|ν<n} and an are coprime provided a0, . . . , an are pairwise coprime.

2. Provide a defining Σ1-formula for the prime enumeration n
→ pn.

3. Verify for arbitrary α, β ∈ Lar the following equations in N:

(a) sb�x((α ∧̃β)·, �x) = sb�x(α̇, �x) ∧̃ sb�x(β̇, �x), and analogously for ¬, → , and ∀.
(b) sb�x(α̇, �x) = sb�x ′(α̇, �x ′) where �x ′ covers all x ∈ free α such that x ∈ var �x.
(c) sb�x,x(α̇, �x, t) = sb�x((α t

x)·, �x) for t ∈ {0, y, Sy} in the case x /∈ free α or
y ∈ var �x; otherwise sb�x,x(α̇, �x, t) = sb�x,y((α t

x)·, �x, y). Here y /∈ bnd α.

194 6 Incompleteness and Undecidability

6.5 The Theorems of Gödel, Tarski, Church

Call a theory T ⊆ L arithmetizable if L is arithmetizable and a sequence (n)n∈N of
constant terms is available such that �T n �==== m for n �= m and cf : n
→ (n)· is p.r.
This are minimal requirements for that representabilty of arithmetical predicates
in T makes sense. They are trivially satisfied for T ⊇ Q, but also for ZFC with
respect to ω-terms (page 90). Terms and formulas are coded within T similar as in
theories in Lar . In particular, �α� = α̇ always denotes the Gödel term of a formula
α. However, in order to evoke a concrete picture of the following two fairly general
lemmas, take L = Lar and T = PA as standard examples.

A sentence γ is called a fixed point of α = α(x) in T if γ ≡T α(�γ�); equivalently,
�T γ ↔ α(�γ�). In intuitive terms, γ then says “α applies to me.” The p.r.
function sbx from 6.4 is representable in T under relatively weak assumptions by
Theorem 4.2. Hence, the lemmas below have a large spectrum of application.

Fixed-point lemma. Let T be an arithmetizable theory and suppose that sbx is
representable in T . Then for each α = α(x) ∈ L there is some γ ∈ L0 such that

(1) γ ≡T α(�γ�).
Proof. Let x1, x2, y �= x and sb(x1, x2, y) be a formula representing sbx in T . Then
sb(�ϕ�, n, y) ≡T y==== �ϕ(n)� for all ϕ = ϕ(x) and n. With n = �ϕ� we then get

(2) sb(�ϕ�, �ϕ�, y) ≡T y==== �ϕ(�ϕ�)�.
Let β(x) := ∀y(sb(x, x, y) → α y

x). Then γ := β(�β�) yields what we require. Indeed,

γ = ∀y(sb(�β�, �β�, y) → α y
x)

≡T ∀y(y==== �β(�β�)� → α y
x)

(
(2) with ϕ := β(x)

)
= ∀y(y==== �γ� → α y

x)
(
because γ = β(�β�)

)
≡ α(�γ�).

A fixed point can in the most interesting cases of α fairly easily be constructed,
see 7.4. The following lemma also formulates a frequently appearing argument.

Nonrepresentability lemma. Let T be a theory as in the fixed-point lemma.
Then T (more precisely Ṫ) is not representable in T itself.

Proof. Let T be represented by the formula τ(x). We show that even the weaker
assumption (a): (∀α∈L0) �T α ⇔ �T ¬τ(�α�) leads to a contradiction. Indeed,
let γ be a fixed point of ¬τ(x) according to (1), so that (b): �T γ ⇔ �T ¬τ(�γ�).
Choosing α = γ in (a) clearly yields with (b) the contradiction �T γ ⇔ �T γ.

We now formulate Gödel’s first incompleteness theorem, giving in fact three ver-
sions, of which the second corresponds essentially to the original. For simplicity, let
henceforth L ⊇ Lar and T ⊇ Q, ensuring the applicability of the two lemmas above.

6.5 The Theorems of Gödel, Tarski, Church 195

However, all of the following holds for theories T , such as ZFC, in which Q is just
interpretable in the sense of 6.6.

Theorem 5.1 (the popular version). Every consistent (recursively) axiomatiz-
able theory T ⊇ Q is incomplete.

Proof. If T is complete then it is recursive by Theorem 4.4, hence representable in
T by Theorem 4.2, which is impossible by the nonrepresentability lemma.

Unlike the proofs of Theorems 5.1′ and 5.1′′, the above proof is nonconstructive,
for it does not explicitly provide a sentence α such that �T α and �T ¬α.

Stronger than the consistency of T is the so-called ω-consistency of T (⊆ Lar),
i.e., for all ϕ = ϕ(x) such that �T ∃xϕ(x) we have �T ¬ϕ(n) for at least one n, or
equivalently, if �T ¬ϕ(n) for all n, then �T ∃xϕ(x). Clearly, ifN � T then T is surely
ω-consistent, because the supposition �T ∃xα and �T ¬α(n) for all n implies the
contradictionN � ∃xα, ∀x¬α. Thus, from a semantic perspective the theories Q and
PA are certainly ω-consistent. Proof theory tries to eliminate nonfinitistic semantics,
and there are famous consistency proofs for PA that presuppose considerably less
than the full semantic approach; see for instance [Tak].

Theorem 5.1′ (the original version). For every ω-consistent theory T ⊇ Q
axiomatized by a p.r. axiom system X, there is a Π1-sentence α such that neither
�T α nor �T ¬α. In other words, α is independent in T . There exists a primitive
recursive function that assigns such an α to a formula representing X.

Proof. Let bewT be represented in T by the Σ1-formula bew(y, x), see page 191. For
bwb(x) = ∃ybew(y, x) from Corollary 4.3 we obtain (a): �T ϕ ⇒ �T bwb(�ϕ�), for
all ϕ. Let γ be a fixed point of ¬ bwb(x) by (1), so that (b): γ ≡T ¬ bwb(�γ�). The
assumption �T γ yields �T bwb(�γ�) by (a), but �T ¬ bwb(�γ�) by (b), contradicting
the consistency of T . Thus, �T γ. Now assume �T ¬γ, so that �T bwb(�γ�) by (b),
hence (c): �T ∃y bew(y, �γ�)). Obviously �T γ because T is consistent. Applying
Corollary 4.3 once again, we infer that �T ¬ bew(n, �γ�) for all n. However, this and
(c) contradict the ω-consistency of T . Consequently �T ¬γ is impossible as well.
Thus, γ is independent in T . But then too is the Π1-sentence α := ¬ bwb(�γ�) which
is equivalent to γ in T . The claim of the p.r. assignment follows evidently from the
construction of γ in the proof of (1).

This theorem remains valid without restriction if the axiom system X is just r.e.
In this case X can be replaced by some recursive X ′ (Exercise 1 in 6.2), so that
bewT is still recursive according to Theorem 2.4.

Theorem 5.1′′ (Rosser’s strengthening of Theorem 5.1′). The assumption
of ω-consistency in Theorem 5.1′ can be weakened to the consistency of T .

196 6 Incompleteness and Undecidability

Proof. Let T be consistent and prov(x) := ∃y[bew(y, x) ∧ (∀z<y)¬ bew(z, ¬̃x)].
We think here of the p.r. function ¬̃ as having been eliminated in the usual way by
a formula representing it. Because of the consistency of T , prov(x) says essentially
the same as bwb(x) and has the following fundamental properties:

(a) �T α⇒ �T prov(�α�), (b) �T ¬α⇒ �T ¬ prov(�α�).4

Indeed, suppose �T α so that �T bew(n, �α�) for some n (observe Corollary 4.3).
Since �T ¬α it follows that �T ¬ bew(k, �¬α�) for all k. Therefore, C5 in 6.3 gives
�T (∀z<n)¬ bew(z, �¬α�) and so �T bew(n, �α�) ∧ (∀z<n)¬ bew(z, �¬α�), whence
particularization yields the claim �T prov(�α�). Proof of (b): Suppose �T ¬α,
say �T bew(m, �¬α�). Since �T α, we have �T (∀y�m)¬ bew(y, �α�) by C5. This
gives bew(y, �α�) �T y > m by C6. Since y > m �T (∃z<y) bew(z, �¬α�) (choose
z = m) it follows that �T ∀y[bew(y, �α�) → (∃z<y) bew(z, �¬α�)] ≡ ¬ prov(�α�).
This confirms (b). Now let γ ≡T ¬ prov(�γ�) according to (1). The assumption
�T ¬γ then yields �T prov(�γ�), contradicting (b), and the assumption �T γ leads
to a contradiction as in Theorem 5.1′. Thus, neither �T γ nor �T ¬γ.

T ⊆ L0
ar is called ω-incomplete if there is some ϕ = ϕ(x) such that �T ϕ(n) for

all n and yet �T ∀xϕ. We show that PA is not only incomplete but ω-incomplete.
Let γ ≡PA ¬ bwbPA(�γ�) and ϕ(x) := ¬ bewPA(x, �γ�). Then, by Theorem 5.1′,
�PA γ ≡PA ¬ bwbPA(�γ�) ≡ ∀xϕ, that is, �PA ∀xϕ. On the other hand, since �PA γ

we know from Corollary 4.3 that �PA ϕ(n) (= ¬ bewPA(n, �γ�)) for all n. Note that
ϕ(x) is even a Π1-formula which is particularly surprising.

α ∈ L0 is said to be true in A if A � α. In particular, α ∈ L0
ar is called true (more

precisely, true in N or true in reality, as some people like to say) if N � α. If there
is some τ(x) ∈ L with a single free variable such that A � α ⇔ A � τ(�α�), for
all α ∈ L0, it is said that truth of A is definable in A. Clearly, this is equivalent
to the representability of ThA in ThA. For A = N , however, such a possibility is
excluded by the nonrepresentability lemma. We therefore obtain

Theorem 5.2 (Tarski’s nondefinability theorem). The notion of truth in N is
not definable in N ; in other words, ThN is not arithmetical.

In this theorem lies the origin of a highly developed theory of definability in N
(see also 6.7). The theorem holds correspondingly for every domain of objects A
whose language is arithmetizable and in which the function sbx is representable for
some variable x.

We now turn to undecidability results. First of all we prove the claim in Exercise 1
of 3.6 without recourse to Church’s thesis.
4 In particular �T ¬ prov(�⊥�). That the latter is not the case if we write bwb instead of prov is
the import of Gödel’s second incompleteness theorem 7.2.2. Thus, bwb and prov behave within
T very differently, although bewT (y, x) ≡N prov(y, x).

6.5 The Theorems of Gödel, Tarski, Church 197

Lemma 5.3. Every finite extension T ′ of a decidable theory T of one and the same
(arithmetizable) language L is decidable.

Proof. Suppose T ′ extends T by α0, . . . , αn and α :=
∧

i�n αi, so that T ′ = T + α.
Since β ∈ T ′ ⇔ α → β ∈ T , we obtain n ∈ Ṫ ′ ⇔ n ∈ L̇0 & α̇0 →̃ n ∈ Ṫ . Now, Ṫ ,
L̇0, and →̃ are recursive. Hence the same applies to Ṫ ′.

That T ′ belongs to the same language as T is important here. A decidable theory
T axiomatized by X ⊆ L0, if considered as a theory in L′ ⊃ L with the same axiom
system X, may well be undecidable, e.g., due to the additional tautologies of L′.

T0 ⊆ L0 is called strongly undecidable if T0 is consistent and each theory in L
compatible with T0 is undecidable. Then each theory T compatible with T0 in a
language L ⊇ L0 is also undecidable, for otherwise T∩L0 would clearly be decidable.
If T0 is strongly undecidable so is every consistent T1 ⊇ T0, for if T is compatible
with T1, then it is also compatible with T0. Moreover, each subtheory of T0 in L0 is
then also undecidable, or T0 is hereditarily undecidable in the terminology of [TMR].
The weaker a strongly undecidable theory, the wider the scope of applications. This
will become plain by means of examples in the next section.

Theorem 5.4. ([TMR]). Q is strongly undecidable.

Proof. Assume T ∪Q is consistent and T decidable. The same holds by Lemma 5.3
for the finite extension T1 = T + Q. But then, by Theorem 4.2, T1 is representable
in itself, which again is impossible by the nonrepresentability lemma.

Theorem 5.5 (Church’s undecidability theorem). The set TautL of all tauto-
logical sentences is undecidable for L ⊇ Lar .

Proof. TautL is surely compatible with Q, hence undecidable by Theorem 5.4.

This result readily carries over to the language with a single binary relation, as
will be shown in the next section, and hence to all expansions of this language.
Indeed, it carries over to all languages with the exception of those containing unary
predicate symbols only and at most one unary function symbol. For the tautologies
of these languages there exist various decision procedures; see [ML, vol. I].

By Theorem 5.4, in particular ThN is undecidable; likewise is every subtheory of
ThN , for instance Peano arithmetic PA and each of its subtheories, as well as all
consistent extensions of PA, because these are all compatible with Q. ThN is not
even axiomatizable, since an axiomatizable complete theory is decidable. Further
conclusions concerning undecidable theories will be drawn in 6.6.

Alongside undecidability results concerning formalized theories, numerous special
results can also be obtained in a similar manner; for instance negative solutions
to word problems of all kinds, and halting problems (see e.g. [Rog] or [Ba, C2]).

198 6 Incompleteness and Undecidability

Of these perhaps the most spectacular was the solution to Hilbert’s tenth problem:
Does an algorithm exist that for every polynomial p(�x) with integer coefficients
decides whether the Diophantine equation p(�x)==== 0 has a solution in Z? The answer
is no, as Matiyasevich proved in 1970.

We briefly sketch the proof. It suffices to show that no algorithm exists for the
solvability of all Diophantine equations in N. Indeed, by a well-known theorem from
Lagrange, every natural number is the sum of four squares of integers. Consequently
p(�x)==== 0 is solvable in N iff p(u2

1 + v2
1 +w2

1 + z2
1 , · · · , u2

n + v2
n +w2

n + z2
n)==== 0 is solvable

in Z. Thus, if we could decide the solvability of Diophantine equations in Z, then
we could solve as well the corresponding problem in N. For the latter notice first
of all that the question of solvability of p(�x)==== 0 in natural numbers is equivalent
to the solvability of a Diophantine equation of Lar (i.e., an equation s(�x)==== t(�x)),
by simply bringing all terms of p(�x) preceded by a minus sign “to the other side.”
Thus, Hilbert’s problem is reduced to the question of a decision procedure for the
problem N � ∃�xδ(�x), where δ(�x) runs through all Diophantine equations in Lar .

The negative solution to the last question follows easily from the much further-
reaching Theorem 5.6, which establishes a surprising connection between number
and recursion theory; it is proved in detail in [Mat]. This theorem is a paradigm of
the experience that certain mathematical questions lead to results whose significance
extends way beyond that of an answer to the original question.

Theorem 5.6. An arithmetical predicate P of any arity is Diophantine if and only
if P is recursively enumerable.

To give at least an indication of the proof, let the Diophantine predicate P ⊆ Nn be
defined by P�a ⇔ N � ∃�yδN (�a, �y), with the equation δ(�x, �y). The defining formula
for P is Σ1 and hence is r.e., because δN (�a, �y) is recursive by Theorem 4.5. This is
so to speak the trivial direction of the claim. The converse, that every r.e. predicate
is Diophantine, is too large in scope to be given here. Much tricky inventiveness
must be used in order to show that numerous arithmetical predicates and functions
are Diophantine. Among these is the ternary predicate ‘ab = c ’, which for a long
time resisted the proof of being Diophantine. This theorem easily yields

Corollary 5.7. (a) Hilbert’s tenth problem has a negative answer. (b) For every
axiomatizable theory T ⊇ Q, in particular for T = PA, there exists an unsolvable
Diophantine equation whose unsolvability is provable in T .

Proof. bwbQ is by 6.2 r.e. Hence, by Theorem 5.6, there exists a Diophantine
equation δ(x, �y) such that (∗): bwbQ(n) ⇔ N � ∃�y δ(n, �y). We claim that even for
the set {∃�y δ(n, �y) | n ∈ N} of Diophantine sentences there is no decision procedure.
Otherwise {n ∈ N | N � ∃�y δ(n, �y)} would be recursive, and thus by (∗) so too bwbQ,

6.5 The Theorems of Gödel, Tarski, Church 199

contradicting Theorem 5.4. This proves (a). If the unsolvability of every unsolvable
Diophantine equation δ(�x) were provable in T , then either �T ¬∃�xδ(�x) (provided
δ(�x) is unsolvable) or �T ∃�xδ(�x) otherwise, because of the Σ1-completeness of T .
Since the theorems of T are r.e., one would then have a decision procedure for the
solvability of Diophantine equations, which contradicts part (a).

Theorem 5.6 can be yet further strengthened; namely, it can be proved within PA.
Thus, one obtains the following theorem, whose name stems from Matiyasevich,
Robinson, Davis, and Putnam, all of whom made significant contributions to the
solution of Hilbert’s tenth problem. Because of the lengthy proof, we shall not use
the theorem, though in fact many things would thereby be simplified.

MRDP theorem. For every Σ1-formula α there exists an ∃-formula ϕ in Lar such
that α ≡PA ϕ. Here ϕ is without loss of generality of the form ∃�x s==== t.

Fermat’s meanwhile proved conjecture
(∗) (∀x y z �====0)(∀n>2) xn + yn �====zn

is a Π1-sentence, because by Theorem 4.5 (x, y)
→ xy is ∆1 and a fortiori explicitly
definable by 0, S, +, · in N . This was noticed already in Remark 1 in 6.4. Hence,
the conjecture (∗) is a candidate for a sentence which may be independent in PA.

Remark. It would be interesting to discover whether the conjecture’s proof at the end of
the last century, or any modification can be carried out in PA. A demonstration that this
is not the case would be hardly less sensational than the solution of the problem itself.
However, it seems that the proof can be carried out in a suitable conservative extension
of PA (communication by letter to the author from G. Kreisel). Note also the following:
Since PA is ω-incomplete already for Π1-formulas (page 196), it may even be the case that
�PA (∀x∀y∀z �====0) xn + yn �====zn for every single n > 2, although (∗) is not provable in PA.

Exercises

1. Show that an ω-incomplete theory in Lar has a consistent but ω-inconsistent
extension.

2. Suppose T is complete; prove the equivalence of

(i) T is strongly undecidable, (ii) T is hereditarily undecidable.

3. Let ∆ be a finite list containing explicit definitions of new symbols in terms of
those occurring in L. Show that if T is decidable then so is T +∆ (independent
of whether all definitions in ∆ are legitimate in T).

4. Construct a primitive recursive function f : N → N such that ran f is not
recursive. Hint: Note that the set of all proofs in Q is p.r.

200 6 Incompleteness and Undecidability

6.6 Transfer by Interpretation

Interpretability is a powerful method to transfer model-theoretical and other prop-
erties, such as undecidability, from one theory to another. Roughly speaking, inter-
preting a theory T0 ⊆ L0 into a theory T1 ⊆ L1 means to make the basic notions
of T0 understandable in T1 via explicit definitions. Quantifiers from T0 run over
subdomains of the domains of T1-models, that is, “for all x” from T0 is replaced
in T1 by “for all x ∈ P ”, where P is a unary predicate symbol for the domains of
T0-models. We consider the most important concepts, interpretability from Tarski
(also called relative interpretability) and interpretability from Rabin, called model
interpretability. All theories are supposed to be consistent in this section.

Let P be a unary predicate symbol not occurring in T1. The formula ϕP, the
P-relativized of a formula ϕ, results from ϕ by replacing all subformulas of the
form ∀xα by ∀x(Px → α). For open ϕ nothing happens, that is, ϕP = ϕ. A strict
definition of ϕP runs by induction: ϕP = ϕ if ϕ is a prime formula, (¬ϕ)P = ¬ϕP,
(ϕ∧ψ)P = ϕP ∧ψP, and (∀xϕ)P = ∀x(Px → ϕP). This implies (∃xϕ)P ≡ ∃x(Px∧ϕP)
as is easily confirmed. Here a formula equivalent to (∃xϕ)P has been displayed to
show more clearly what relativation is intending to mean.

Example. (∀x∃y y==== Sx)P ≡ ∀x(Px →∃y(P y ∧ y==== Sx)) ≡ ∀x(Px → P Sx). As re-
gards the second equivalence observe that ∃y(P y ∧ y==== Sx) ≡ P Sx (cf. (12) in 2.4).

Definition. T0 ⊆ L0 is called interpretable in T1 ⊆ L1 (where for simplicity we
assume that T0 has finite signature) if there is a list ∆ containing explicit definitions
legitimate in T1 of the symbols of T0 not occurring in T1 and of a unary predicate
symbol P, so that T P

0 ⊆ T∆
1 . Here generally XP := {αP | α ∈ X}, and T∆

1 := T1 + ∆
is a theory in L∆

1 whose signature is L0 ∪ L1 ∪ {P} (Li is the signature of Li).

This technically somewhat involved definition only expresses that all notions of T0

“are understood” in T1, and all that can be proven in T0 can also be proven in T1.
Interpretability generalizes the notion of a subtheory: If T0 ⊆ T1 then T0 is trivially
interpretable in T1, with ∆ = {Px↔ x==== x}. In this case clearly αP ≡ α modulo ∆.

Let CA be the set of the so-called closure axioms
∃x Px, P c, and ∀�x (

∧n
i=i Pxi → P f�x), for all c, f ∈ L0.

These sentences are equivalent to (∃xx==== x)P, (∃xx==== c)P, and (∀�x ∃y y==== f�x)P, re-
spectively. Thus, CA is up to equivalence a set of the form F P for some finite set
F ⊆ TautL0 and therefore CA ⊆ T P

0 in any case. The sentences of CA guarantee that
for a given B � ∆ there is a well-defined L0-structure A whose domain is A = PB.
A’s relations and operations are the ones defined by ∆ but restricted to A. This
structure A will be denoted by B∆. It is a substructure of the L0-reduct of B whose
role will become clear in the next lemma. Examples will be given later.

6.6 Transfer by Interpretation 201

Lemma 6.1. Let B � CA. Then B∆ � α⇔ B � αP, for all sentences α ∈ L0
0.

Proof. A := B∆ is an L0-structure. Claim: (A, w) � ϕ ⇔ (B, w) � ϕP, for any
w : Var → A. This proves the lemma since α is a sentence. We prove the claim by
induction on ϕ ∈ L0. It is clear for prime formulas α since αP = α. The induction
steps for ∧ ,¬ proceed without difficulty, and the one for ∀ is obtained as follows:

(A, w) � ∀xϕ⇔ (A, wa
x) � ϕ for all a ∈ A

⇔ (B, wa
x) � ϕP for all a ∈ A (induction hypothesis)

⇔ (B, wa
x) � Px → ϕP, for all a ∈ B (because PB = A)

⇔ (B, w) � ∀x(Px → ϕP) = (∀xϕ)P.

If T0 is axiomatized by X0 then in the above definition it suffices to require just
XP

0 ∪ CA ⊆ T∆
1 instead of T P

0 ⊆ T∆
1 . This fact is highly important for applications

and follows immediately from
(∗) S � α⇒ SP ∪ CA � αP (S ∪ {α} ⊆ L0

0).
For proving (∗) let S � α and B � SP ∪ CA. Then B∆ � S by the lemma. Thus,
B∆ � α since S � α. Consequently B � αP. Since B was arbitrary, SP ∪ CA � αP.

Theorem 6.2. Let T0 be interpretable in T1. If T0 is strongly undecidable so is T1.

Proof. Let T ⊆ L1 be compatible with T1. Then T + T1 is consistent and so is
(T + T1)∆. Now, S := {α ∈ L0

0 | αP ∈ T∆ + CA} is a theory (consider (∗) and
SP,CA ⊆ T∆ + CA). Let B � (T + T1)∆ (⊇ T∆, T∆

1 ,CA). Then also B � T P
0 , SP,

since T P
0 ⊆ T∆

1 . Thus, B∆ � T0, S by Lemma 6.1, hence S is compatible with T0

and so undecidable. If T were decidable, then so would be T∆ (Exercise 3 in 6.5).
Hence also T∆ + CA (Lemma 5.3), and so clearly S. This is a contradiction.

Example. Q is interpretable in the theory Td of discretely ordered rings, i.e., ordered
rings R = (R, 0, +,×, <) with a smallest positive element e, which need not be the
unit element of R. Ring multiplication is denoted by ×, in order to distinguish it
from multiplication in Q. Choose the following definitions for P, S, · :

Px↔ x � 0 ∧ x× e==== e× x ∧ ∀y∃z z × e==== y × x,

y==== Sx↔ y==== x + e, z ==== x · y ↔ z × e==== x× y ∨ ∀u(u× e �====x× y ∧ z ==== x).
Since x==== e ↔ 0 < x ∧ ∀y(0 < y → x � y), e is eliminable from all these formulas.
0, + remain unaltered. With a somewhat patient calculation, all the axioms of Q
relativized to P can be proved in T∆

d , as can all the closure axioms. Thus, Td is
strongly undecidable according to Theorem 6.2.

While Q is not directly interpretable in the theory TR of rings or in the theory TF

of fields, it is in a certain finite extension of TF (Julia Robinson), whereby TF and
TR are shown to be undecidable. The same also holds for the theory of groups TG

as is shown in [TMR]. However, none of these theories is strongly undecidable.

202 6 Incompleteness and Undecidability

Q and also PA are interpretable in ZFC, as is nearly every other theory (some
exceptions are considered in 7.6). Let Px↔ x∈ ω, and define S, +, · within ZFC such
that their restrictions to ω coincide with the usual operations. In particular, S may
be defined by y==== Sx↔ y==== x ∪ {x}. This immediately yields the incompleteness and
the undecidability of ZFC, assuming of course its consistency. Q is also interpretable
in very weak subtheories of ZFC, for instance in the theory T∈ with the following
three axioms.5 Hence, like Q, the theory T∈ is strongly undecidable.

∃x∀y y /∈ x (∅ exists),
∀x∀y(∀z(z ∈ x↔ z ∈ y) → x==== y) (extensionality),
∀x∀y∃z∀u(u∈ z ↔ u∈ x ∨ u==== y) (x ∪ {y} exists).

In particular, the set of tautologies in a binary relation is undecidable, indeed even
without identity in the language; for notice that ==== can conservatively be eliminated
from T∈ by means of the explicit definition x==== y ↔ ∀z(z ∈ x↔ z ∈ y).

Q is surely interpretable in ThN and ThN in turn in ThZ with Z = (Z, 0, 1, +, ·).
This is a consequence of Lagrange’s theorem. Hence, ThZ is strongly undecidable,
and thus every subtheory is undecidable, e.g., the theory of commutative rings.

ThN and ThZ have the same degree of complexity, because ThZ is (in various
ways) interpretable in ThN ; for instance, let the even and odd numbers play the
role of nonnegative and negative integers, respectively. Highly interesting also is the
mutual interpretability of PA and ZFCfin. This is the theory of finite sets, resulting
from ZFC by replacing the axiom of infinity with the axiom “all sets are finite.”

We now describe a stricter notion of interpretability, though for simplicity we
omit some details. Let K0 and K be nonempty classes of L0- and L-structures,
respectively. Further, let ∆ be a list of definitions of the L0-symbols and a predicate
symbol P, and L∆,CA and B∆ for B � CA as above. A∆ denotes the expansion of
A ∈K in L∆ according to the definition list ∆ (the ∆-expansion of A). For a fixed
sentence γ ∈ L∆ set Kγ := {A∆ | A ∈ K, A∆ � γ}. For each sentence β ∈ L∆ we
can effectively construct, as in 2.6, a reduced formula βrd ∈ L such that

(0) A∆ � β ⇔ A � βrd, for all A ∈K.

Definition. Call K0 (or ThK0) model interpretable in K (ThK, respectively.) if
with respect to suitable ∆ and γ the following conditions hold:

(1) Kγ � CA and B∆ ∈K0 for all B ∈Kγ,
(2) For every A ∈K0 there is a B ∈Kγ such that A � B∆.

Theorem 6.3. Let K0 be model interpretable in K. If ThK0 is undecidable then
so too is ThK.

5 Claimed in [TMR]. The very lengthy proof is presented in [Mo, pp. 283–290].

6.6 Transfer by Interpretation 203

Proof. It suffices to show (∗) : K0 � α ⇔ K � α̂, where α̂ := (γ → αP)rd, because
a decision procedure for ThK would by (∗) also mean one for ThK0. Let K0 � α,
A ∈ K, and A∆ � γ so that A � γrd and B := A∆ ∈ Kγ. By (1), B∆ ∈ K0, thus
B∆ � α, hence B � αP by Lemma 6.1, and so A � (αP)rd. This proves A � α̂ for all
A ∈K, i.e., K � α̂. The ⇐ -direction is easily proved by contraposition.

Example. Let K0 be the class of all graphs (A, R) and K that of all simple graphs
(B,S), that is, S is irreflexive and symmetrical. The figure shows an A ∈K0 such

� � � � � �� �
� � � � � ���� �� ��

a b c ��
�����

�� ��
�

� � �����A: B:

that aRa, aRb, bRa, and bRc, and on the right the simple graph B corresponding
to A according to (2) with A � B∆, the “encoding structure” of A. Roughly put,
a set N of new points is adjoined to A so that A is completely described by B. In
B, whose domain is B = A ∪ N , the edges are undirected, but we pay for this by
increasing the number of points for coding in B the directions of the edges in A. The
“old,” in the figure bold-printed points in A = PB neighbor two or three endpoints.
These are points in which exactly one S-edge ends. Informally, the definition for R

in the structure B then reads “xRy iff x, y ∈ PB and either x==== y and x neighbors
three endpoints, or there exists exactly one new point z such that xSzSy, or there
exist precisely two new points u, v such that xSuSvSy and uSy.” γ is rendered
informally into “∃x Px and all new points are either endpoints or neighbor exactly
two old points or exactly one old and one new point.”

In the example, ThK0 is the logical theory of a binary relation, already established
as undecidable. Accordingly the theory of all simple graphs is undecidable. Now,
this can be used to show, e.g., that the theory SL of semilattices is undecidable.
By Theorem 5.4 the same then follows for the theory SG of semigroups, since SL is
a finite extension of SG. Similar to the last example, it suffices to provide for any

� � � �
� �

�
�

�
��

�
�
�

�
�

��

�
�
�

�
�
�

�
�
�
�
�
�

�
�

a b c d

0

simple graph (A, S), the encoding semilattice (B, ◦). The
figure on the left shows the ordering diagram of B for
A = {a, b, c, d} and S = {{a, b}{ac}}, where S is under-
stood as a set of edges; cf. 1.5. The old points are precisely
the maximal points of B. By construction, B has a smallest
element 0 and is of length 3, i.e., there are at most three
consecutive points in B with respect to <. This must now

be expressed by the sentence γ required in the definition.
The theory of finite simple graphs with or without some additional feature (for

instance planarity) is undecidable; see e.g. [RZ]. The above construction shows
that the undecidable theory of finite simple graphs is model interpretable in the

204 6 Incompleteness and Undecidability

theory of finite semilattices which hence is undecidable. This clearly implies the
undecidability of the theory FSG of finite semigroups. Setting an element on top of
the maximal elements in the last figure results in the diagram of a finite lattice, so
that the theory of finite lattices turns out to be undecidable. The same holds for
the theory FPO of finite partial orders because for the description of (A, S) only the
partial order of B is relevant.

Remark. Somewhat more mathematics is required to prove the undecidability of the
theory FDL of all finite distributive lattices. The figure shows first of all that the theory
FPO of finite partial orders (g, <) is also undecidable. But FPO is model interpretable in
FDL, in that one identifies the elements of g with the ∩ -irreducible elements of the lattice,
A say. Here we need to know that A’s structure is completely determined by the partial
order of its irreducible elements and that this order can arbitrarily be given.

Positive results are also transferable. For instance the (logical) theory of a unary
function is interpretable in the elementary theory of (undirected) trees ([KR]), and
with the latter the former is also decidable. The decidability of the theory of a
single unary function was first proved by Ehrenfeucht with a different method. Let
us mention that the theory of two or more unary functions is undecidable because
several undecidable theories are model interpretable in it.

Decidability of the theory of simple trees also follows from the decidability of
the second-order monadic theory of binary trees ([Ba, C3]), a very strong result
with an immense scope of applications. One of these applications is a relatively
simple proof of decidability of a variety of logical systems that expand two-valued
propositional logic (see for instance [Ga]), among them all the propositional modal
systems considered in Chapter 7.

Exercises

1. Show (informally) that PA is interpretable in ZFC. The axiom of choice is not
involved so that PA is interpretable in ZF as well. More difficult is the proof
that PA is interpretable in ZFCfin.

2. Prove that if T1 is model-interpretable in T2 then T1 is (relatively) interpretable
in some finite extension of T2.

3. Show in detail that Th (Z, 0, 1, +, ·, �) is interpretable in ThN .

4. Prove that FPO is model-interpretable in the theory FDL of all finite distribu-
tive lattices. Thus, ThFDL is undecidable. (Hint : identify the points of A

with the ∩ -irreducible elements of B whose order can be given arbitrarily.)

6.7 The Arithmetical Hierarchy 205

6.7 The Arithmetical Hierarchy

Finally, we would like to add a little more on the complexity of predicates of N, in
particular, of its subsets. The set of the Gödel numbers of all sentences valid in N is
an example of a rather simply defined nonarithmetical subset of N; by Theorem 5.2
it has no definition in Lar.6 However, relatively simply defined arithmetical sets
and predicates may be recursion-theoretically highly complicated. It is useful to
classify these according to the complexity of the defining formulas. The result is the
arithmetical hierarchy, also called the first-order Kleene–Mostowski hierarchy. The
following definition builds upon the one in 6.3 of the Σ1- and Π1-formulas and the
Σ1-, Π1-, and ∆1-predicates defined by these.

Definition. A Σn+1-formula is a formula of the form ∃�xα(�x, �y), where α is a Πn-
formula (∈ Lar); analogously, we call ∀�xβ(�x, �y) a Πn+1-formula if β is a Σn-formula.
Here �x, �y are arbitrary tuples of variables. A Σn-predicate (resp. Πn-predicate) is an
arithmetical predicate P defined by a Σn-formula (resp. Πn-formula). If P is both
Σn and Πn (i.e., a Σn- and Πn-predicate) then we say that P is a ∆n-predicate,
or P is ∆n for short. We denote by Σn, Πn, and ∆n the sets of the Σn-, Πn- and
∆n-predicates, respectively. In addition, Σ0 := Π0 := ∆0.

According to this definition, a Σn-formula is a prenex formula ϕ with n alternating
blocks of quantifiers, the first of which is an ∃-block. ϕ’s kernel is ∆0. Obviously,
∆n ⊆ Σn, Πn. When considering the hierarchy it is convenient to have Σn- and
Πn-formulas closed under equivalence in N . Hence, we say that α is Σn or Πn to
indicate that α is equivalent to an original Σn- or Πn-formula, respectively. Note
that since ∃�xϕ ≡ ∀�xϕ ≡ ϕ in case var �x∩ var ϕ = ∅, every Σn- or Πn-formula is also
both Σn+1 and Πn+1. Therefore Σn, Πn ⊆ ∆n+1. This yields the following inclusion
diagram, where all the inclusions, indicated by lines, are proper:

Σ1 Σ2 Σ3

�� �� �� �� ��

∆0 ∆1 ∆2 ∆3 · · ·
�� �� �� �� ��

Π1 Π2 Π3

We have already come across Σ1-, Π1-, and ∆1-predicates; for instance, the solv-
ability claims of Diophantine equations are Σ1, and the unsolvability claims are Π1.
Below we provide an example of a Π2-predicate. It is also convenient to say that
Σn- and Πn-sentences define 0-ary Σn- and Πn-predicates, respectively. In this sense
the consistency of PA, for example, is a Π1-predicate and the ω-consistency is Π3.
6 ThN is definable only in second-order arithmetic, which along with variables for numbers has
variables for sets of natural numbers. Exercise 3 gives an “approximate” elementary definition.

206 6 Incompleteness and Undecidability

Each formula ϕ is equivalent to a Σn- or Πn-formula for a suitable n, for ϕ can be
brought into prenex normal form and the quantifiers can be grouped into blocks of
the same quantifiers. The hierarchy serves various purposes. More recent investiga-
tions have considered also ∆0- or Σn- or Πn-induction. Here the induction schema IS
is restricted to the corresponding class of formulas, closed under equivalence modulo
some weak base theory. An example is the theory I∆0 mentioned on page 186.

As already shown in 6.4, the Σ1-predicates are the recursively enumerable ones,
the Π1-predicates their complements, and the ∆1-predicates are exactly the recursive
predicates, which are the ones whose complements are r.e. as well. Thus, we are
provided with a purely recursion-theoretical way of regarding Σ1, Π1, and ∆1. This
underscores the importance of the arithmetical hierarchy, which is fairly stable with
respect to minor changes in the definition of ∆0. In view of Theorem 5.6 one
could begin, for instance, with a ∆0 consisting of all polynomially (or equivalently,
quantifier-free) definable relations. In some presentations, a system of formulas is
effectively enumerated (and denoted by ∆0), which define exactly the p.r. predicates
in N . Section 7.1 will indicate how such a system can be defined. Between these
and the ∆0-formulas (which themselves may still be classified) lie many r.e. sets
of formulas which are significant in both the theory and practice of computability,
for instance, the class of elementary functions mentioned in the introduction to
this chapter. However, by Remark 2 in 6.4 we know that there is no effectively
enumerable system of formulas in Lar through which all recursive, or equivalently
all ∆1-predicates, are defined, so that the definition of the arithmetical hierarchy
cannot start in a feasible manner with a representative “set of ∆1-formulas.”

Remark. It should be mentioned that the first-order arithmetical hierarchy considered
so far extends in a natural way to that of the the so-called second-order arithmetic. The
latter is based on a two-sorted language with variables for natural numbers and sets of
these. Also this extended hierarchy is closely related to recursion theory (see e.g. [Shoe]).
A treatment lies outside the scope of this book.

Similarly to the case n = 1, one readily shows that a conjunction or disjunction
of Σn-formulas is equivalent to some other Σn-formula; likewise for Πn-formulas.
The negation of a Σn-formula is equivalent to a Πn-formula, and vice versa; this is
certainly correct for n = 1, which initiates an easy induction on n. The complement
of a Σn-predicate is therefore a Πn-predicate, and vice versa. From this it easily
follows that ∆n is closed under all the mentioned operations, including negation.

By “compression of quantifiers,” the idea of which was illustrated in Exercise 1
in 6.3, one obtains a somewhat simpler presentation of the quantifier blocks. The
∃- and ∀-blocks can each be collapsed into one quantifier. This procedure is fairly
easy, provided we are dealing with equivalence in N as is the case here, and not in
a possibly too weakly axiomatized theory over N (infact, PA would suffice):

6.7 The Arithmetical Hierarchy 207

Theorem 7.1. Each Σn-predicate is defined by a formula ∃x1∀x2 · · ·Qnxnα, with α

a ∆0-formula, where Qn is either the ∀- or ∃-quantifier, depending on whether n is
even or odd. Similarly, a Πn-predicate is defined by a formula ∀x1∃x2 · · ·Qnxnα.

Proof by (simultaneous) induction on n. Exercise 1 in 6.3 formulates the case for
Σ1- and for Π1-predicates. Assume this is the case for n and let ∃�xα be the defining
formula of a Σn+1-predicate, where α defines a Πn-predicate and ∃�x is a block of
length m � 1. Using the (defining ∆0-formula of the) pairing function, ∃�x can
stepwise be compressed to a single ∃-quantifier ∃x. The case m = 0 can also be
included in the argument, using a “vacuous quantifier”∃x (i.e., x /∈ var α). The
Πn+1-formulas are treated completely analogously. One may also use the fact that
both Σn and Πn are closed under bounded quantification; Exercise 1.

It is quite often a nontrivial task to determine a well-defined predicate’s exact po-
sition in the arithmetical hierarchy, or better, like every fastidious game, it requires
some training. In the example below, we consider a set that is neither recursive nor
r.e. For the sake of simplicity, we apply Church’s thesis in one place, although it can
be eliminated using a little recursion theory as was demonstrated previously in the
proof of Theorem 4.4. The example is also a good preparation for 7.5.

Example. Let Lr denote the set of the α ∈ L1
ar that represent in Q the recursive

subsets of N. For instance, all ∆0-formulas in L1
ar belong to this set. Since N

and ∅ are recursive and L0
ar ⊆ L1

ar , all members of Q∗ := Q ∪ {α | ¬α ∈ Q} also
belong to Lr, because each α ∈ Q trivially represents N, and each α with ¬α ∈ Q
represents ∅. Conversely, each closed formula of Lr belongs to Q∗. Obviously then,
Q∗ = Lr ∩ L0

ar . We now show that Lr is arithmetical; more precisely, it is a proper
Π2-set and therefore cannot be recursively enumerable. By definition,

α ∈ Lr ⇔ α ∈ L1
ar & ∀n∃Φ[Φ is a proof for α(n) or for ¬α(n)].

This equivalence readily yields a definition of L̇r by a Π2-formula ϕ(x). Let the p.r.
predicate ‘a ∈ ˙L1

ar ’ be Σ1-defined by λ1(x). With sb = sbv0 , we then set

ϕ(x) := λ1(x) ∧ ∀y∃u[bewQ(u, sb(x, y)) ∨ bewQ(u, ¬̃ sb(u, y))].

More precisely, ϕ should be the reduced in Lar after eliminating the occurring p.r.
function terms using more ∃-quantifiers inside the brackets. Thus, ϕ describes a
Π2-formula, that is L̇r is a Π2-set. It is not Σ1, because Lr is not r.e. by Remark 2
in 6.4, nor is it Π1. Indeed, assume this were the case; then Q∗ = Lr∩L0

ar would also
be Π1, for L0

ar is ∆1. Now Q∗ is certainly r.e. and thus Σ1, and so by Theorem 4.5
Q∗ would be recursive. But then we obtain a decision procedure for Q (hence a
contradiction) as follows: let α ∈ L0

ar be given. If α /∈ Q∗ then also α /∈ Q; if
α ∈ Q∗, we turn on the enumeration machine for Q and wait until either α or ¬α

appears, the former instance of which corresponds to the case α ∈ Q.

208 6 Incompleteness and Undecidability

We end this section with a result useful for our purposes in 7.1. It will be proved
that the Σ1-predicates are definable without refer to ∆0, using special Σ1-formulas.
To this end somewhat stronger axioms are considered than those of Q, namely the
axioms of the theory N presented in 6.3. All these axioms are provable in PA.

Definition. Special Σ1-formulas are defined as follows:
(a) Sx==== y, x + y==== z, and x · y==== z are special Σ1-formulas, where x, y, z denote

distinct variables (the special prime formula condition);
(b) if α, β are special Σ1-formulas then so too are α∧β, α ∨ β, α 0

x , and α y
x , where

x, y are distinct and not in bnd α (prime-term substitution), as well as ∃xα

and (∀x<y)α for y /∈ var α.

Theorem 7.2. Every original Σ1-formula is equivalent to a special Σ1-formula in
the theory N, thus in PA and a fortiori in the standard model N .

Proof. It suffices to verify the claim for all ∆0-formulas, since the set of special
Σ1-formulas is closed under ∃-quantification. Since s==== t ≡ ∃x(x==== s∧x==== t) with
x /∈ var s, t, it is enough to consider prime formulas of the form x==== t. For prime
terms t this clearly follows from x==== 0 ≡ (x==== y) 0

y and x==== y ≡N (x + z ==== y) 0
z , and

the induction steps on the operations S, +, · follow from x==== St ≡ ∃y(x==== Sy ∧y==== t),
x==== s + t ≡ ∃y∃z(x==== y + z ∧y==== s∧z ==== t), and similarly for ·.

The claim holds for all literals because of s �==== t ≡ ∃y∃z(x �==== y ∧x==== s∧y==== t), and
x �==== y ≡N ∃u∃z(Su==== z ∧ (x + z ==== y ∨ y + z ==== x)). By Exercise 4 in 6.3 we need
only carry out induction on ∧ , ∨, (∀x�t) and (∃x�t). For ∧ , ∨ this is clear. For
the remainder note that (∀x�t)α and (∃x�t)α are N-equivalent respectively to
∃y(y==== t ∧ (∀x<y)α ∧ α y

x) and ∃x∃y∃z(x + y==== z ∧ z ==== t ∧ α).

Exercises

1. Show that Σn, Πn, and hence ∆n are closed under bounded quantification.7

2. Confirm that ∆0 ⊂ ∆1 ⊂ Σ1, Π1, which therefore shows that these four classes
of arithmetical predicates are distinct.

3. Let Trn = {α ∈ L0
ar | N � α & qr α � n}, so that ThN =

⋃
n∈N Trn. By

Theorem 5.2, ThN is itself not arithmetical. Prove that Trn is arithmetical,
more precisely, Trn is ∆n+1. In this sense, ThN is arithmetically approximable.
(With more effort it can be shown that Trn is at most ∆n).

4. Prove that ω-inconsistency is Σ3. Theorem 7.5.2 will show that this property
is properly Σ3.

7 Again, we do not need here that the Σn-formulas are closed under ≡N ; it would be sufficient if
they are closed under ≡PA.

Chapter 7

On the Theory of Self-Reference

By self-reference we basically mean the possibility of talking inside a theory T about
T itself or related theories. Here we can give merely a glimpse into this recently much
advanced area of research. We will prove Gödel’s second incompleteness theorem,
Löb’s theorem and many other results connected with self-reference, while further
results are discussed only and elucidated by means of applications. All this is of
great interest both for epistemology and the foundations of mathematics.

The mountain we first have to climb is the proof of the so-called derivability
conditions for PA and other theories in Section 7.1. But anyone contented with
leafing through 7.1 can begin straight away in 7.2; from then on we will just be
reaping in the fruits of our labor. However, one would forgo a real adventure in doing
so, namely the fusion of logic and elementary number theory in the metatheoretical
analysis of PA. Who wants to attain a comprehensive understanding of self-reference,
should study the material in 7.1 anyway.

Gödel himself tried to interpret the notion “provable” using a modal operator in
the framework of the modal system S4. This attempt reflects some of his own results,
though not adequately. Only after 1970, when modal logic was sufficiently advanced,
could such a program be successfully carried out. A suitable instrument turned out
to be the modal logic denoted by G or GL. The Kripke semantics treated in 7.3 is an
excellent tool for confirming or refuting self-referential statements as demonstrated
in 7.4. Solovay’s completeness theorem, and the completeness theorem of Kripke
semantics for G are fortunately of the kind that allows application without knowing
the completeness proofs itself (which contain quite a number of technical tricks).

There are several extensions of G important for the analysis of other proof opera-
tors or a comparison of these, for example, the bimodal logic in 7.5. A comprehen-
sive survey can be found in [Bu, Chapter VII], see also [Vi]. In 7.6 we discuss some
questions regarding self-reference in axiomatic set theory.

209

210 7 On the Theory of Self-Reference

7.1 The Derivability Conditions

Put somewhat simply, Gödel’s second incompleteness theorem states that �T ConT

cannot hold for a sufficiently strong and consistent axiomatizable theory T . Here
ConT is a sentence in the language L of T expressing the consistency of T . In a
popular formulation: If the theory T is consistent, then its consistency is unprovable
in T . As was outlined by Gödel and will be verified in this chapter, the italicized
sentence is not only true but even provable in the framework of T .

The easiest way to obtain Gödel’s theorem is first to prove the derivability con-
ditions, stated below. These conditions deserve some interest on their own. Their
formulation supposes the arithmetizability of T , which includes the distinguishing
of a sequence 0, 1, . . . of ground terms; see page 194. Let bewT (y, x) be a formula
that is assumed to represent the recursive predicate bewT in T , exactly as in 6.4.
For bwbT (x) = ∃ybewT (y, x) we write 	(x), and 	α is to mean bwbT (�α�). We may
read 	α as “box α” or more suggestively “α is provable in T ,” because it formalizes
the property �T α within T . If 	 refers to some theory T ′ �= T then 	 has to be
indexed correspondingly. For instance, 	ZFCϕ for ϕ ∈ L∈ can easily expressed also
in PA. Note that 	α is always a sentence, even if α contains free variables.

Further, set �α := ¬	¬α for α ∈ L. If α is a sentence, �α may be read as α is
compatible with T , because it formalizes ‘�T ¬α’ which is, as we know, equivalent
to the consistency of T + α. First of all, we define ConT in a natural way by

ConT := ¬	⊥
(
= ¬ bwbT (�⊥�)

)
,

where ⊥ is a contradiction, 0 �====0 for instance. We shall see in a moment that ConT

is independent modulo T of the choice of ⊥. The mentioned derivability conditions
then read as follows:

D1: �T α ⇒ �T 	α, D2: �T 	α∧	(α → β) → 	β, D3: �T 	α → 		α.
Here α, β run through all sentences of L. Sometimes D2 is written in the equivalent
form 	(α → β) �T 	α → 	β, and D3 as 	α �T 		α. These conditions are due to
Löb, but they were considered in a slightly different setting already in [HB].

A consequence of D1 and D2 is D0: α �T β ⇒ 	α �T 	β. This implication
holds since α �T β ⇒ �T α → β ⇒ �T 	(α → β) ⇒ �T 	α → 	β. From D0 it
clearly follows that α ≡T β ⇒ 	α ≡T 	β. In particular, the choice of ⊥ in ConT

is arbitrary as long as ⊥ ≡T 0 �====0.

Remark 1. Any operator ∂ :L → L satisfying the conditions d1: �T α ⇒ �T ∂α and
d2: ∂(α → β) �T ∂α → ∂β thus satisfies d0: α �T β ⇒ ∂α �T ∂β. It also satisfies
d∧ : ∂(α∧β) ≡T ∂α∧∂β, since α∧β �T α, β, and by d0, ∂(α∧β) �T ∂α, ∂β �T ∂α∧∂β.
Similarly, ∂α∧∂β �T ∂(α∧β) readily follows from α �T β → α∧β by first applying d0 and
then d2. Clearly, d0 implies d00: α ≡T β ⇒ ∂α ≡T ∂β, for all α, β ∈ L.

7.1 The Derivability Conditions 211

Whereas D2 and D3 represent sentence schemas in T , D1 is of metatheoretical
nature and follows obviously from the representability of bewT in T . Thus, D1 holds
even for weak theories such as T = Q. On the other hand, the converse of D1,

D1∗: �T 	α ⇒ �T α, for all α ∈ L0,
may fail. Fortunately, it holds for all ω-consistent axiomatic extensions T ⊇ Q, for
instance T = PA. Indeed, �T α implies �T ¬ bewT (n, �α�) for all n (Theorem 6.4.2).
Hence, �T ∃y bewT (y, �α�) = 	α in view of the ω-consistency of T .

Unlike D1, the properties D2 and D3 are not so easily obtained. T must be able
to speak directly or indirectly (via arithmetization) about provability in T . Note
that D3 is nothing else than condition D1 formalized within T , while D2 formalizes
(7) from page 178, meaning the closure under MP in arithmetical terms. Let us first
show that D2 holds provided it has been shown that

(1) bewT (u, x)∧ bewT (v, x →̃ y) �T bewT (u ∗ v ∗ 〈y〉, y),
where the p.r. functions →̃ , ∗, and y
→ 〈y〉 appearing in (1) must of course be
defined in T . Generally speaking, f ∈ Fn is called definable in T (with respect to a
given sequence of terms (n)n∈N) if there is a formula δ(�x, y) ∈ L such that

(∆) (a) �T δ(�a, f�a) for all �a, (b) �T ∀�x ∃!yδ(�x, y).
Clearly, f is then also represented by δ(�x, y). Because of (b), f may explicitly be
defined in T by δ(�x, y) (see 2.6). We will no longer distinguish between T and its
definitorial extensions and write simply �T y==== f�x ↔ δ(�x, y). This and (a) easily
yield �T f�a==== f�a, for instance �T a →̃ b==== a →̃ b. With �α�, �β� for x, y, we then
obtain from (1) in view of �α → β� = α̇ →̃ β̇ = α̇ →̃ β̇ = �α� →̃ �β�,

bewT (u, �α�)∧ bewT (v, �α → β�) �T bewT (u ∗ v ∗ 〈�β�〉, �β�).

Particularization yields D2. But the real work, the proof of (1), still lies ahead.
In order to better keep track of things, we restrict our considerations to the theories

ZFC and PA, which are of central interest in nearly all foundational questions. ZFC
is only briefly discussed. Here the proofs of D2 and D3 are much easier than in
PA. Indeed, (1) and hence D2 are clear, because the naive proof of (1) above with
bewT = bewZFC can easily be formalized inside ZFC. This includes the definability of
all functions occurring in (1), for we did define them; for instance, the operation ∗ on
page 174 (set a∗b = ∅ if not a, b ∈ ω). We arithmetize L∈ according to the pattern in
6.2, encoding formulas as in 6.2 based on prime number factorization,1 so that L∈-
formulas are encoded within ZFC by certain ω-terms, defined in 3.5. Lar -formulas
are identified with their ω-relativized in L∈, called the arithmetical formulas of L∈.
Moreover, the arithmetical predicate bewZFC is certainly representable in ZFC by

1 This is not actually necessary, since in ZFC one can talk directly about finite sequences and hence
about L∈-formulas, but we do so in order to maintain coherence with the exposition in 6.2.

212 7 On the Theory of Self-Reference

Theorem 6.4.2, since this theorem can be viewed, just like every other theorem in
this book, as a theorem within ZFC. Thus, the naive proof of D1 based on this
theorem (up to Corollary 6.4.3) can as a whole be carried out in ZFC, and so D3 is
proved. Roughly speaking, D2 and D3 hold for ZFC because ordinary mathematics,
in particular the material in Chapter 6, is formalizable in ZFC.

In all of the above, no typically set-theoretical constructions like ordinal recur-
sion are needed. Only relatively simple combinatorial facts are required. Hence
there is some hope that the proofs of D2 and D3 can also be carried out in suffi-
ciently strong arithmetical theories like PA. This is indeed so and such a result is
considerably more interesting for a critical foundation of mathematics. We already
encoded Lar -formulas and proofs within PA by their corresponding Gödel terms on
page 191. However, it is not obvious how to define in PA the functions appearing
in (1) and other relevant functions.2 Hence, our first goal is to show that all occur-
ring p.r. functions are provably recursive in the following sense, which considerably
strengthens the definition (∆) from the previous page:

Definition. An n-ary recursive function f is called Σ1-definable in PA, or provably
recursive, if there is a Σ1-formula δf (�x, y) such that

(2) (a) �PA δf (�a, f�a) for all �a ∈ Nn; (b) �PA ∀�x ∃!yδf (�x, y).

Because of the Σ1-completeness of PA, (a) is equivalent to N � δf (�a, f�a) for all �a.
We will prove stepwise that all p.r. functions are Σ1-definable, and derive also the
recursion equations belonging to them in PA. Thereafter we may treat all occurring
p.r. functions in PA as if they had been available in the language right from the
outset. Essentially this fundamental fact allows a treatment of elementary num-
ber theory and combinatorics within the boundaries of PA. D3 demands additional
preparation, and even good textbooks do not carry out all of the proof steps. How-
ever, all steps described here and not handled in detail can easily be completed
in full by the sufficiently assiduous reader. Life could be made easier through the
mutual interpretability of PA and ZFCfin, though this is itself not easy to prove.

The Σ1-definability in PA of some functions, including the β-function, is straight-
forwardly verified; see Exercise 1. But in order to recognize as legitimate in PA, for
instance, the definition of the exponential function by δexp in Remark 1 from 6.4,
Lemma 6.4.1, and hence also Euclid’s lemma and the Chinese remainder theorem
have to be proved within PA. As regards Euclid’s lemma, there is no problem. Just
follow the proof in 6.4. Clearly, some basic arithmetical laws are applied that must
be proven first, including those on the difference a− b for a � b.

2 In [Go2], Gödel presented a list of 45 p.r. functions, of which the last was χbew . Following [WR],
he considered a kind of higher-order arithmetical theory. That Gödel’s theorems also hold in
first-order arithmetic was probably first noticed in [HB].

7.1 The Derivability Conditions 213

As for the Chinese remainder theorem, at present even its formalizability in Lar

is not evident, because we quantify over finite sequences which can take place in PA
only after it has been shown that PA is capable of talking about such sequences.
In order to surmount this obstacle, we use c, d to denote for the time being unary
provably recursive functions, which may depend on further parameters. Each such
c determines for given n the sequence c0, . . . , cn, with cν = c(ν) for ν � n. With
the ∆0-definable relation ⊥ of coprimeness, the Chinese remainder theorem can
provisionally be stated as follows: for arbitrary c, d holds3

(3) �PA ∀n[(∀ν, i, j�n)(cν<dν ∧ (i �====j → di⊥dj)) →∃a(∀ν�n) rem(a : dν)==== cν].
To convert the original proof of the remainder theorem to one for (3) we require,
for given provably recursive d, the term lcm{dν | ν�n}, the least common multiple
of d0, . . . , dn. Then f : n
→ lcm{dν|ν�n} is defined in PA by the Σ1-formula

δf (x, y) := (∀ν�x)dν y ∧ (∀z<y)(∃ν�x) dν � z.

More precisely, δf (x, y) describes a Σ1-formula in the original language, similarly as
does δexp on page 190. Since N � δ(n, lcm{dν|ν�n}) for all n, 2(a) holds. With
the least-number schema (see Exercise 3 in 3.3) applied to β(x, y) := (∀ν�x)dν y,
we obtain �PA ∃!yδf (x, y), provided it has been shown that �PA ∃yβ(x, y) (‘finitely
many numbers have a common multiple’). This follows by induction on x. Clearly
�PA ∃yβ(0, y), and the induction step has already been carried out in Example 1
from 2.5. We then obtain the proof of (3) by following the proof of the remainder
theorem in 6.2, and, writing βst for β(s, t), a suitable version of Lemma 6.4.1 about
the the basic property of the β-function:

(4) �PA ∀v∃u(∀ν�v) cν ==== βuν, for every provably recursive c.

Theorem 1.1. Each p.r. function f is provably recursive. Moreover, the recursion
equations for f are provable in PA whenever f = Op(g, h).

Proof. For the initial functions and +, · the formulas v0 ==== 0, v1 ==== Sv0, vn ==== vν along
with v2 ==== v0 +v1 and v2 ==== v0 ·v1 are defining Σ1-formulas. (2) is here obvious. For
f = h[g1, . . . , gm], let δf (�x, y) be y==== h(g1�x, . . . , gm�x). In this case (2) is clear, be-
cause we might think of the symbols h, g1, . . . , gm as having already been introduced
via explicit definition, so that the last formula simply belongs to the language. Only
the definition of δf for f = Op(g, h) requires some skill. In noting that formula
beta in 6.4 is just what we require concerning the β-function, let

(5) δf (�x, y, z) := ∃u[βu0==== g�x∧ (∀v<y)βuSv==== h(�x, v, βuv) ∧ βuy==== z︸ ︷︷ ︸
γ(u,�x,y,z)

].

δf is Σ1. Metainduction over b shows that N � δf (�a, b, f�a) and hence 2(a). Unique-
ness in 2(b) follows with a glance at (5) from �PA γ(u, �x, y, z)∧γ(u′, �x, y, z′) → z ==== z′,

3 For suggestive reasons from now on also letters such as n, ν, . . . denote variables in Lar .

214 7 On the Theory of Self-Reference

obtained using induction on y. Also, �PA ∃zδf (�x, y, z) is shown by induction on y.
For y = 0 consider �PA ∃uβu0==== g�x according to (4). Choose there, for instance, the
provably recursive c : v → w defined by v==== 0∧w==== g�x ∨ v �====0∧w==== 0. The less sim-
ple inductive step (∗) : ∃zδf (�x, y, z) �PA ∃z′δf (�x, Sy, z′) will be verified informally:
Suppose ∃zγ(u, �x, y, z), or equivalently, γ(u, �x, y, βuy). Then the Σ1-formula

ϕ(v, w, u, �x, y) := v �====Sy ∧w==== βuv ∨ v==== Sy ∧w==== h(�x, v, βuy)

defines in PA a function c : v
→ w with parameters u, �x, y. So by (4) (taking Sy
for v) there is some u′ with βu′v==== cv ==== βuv for all v � y and βu′Sy==== h(�x, y, βuy).
With this u′ and z′ = βu′Sy we obtain γ(u′, �x, Sy, z′) and therefore ∃z′δf (�x, Sy, z′).
This proves (∗) and hence 2(b). We finally also verify that

(a) �PA f(�x, 0)==== g�x, (b) �PA f(�x, Sy)==== h(�x, y, f(�x, y)).
(a) follows from 2(b) since (5) readily yields �PA δf (�x, 0, g�x). For (b) show first
that γ(u, �x, y, z) �PA (∀v�y)f(�x, Sv)==== βuSv using induction on y. From this one
easily infers γ(u, �x, y, z) �PA ϕ := (∀v�y)f(�x, Sv)==== h(�x, y, f(�x, y)). Now, because of
�PA ∃zγ(u, �x, y, z), we obtain �PA ϕ, which obviously includes (b).

We thus have achieved our first goal. Now the properties of ∗, �, . . . stated in the
remark on page 178 along with the basic properties of bewPA and bwbPA stated on
the same page are also easily proved within PA. This is a little extra program that
includes the proof of the unique prime factorization; Exercise 3. Thus, (1) is indeed
provable for T = PA. It implies D2 and, with 	 = bwbPA, moreover

(6) 	(x →̃ y) �PA 	(x) → 	(y).4

Remark 2. The formalized equations of Exercise 4 in 6.4 are now also seen to be prov-
able in PA. For instance, (b) now reads �PA sb�x(�ϕ�, �x)==== sb�x ′(�ϕ�, �x ′) for ϕ = ϕ(�x),
where �x ′ ⊆ �x enumerates the free variables of ϕ and may be empty. To prove item (c),
consider a special case. Let ϕ be Sx==== y. Then sbxy(ϕ̇, x, Sx) = sbx((ϕ Sx

y)·, x), formalized:
sbxy(�ϕ�, x, y) Sx

y ==== sbx(�ϕ Sx
y �, x). Following the example on page 193, one requires for

the proof of this equation in PA just �PA cf Sx==== S̃ cf x, which holds by Theorem 1.1.

Now we are suitably equipped to prove D3. We first generalize the notation 	ϕ.

Definition. For ϕ = ϕ(�x) let 	[ϕ] := 	(sb�x(�ϕ�, �x))
(
= bwbPA

sb�x(�ϕ�,�x)
x

)
.

By Remark 2, �PA sb�x(�ϕ�, �x)==== sb�x ′(�ϕ�, �x ′) whenever var �x ′ = free ϕ. There-
fore, we may assume w.l.o.g. free 	[ϕ] = free ϕ. Moreover, for α ∈ L0

ar we may
identify 	[α] and 	α, because �PA sb�x(�α�, �x)==== sb∅(�α�)==== �α�. By �PA ∀�x 	[ϕ],
the schema ‘�PA ϕ(�a) for all �a ∈ Nn’ is expressed in PA as a single sentence.
�PA ∀�x 	[ϕ] reflects in PA the existence of a collection of proofs which, due to
the ω-incompleteness of PA, can be less than �PA 	ϕ (or equivalently, �PA 	∀�xϕ).

4 	 may even denote bwbT for any axiomatizable and arithmetizable theory T .

7.1 The Derivability Conditions 215

Example. Let ϕ(x, y) be Sx==== y. We prove ϕ �PA 	[ϕ], or equivalently, �PA 	[ϕ] Sx
y ,

where w.l.o.g. x, y are not bounded in 	(x). In view of Remark 2, we then obtain
	[ϕ] Sx

y = 	(sbxy(�ϕ�, x, y)) Sx
y = 	(sbxy(�ϕ�, x, Sy)) ≡PA 	(sbx(�ϕ Sx

y �, x)). Thus,
	[ϕ] Sx

y ≡PA 	[Sx==== Sx]. Hence, it suffices to verify �PA 	[Sx==== Sx]. This reflects
in PA ‘for arbitrary n, �PA Sn==== Sn ’. Let α(x) := Sx==== Sx. We prove �PA 	[α] in
detail. Consider the p.r. function α̃ : n
→ sbx(α̇, n) (the Gödel number of α(n)). By
axiom Λ9, 〈α̃(n)〉 is for each n a simple arithmetized proof of length 1. Stated within
PA, �PA bewPA(〈α̃(x)〉, α̃(x)), which yields �PA ∃y bewPA(y, α̃(x)) = 	(α̃(x)) = 	[α].

The following generalizations of D1, D2 for α = α(�x) and β = β(�x) hold:
(7) (a) �PA α ⇒ �PA 	[α]; (b) 	[α → β] �PA 	[α] → 	[β].

To see this let �PA α, so that also �PA 	α. Just as in the above example, a proof
for α provides one for α�x(�a) for every �a ∈ Nn in a p.r. way, or stated within PA:
�PA 	(u) → 	(sb�x(u, �x)). Thus, choosing �α� for u, �PA 	(sb�x(�α�, �x)) (= 	[α]).
(b) follows from (6) with sb�x(�α�, �x), sb�x(�β�, �x) for x, y, taking into account that
�PA sb�x(�α → β�, �x)==== sb�x(�α�, �x) →̃ sb�x(�β�, �x) (Exercise 3 in 6.4). Additionally,
item (c) of this exercise, provable in PA, yields

(8) 	[α] t
x ≡PA 	[α t

x] (t ∈ {0, y, Sy} and y /∈ bnd α).
Obviously, D3 is only a special case of the provable Σ1-completeness of PA:

(9) ϕ �PA 	[ϕ] (equivalently, �PA ϕ → 	[ϕ]), for all Σ1-formulas ϕ.
To make D3 evident, choose in (9) for ϕ the Σ1-sentence 	α, for any given α ∈ L0

ar .
It follows that 	α �PA 	[α] ≡ 		α, and D3 is proved. We obtain (9) by applying
the following theorem, because the operator ∂ : α
→ 	[α] satisfies the conditions of
the theorem by (7), (8), and because free α = free 	[α] may be assumed.

Theorem 1.2. Let ∂ :Lar →Lar be any operator with free ∂α ⊆ free α satisfying
d1: �PA α ⇒ �PA ∂α,
d2: ∂(α → β) �PA ∂α → ∂β,
ds: ∂α t

x ≡PA ∂(α t
x) (t ∈ {0, y, Sy}, y /∈ bnd α).

Then �PA ϕ → ∂ϕ holds for all Σ1-formulas ϕ ∈ Lar .

Proof. ∂ satisfies also d0, d00, and d∧ ; see Remark 1. Due to d00, it is enough to
carry out the proof for the special Σ1-formulas defined in 6.7. First let ϕ be Sx==== y.
ϕ �PA ∂ϕ is equivalent to �PA ∂ϕ Sx

y , and this to �PA ∂ Sx==== Sx by ds, which is
obvious from d1. Similarly, y==== z �PA ∂ y==== z, which we need in the inductive proof
of �PA ϕ → ∂ϕ for ϕ := x+y==== z on x: ϕ 0

x �PA y==== z �PA ∂ y==== z �PA ∂(ϕ 0
x) �PA ∂ϕ 0

x .
Thus, �PA (ϕ → ∂ϕ) 0

x . Note that ϕSy
y ≡PA ϕSx

x and so ∂ϕ Sy
y ≡PA ∂ϕ Sx

x , by d00,ds.
Then the induction step ∀yz(ϕ → ∂ϕ) �PA ∀yz(ϕ → ∂ϕ)Sxx obviously follows from
∀yz(ϕ → ∂ϕ) � ϕ Sy

y → ∂ϕ Sy
y �PA ϕ Sx

x → ∂ϕ Sx
x = (ϕ → ∂ϕ)Sxx . The formula x · y==== z

is left to the reader. We now treat the logical connectives. The induction steps for

216 7 On the Theory of Self-Reference

∧ , ∨,∃ are simple: α∧β �PA α, β �PA ∂α∧∂β �PA ∂(α∧β) by d∧ . For ∨ observe
that α �PA ∂α �PA ∂(α∨β), and similarly for β. Further, because ϕ �PA ∃xϕ we
have ϕ �PA ∂ϕ �PA ∂∃xϕ, and since x /∈ free ∂∃xϕ, it follows that ∃xϕ �PA ∂∃xϕ.
The step for prime-term substitution (t is prime in t

x) runs also straightforwardly:
ϕ �PA ∂ϕ yields ϕ t

x �PA ∂ϕ t
x �PA ∂(ϕ t

x).
It remains to show the step for bounded quantification. Suppose α �PA ∂α and let

y /∈ var α. We show that ϕ := (∀x<y) α �PA ∂ϕ by induction on y. The initial step
is clear: �PA ϕ 0

y , thus �PA ∂(ϕ 0
y) �PA ∂ϕ 0

y , and a fortiori �PA ϕ 0
y → ∂ϕ 0

y . Clearly,
ϕ Sy

y ≡PA ϕ∧α y
x . Hence α �PA ∂α yields α y

x �PA ∂α y
x �PA ∂(α y

x). That leads to

ϕ Sy
y ∧ (ϕ → ∂ϕ) �PA ϕ∧α y

x ∧ (ϕ → ∂ϕ) �PA ∂ϕ∧∂(α y
x) �PA ∂(ϕ∧α y

x) �PA ∂(ϕSy
y).

Thus ϕ → ∂ϕ �PA ϕSy
y → ∂(ϕSy

y), which is equivalent to the inductive step.

D1–D3 are also provable for much weaker theories than PA, e.g., for so-called
elementary arithmetic EA = I∆0 + ∀xy∃zδexp(x, y, z). Here we take δexp to be a
∆0-formula according to Remark 1 in 6.3, with I∆0 likewise defined there. An
equivalent formulation of EA can be found in [FS].

It is noteworthy that the provable recursive functions in EA are precisely the
elementary ones (shown in [Si]). If EA is augmented by the Π2-induction schema
without parameters, then exactly the p.r. functions are provably recursive. This
beautiful result was proved in [Be4]. Further theories are discussed in [Ba, Part D].

Exercises

1. Prove in PA (using basic laws of arithmetic, e.g. the axioms of N page 86) the
definability of the pairing and remainder function: ∀xy∃!z 2z ==== (x+y)2+3x+y

and ∀xy∃!z(∃v x==== y · v + z ∧z < y ∨ y==== z ==== 0), and also ∀xy∃!z beta(x, y, z).

2. Prove in PA
(a) Euclid’s lemma (∀ab>0)∃xy ax + 1==== by,
(b) (∀a>1)∃p(prim p∧p a),
(c) �PA ∀abp(prim p∧p ab → p a ∨ p b).

3. (∀k�2)∃u∃n(k====
∏

ν�n pβuν
i ∧ βun �====0) can be viewed as a formalization of the

prime factorization.5 Prove this in PA, as well as its uniqueness.

4. Let T ′ = T + α and T satisfy D1–D4. Show that

(a) �T 	T ′ϕ↔ 	T (α → ϕ) (the formalized deduction theorem),
(b) D1–D4 hold also for T ′.

5 There are several equivalent formalizations of the prime factorization in PA. Particularly nice is
(∀n�2)(∃m�2)n====

∏
ν��m p

(((m)))i

i . Here m serves as a variable for the sequence of prime exponents.

7.2 The Theorems of Gödel and Löb 217

7.2 The Theorems of Gödel and Löb

We are now in a position to harvest the yields of our efforts. As long as not
stated otherwise, let T denote any arithmetizable axiomatic theory in a language L,
which satisfies the derivability conditions D1–D3 of 7.1 along with the fixed-point
lemma of 6.5. We direct attention straight away to the uniqueness statement of
Lemma 2.1(b) below. According to this claim, at most 	α → α can be the fixed-
point of the formula 	(x) → α, up to equivalence in T . The proof of Theorem 2.2
will show that ¬	(x) too has only one fixed point modulo T . Beneath all this lies,
as we shall see from Corollary 4.6, a completely general result.

Lemma 2.1. Let T be as arranged above, and α, γ ∈ L0 such that γ ≡T 	γ → α.
Then hold (a) 	γ ≡T 	α and (b) γ ≡T 	α → α.

Proof. The supposition yields 	γ �T 	(γ → α) �T 		γ → 	α, by D0 and D2.
Now, by D3, we clearly obtain 	γ �T 		γ and so 	γ �T 	α. Since obviously
α �T 	γ → α ≡T γ and so α �T γ, it follows by D0 that 	α �T 	γ. This, together
with the already verified 	γ �T 	α, proves (a). Using (a) we may replace 	γ with
	α in γ ≡T 	γ → α which results in (b).

Theorem 2.2 (Second incompleteness theorem). PA satisfies alongside the
fixed-point lemma also D1–D3. For every theory T with these properties,

(1) �T ConT provided T is consistent,
(2) �T ConT →¬	 ConT .

Proof. D1–D3 were proved for PA in 7.1. (1) follows from (2). Assume �T ConT .
Then �T 	 ConT by D1, as well as �T ¬	 ConT by (2). Thus, T is inconsistent. To
verify (2), let γ be a fixed point of ¬	(x), so that

(∗) γ ≡T ¬	γ ≡ 	γ → ⊥.

By Lemma 2.1(b) with α = ⊥, we obtain γ ≡T 	⊥ → ⊥ ≡ ¬	⊥ = ConT . Replacing
γ in (∗) with ConT gives ConT ≡T ¬	 ConT . Half of this is the claim (2).

Thus, by (1), no sufficiently strong consistent theory can prove its own consistency.
In particular, �PA ConPA since PA is assumed to be consistent. The proof shows that
ConT is the only fixed point of ¬ bwbT modulo T . It shows also a bit more, namely

(3) ConT ≡T ¬	 ConT .
This strengthens (2), but only by a little: ¬	 ConT �T ConT is just a special case of

(4) ¬	α �T ConT (equivalently, ¬ ConT �T 	α), for every α ∈ L.
This follows from ⊥ �T α since ¬ ConT ≡ 	⊥ �T 	α by D0. (4) reflects in T the
fact ‘If T is inconsistent then every formula is provable’. From (1) and (3) we get
�PA ¬	 ConPA, although ‘ConPA is unprovable in PA’ is true according to (1).

218 7 On the Theory of Self-Reference

All these claims hold independently of the “truth content” of the α ∈ T . Namely,
a consequence of the second incompleteness theorem is the existence of consistent
arithmetical theories T ⊇ PA in which along with claims true in N also false ones
are provable, i.e., in which truth and untruth live in peaceful coexistence with each
other. Such “dream theories” are highly rich in content, for all of them include
ordinary number theory. An example is PA⊥ := PA + ¬ ConPA. This theory is
consistent because the consistency of PA⊥ is equivalent to the unprovability of ConT

in PA. The italicized sentence is even provable in PA as (5) below will show. By the
reflection of the deduction theorem in PA (Exercise 4(a) in 7.1 with T = PA and
	 = 	PA), 	PA+α⊥ ≡PA 	(α → ⊥) ≡ 	¬α, hence ¬	PA+α⊥ ≡PA ¬	¬α, and so

(5) ConPA+α ≡PA �α (in particular, ConPA⊥ ≡PA �(¬ ConPA) ≡ ¬	 ConPA).
Now, the special case under (5) and (3) clearly yield

(6) ConPA ≡PA ConPA⊥ (hence also ConPA ≡PA⊥ ConPA⊥).
Put together, PA⊥ contains ordinary number theory as known to us, but also proves
the indubitably false sentence bwbPA(�0 �====0�). Moreover, because of �PA⊥ ¬ ConPA,
hence �PA⊥ ¬ ConPA⊥ by (6), PA⊥ proves its own inconsistency, although PA⊥ is
consistent. It claims to have a mysterious proof of ⊥. Thus, consistency of T can
have a different meaning within T and seen from outside, similar as the meanings
of countable diverge, depending on whether one is situated in ZFC or is looking at
it from outside. One may even say that PA⊥ is lying to us with the claim ¬ ConPA⊥ .
However this phenomenum is paraphrased, we learn that for a consistent theory T ,
the extension T + ConT need not be consistent. T = PA⊥ is an example, and in fact
only one of many others. More will be said on this in Theorem 2.4.

We now discuss what is, along with (3), the most famous example of a self-
referential sentence. Clearly, a fixed point α of 	(x) = bwbT (x) claims just its
own provability, that is, α ≡T 	α. A trivial example is α = �, because �T 	� → �,
and since �T �, clearly �T 	� so that � ≡T 	�. What is surprising here is that �

turns out to be the only fixed point of 	(x) modulo T . By D4◦ below, �T 	α → α

implies �T α and so α ≡T � (which confirms the uniqueness), although one might
perhaps expect �T 	α → α for all α ∈ L0 because 	α → α is intuitively true.

Theorem 2.3 (Löb’s theorem). Take T to satisfy D1–D3 and the fixed-point
lemma. Then T has the properties

D4: �T 	(α → α) → 	α, D4◦ : �T 	α → α ⇒ �T α (α ∈ L0).

Proof. Let γ be a fixed point of 	(x) → α, i.e., γ ≡T 	γ → α. Then γ ≡T 	α → α

by Lemma 2.1(b). This and D0 imply 	γ ≡T 	(α → α). Lemma 2.1(a) states
	γ ≡T 	α, hence 	α ≡T 	(α → α). Half of this is D4. Now suppose �T 	α → α.
Then by D1, �T 	(α → α). Using D4 results in �T 	α, and �T 	α → α finally
yields �T α, thus proving D4◦.

7.2 The Theorems of Gödel and Löb 219

D4 is just D4◦, formalized in T . One of many applications of Löb’s theorem is a
very easy proof of �PA ConPA. Indeed, �PA ConPA (≡ 	⊥ → ⊥) implies �PA ⊥ by D4◦.
That’s all. Similarly, D4 implies (2) for α = ⊥ by contraposition. Thus, Theorem 2.3
is stronger than Theorem 2.2, which is not obvious at the first glance.

Unlike PA⊥, PA+ConPA conforms to truth. Unfortunately it is not quite clear what
ConPA means in number-theoretical terms. This is clear, however, for an arithmetical
statement discovered by Paris and Harrington, which implies ConPA; this statement
is provable in ZFC but not in PA in view of (1). Since then, many such sentences
have been found, mostly of a combinatorial nature. A popular example is
Goodstein’s theorem. Every Goodstein sequence ends in 0.
A Goodstein sequence is a number sequence (an)n∈N with arbitrary a0 given in
advance, such that an+1 is obtained from an as follows: Let bn = n + 2, so that
b0 = 2, b1 = 3, etc. Expand an in b-adic base for b := bn, so that for suitable k,

(∗) an =
∑

i�k bk−ici, with 0 � ci < b.

Also the powers k−i are represented in b-adic form, so too the powers of powers, and
so on. Now replace b everywhere with b+1 (= bn+1) and subtract 1 from the output.
The result is an+1. The table below gives an example beginning with a0 = 11; already
a5 has the value 134 217 728. As one sees from this example, an initially increases
enormously, and it is hardly believable that the sequence ever starts to decrease and
ends in 0. But the proof of the theorem is not particularly difficult; one estimates
an from above by the ordinal number λn, which, crudely put, results from an if
replacing the basis b in (∗) by ω. With some ordinal arithmetic it can readily be
shown that λn+1 < λn as long as λn �= 0. Since there is no properly decreasing
infinite sequence of ordinal numbers (these are well-ordered), the sequence (an)n∈N

must eventually end in 0. For more detailed information see for instance [HP].

a0 = 11 = 22+1 + 2 + 1 2
 3 33+1 + 3 + 1 = 85
a1 = 84 = 33+1 + 3 3
 4 44+1 + 4 = 1028
a2 = 1027 = 44+1 + 3 4
 5 55+1 + 3 = 15 628
a3 = 15 627 = 55+1 + 2 5
 6 66+1 + 2 = 279 938
a4 = 279 937 = 66+1 + 1 6
 7 77+1 + 1 = 5 764 802

Many metatheoretical properties can be expressed using the provability operator
	 in T , often using sentence schemas. The following are examples that facilitate a
better understanding of the meaning of ¬ ConT within T . By Theorem 6.5.1′, none
of the following properties holds for a consistent T when seen from the outside:

(i) ¬ ConT : 	⊥ (provable inconsistency),
(ii) SyComp : 	α ∨ 	¬α (syntactic completeness),
(iii) SeComp : α → 	α (semantic completeness),
(iv) ω-Comp : ∀x	[ϕ(x)] → 	∀xϕ(x) (ω-completeness).

220 7 On the Theory of Self-Reference

Theorem 2.4. The properties (i)–(iv) are all equivalent in a theory T satisfying the
properties named at the beginning of this section.

Proof. By (4) (i)⇒(ii),(iii),(iv) are clear. (ii)⇒(i): By Rosser’s theorem formulated
in T (see 7.4), ConT �T ¬	α∧¬	¬α for some α. Thus, 	α ∨ 	¬α �T ¬ ConT .
(iii)⇒(i): For α := ConT , SeComp and Theorem 2.2 give α �T 	α,¬	α, so �T ¬α.
(iv)⇒(i): By (9) in 7.1 we obtain ¬ bewT (x, �⊥�) �T 	[¬ bewT (x, �⊥�)]. Therefore,
ConT = ∀x¬ bewT (x, �⊥�) �T ∀x	[¬ bewT (x, �⊥�)]. From ω-Comp and (2) easily
follows ConT �T 	∀x¬ bew(x, �⊥�) = 	 ConT �T ¬ ConT . Hence �T ¬ ConT .

Remark. ConT is also equivalent in T to other properties, for example to the schema
	α → α for Π1-formulas α (the local Π1-reflection principle) as well as the uniform Π1-
reflection principle ∀x	[α(x)] → ∀xα(x) for Π1-formulas α. Both the theorems of Paris–
Harrington and of Goodstein are equivalent in PA to the uniform Σ1-reflection, or equiva-
lently, to the consistency of PA plus all true Π1-sentences; see e.g. [Ba, D8].

We define inductively T 0 = T and T n+1 = T n + ConT n . This n-times-iterated
consistency extension T n can be written as T n = T +¬	n⊥ with 	 = bwbT , 	0α = α

and 	n+1α = 		nα; Exercise 3. Thus, the consistency of T n can be expressed by an
iterated consistency statement in the basis theory T . Moreover, let T ω :=

⋃
n∈ω T n.

By definition, T n ⊆ T n+1. Thus, because of T n = T + ¬	n⊥, the following three
items are equivalent:

(i) T ω is consistent, (ii) T n is consistent for all n, (iii) �T 	n⊥ for all n.

Like PA1 = PA + ConPA, also PAω conforms to truth if one is looking at PA from
outside. When considered more closely, this means only that PAω is relatively con-
sistent with respect to ZFC. In other terms, �ZFC ConPAω . The argument (to be
formalized in ZFC) runs as follows: �PAω ⊥ implies �PAn ⊥ for some n as was noticed
above, hence �PA 	n⊥. But this is impossible, as is shown by a repeated application
of D1∗ on PA (see page 211). Alternatively, one may apply Exercise 4.

Exercises

1. Prove D4◦ for T by applying Theorem 2.2 to T ′ = T + ¬α.

2. Show by means of Löb’s theorem that ConPA →¬	¬ ConPA is unprovable in
PA, although this formula is true if seen from outside.

3. Let T n recursively be defined as in the text below. Prove that T n = T +¬	n⊥

and ConT n ≡T ¬	n+1⊥, where 	 is bwbT .

4. Show that �ZFC 	PAα → α for every arithmetical sentence α from L0
∈.

7.3 The Provability Logic G 221

7.3 The Provability Logic G

In 7.2 first-order logic was hardly required. It comes then as no surprise that many of
the results there can be obtained propositionally, more precisely, in a certain modal
propositional calculus. This calculus contains alongside ∧ ,¬ the falsum symbol ⊥,
and a further unary connective 	 to be interpreted as the proof operator in Lar ,
which we denoted by 	 as well. First we define a propositional language F�, whose
formulas are denoted by H, G, F : (a) the propositional variables p1, p2, . . . and ⊥

belong to F�; (b) if H, G ∈ F� then so too (H ∧G),¬H, 	H ∈ F�. No other strings
belong to F� in this context. H ∨ G, H → G and H ↔ G are defined as in 1.1,
� := ¬⊥. Further, 	0H := H, 	n+1H := 		nH, and �H := ¬	¬H.

Let G be the set of those formulas in F� derivable using substitution in F�, modus
ponens MP and the rule MN: H/	H from the tautologies of two-valued propositional
logic augmented by the axioms

	(p → q) → 	p → 	q, 	p → 		p, 	(p → p) → 	p (Löb’s axiom).
Strictly speaking, the axiom 	p → 		p is not necessary; it is provable from the
remaining axioms; see [Boo] or [Ra1]. For H ∈ G we write �G H (read “H is
derivable in G”). MN obviously corresponds to condition D1. The first axiom of G
reflects D2, the middle D3, and the last D4, hence its name provability logic. The
connection between G and PA will be described in 7.4. Here we are concerned with
the formal system G and its semantics, known as Kripke semantics. For simplicity,
we restrict ourselves to finite Kripke frames, which is just another name for finite,
directed graphs. We begin without further ado with the following

Definition. A G-frame or Kripke frame for G is a finite strict partial order (g, <).
A valuation is a mapping w that assigns to every variable p a subset wp of g. The
relation P � H, dependent on w, between points P ∈ g and formulas H ∈ F� (read
“P accepts H”) is defined inductively by

P � p ⇔ P ∈ wp, P � ⊥, P � H ∧G ⇔ P � H & P � G,

P � ¬H ⇔ P � H, P � 	H ⇔ P ′ � H for all P ′ > P.

� ��
P1 P2

If P � H for all P ∈ g, all G-frames g, and all w, we write �G H and
say that H is G-valid. The G-frame on the right, consisting of two points
P1, P2 with P1 < P2, shows that �G p → 	p. Indeed, Let wp = {P1}. Then P1 � p,
but P1 � 	p since P2 � p. Note also that P2 � 	p → p because P2 � 	p.

One easily sees that P � �H iff P ′ � H for some P ′ > P . Let us write H ≡G H ′

for �G H ↔ H ′. This relation is a congruence in F� that conservatively extends
the logical equivalence of formulas without 	. Examples are ¬	H ≡G �¬H and
¬�H ≡G 	¬H. Many more interesting examples are presented in the following.
These will later be translated into statements about self-reference.

222 7 On the Theory of Self-Reference

Examples. (a) Although always P � ⊥, P � 	⊥ obviously holds iff P is maximal in
g, that is, if no P ′ > P exists. Likewise, 	¬	⊥ is accepted precisely at the maximal
points of g. Therefore, 	¬	⊥ ≡G 	⊥, or ¬	¬	⊥ ≡G ¬	⊥. This equivalence reflects
in G the second incompleteness theorem as will be seen in 7.4.
(b) Let {P0, . . . , Pn} be the ordered G-frame with Pn < · · · < P0. Induction on n

shows that Pn � 	m⊥ for m > n, but Pn � 	n⊥, and moreover Pn � 	n+1⊥ → 	n⊥.
Hence, �G 	n+1⊥ → 	n⊥, and a fortiori �G 	n⊥ for all n.
(c) �G 	(p → p) → 	p. For take an arbitrary g and P ∈ g. If P � 	p then there is,
since g is finite, some Q > P with Q � ¬p and Q′ � p for all Q′ > Q. Thus Q � 	p;
hence Q � 	p → p and so P � 	(p → p). Consequently, P � 	(p → p) → 	p,
which proves our claim, since g was an arbitrary G-frame.
(d) �G ¬	n+1⊥ → �Rn, where Rn :=

∧n
i=1(pi → pi). Indeed, suppose P � ¬	n+1⊥,

P ∈ g. Then there must be a chain P = P0 < P1 < · · · < Pn+1 in g. Now, it is a
nice separate exercise to verify that each conjunct of Rn fails to be accepted by at
most one of the n + 1 points P1, . . . , Pn+1. Thus, at least one of these accepts all
conjuncts. In other words, Pi � Rn for some i > 0, hence P � �Rn. This nontrivial
example will essentially be used in the proof of Theorem 6.1.

It is easy to prove by induction on �G H that �G H ⇒ �G H; example (c) is a part
of the initial step. The induction step over the rule MN is verified by contraposition:
if P � 	H then there must be some P ′ > P in some G-frame with P ′ � H.

The converse, �G H ⇒ �G H, is not so easily shown. It is part of the following
theorem, used is the sequel without proof. It tells us that �G H can be confirmed
by showing that �G H, and vice versa. The particular import of this theorem will
become clear only in Theorem 4.2. As for the relatively simple formulas considered
in the sequel, we check directly whether they are G-valid. For a proof of Theorem 3.1,
based on the finite model property of G, see e.g. [Boo], [Ra1], or [CZ].

Theorem 3.1 (Completeness of Kripke semantics for G). �G H ⇔ �G H.

Both the formulas provable in G and those refutable there are obviously recursively
enumerable, thanks to the finite model property of �G. Thus, in complete analogy
to Exercise 2 in 3.6, we obtain the following result:

Theorem 3.2. G is decidable.

Remark. Let F0
� be the set of variable-free formulas of F�. An important fragment of

G is G0 := G ∩ F0
�. The most interesting formulas in F0

� are the ¬	n⊥ (≡G �n�), for
these form a Boolean base in G0. One proves this statement most easily by showing that
G0 is complete with respect to all (totally) ordered G-frames, including the infinite ones,
and applying the base theorem 5.2.3 accordingly: two ordered G-frames satisfying the
same “base formulas” 	n⊥ are either both finite and isomorphic, or both infinite and
indistinguishable by means of the formulas H ∈ F0

�.

7.4 The Modal Treatment of Self-Reference 223

7.4 The Modal Treatment of Self-Reference

Let T be a theory in L as in 7.2. A mapping ı : pi
→ αi (∈ L0) will be called an
insertion. ı assigns to every H an L-sentence H ı by extending it to the whole of F�

by ⊥ı = ⊥, (¬H)ı = ¬H ı, (H ∧G)ı = H ı ∧Gı, and (H)ı = 	H ı. In other words,
H ı results from H = H(p1, . . . , pn) by replacing the pν by the αν , denoted also by
H ı = H(α1, . . . , αn). For instance, (p∧¬	⊥)ı = 	α∧¬	⊥ if pı = α. In particular,
(¬	⊥)ı = ¬	⊥ = ConT . The following lemma shows that �G is “sound” for �T .
This already considerably simplifies proofs of self-referential statements.

Lemma 4.1. For every H such that �G H and every insertion ı in L, �T H ı.

Proof by induction on �G H. If H is a propositional tautology then H ı ∈ TautL ⊆ T .
If H is one of the modal axioms of G, then �T H ı by D2, D3, and D4. If �G H

and σ : F� → F� is a substitution, then �T Hσı, because Hσı = H ı′ with ı′ : p
→ pσı,
and �T H ı′ holds by the induction hypothesis. As regards the induction step over
MP, consider (F → G)ı = F ı → Gı. If MN is applied, and �T H ı by the induction
hypothesis, then �T 	H ı = (H)ı, due to D1.

Example 1. We prove (3) of Theorem 2.2 with the calculus �G. By Lemma 4.1
and Theorem 3.1 it suffices to show that �G ¬	⊥ ↔ ¬	¬	⊥. But this holds by
Example (a) in 7.3. Next example: �G 	(p ↔ �p) →¬�p is easily confirmed.
Thus, 	(α ↔ �α) →¬�α is provable in PA. This formula tells us “a sentence
claiming its own consistency with PA is incompatible with PA”, which hardly seems
plausible. Even the converse is provable in PA since �G ¬�p → 	(p↔ �p).

We now explain certain facts that expand upon the reasoning of above. For PA
and related theories the converse of Lemma 4.1 holds as well. That is to say, the
derivability conditions and Löb’s theorem already contain everything worth knowing
about self-referential formulas or schemas. For the subtle proofs of Theorems 4.2,
4.4, and 4.5, the reader is referred to [Boo].

Theorem 4.2 (Solovay’s completeness theorem). For all formulas H ∈ F�:
�G H (equivalently �G H) if and only if �PA H ı for all insertions ı.

Example 2 (applications). (a) �PA 	n+1⊥ → 	n⊥ because by Example (b) in 7.3,
�G 	n+1⊥ → 	n⊥. In particular we get �PA ConPA (≡ 	⊥ → ⊥). (b) �PA ¬	n+1⊥,
since �G ¬	n+1⊥. (c) It is easily verified with the 2-point frame on page 221 that
�G ¬	p → 	¬	p, in particular �G ¬	⊥ → 	¬	⊥. Therefore, �PA ConPA → 	 ConPA.
(d) PAn := PA+	n⊥ is consistent for n > 0 by (b), but is ω-inconsistent. Otherwise,
by D1∗ (page 211), �PAn 	n⊥⇒ �PAn 	n−1⊥⇒ · · · ⇒ �PAn ⊥, contradicting �PAn ⊥.
Since �PA 	n⊥ → 	n+1⊥ by D3, we obtain PAn ⊇ PAn+1, and since PAn �= PAn+1 by
(a), it follows that PA0⊃ PA1 ⊃ · · · ⊃ PA. Observe that PA1 is just PA⊥.

224 7 On the Theory of Self-Reference

Note also since �G 	p → p, there must be some α ∈ L0
ar with �PA 	α → α (which

one?) The above examples point out that Theorem 4.2 and the decidability of G are
very efficient instruments in deciding the provability of self-referential statements.

Many other theories have the same provability logic as PA, where in general a
modal propositional logic H is the provability logic for T when the analogue of
Theorem 4.2 holds with respect to T and H. For some theories, the provability logic
may be a proper extension of G. For example, the ω-inconsistent theory PAn from
Example 2(d) has the provability logic Gn := G + 	n⊥, the smallest extension of
G closed under all rules of G with the additional axiom 	n⊥. This follows directly
from Theorem 4.2 (Exercise 1). By the following theorem (due to A. Visser), other
extensions of G to be considered as provability logics are out of the question.

Theorem 4.3. Let T be at least as strong as PA and T ω as on page 220. Then
(a) whenever T ω is consistent, then G is the provability logic of T (proof in 7.6),
(b) if �T ω ⊥ and n is minimal such that �T n ⊥, then T ’s provability logic is Gn.

The formulas H ∈ F� such that N � H ı for all insertions ı in Lar can also be
surprisingly easily characterized. All H ∈ G are obviously included; but in addition
also 	p → p, because obviously N � 	α → α for all α ∈ L0

ar .
Let GS (⊇ G) be the set of all formulas in F� that can be obtained from those in

G ∪ {	p → p} using substitution and modus ponens only. Induction in GS readily
yields H ∈ GS⇒ N � H ı for all ı. Again, the converse holds as well:

Theorem 4.4 ([So]). H ∈ GS if and only if N � H ı for all insertions ı.

GS is decidable as well. For it can be shown that H ∈ GS⇔ H∗ ∈ G, where

H∗ := [
∧

�G∈Sf �H(G → G)] → H.

Here Sf �H is the set of subformulas of H of the form 	G. By Theorem 4.4, many
questions concerning the relations between provable and true are effectively decid-
able. For instance, H(p) := ¬	(¬	⊥ →¬	p∧¬	¬p) �∈ GS can straightforwardly
be verified. By Theorem 4.4 then N � ¬H(α) ≡ 	(¬	⊥ →¬	α∧¬	¬α) for some
α ∈ L0

ar . Translated into English: It is provable in PA: the consistency of PA implies
the independence of α for some sentence α. This is exactly Rosser’s theorem which
in this way turns out to be provable in PA. As was shown in [Be1], the box in the
formulas H ∈ GS in Theorem 4.4 may denote bwbT for any axiomatizable T ⊇ PA,
provided T ⊆ ThN . However, if T proves false sentences (as does e.g. PA⊥) then
GS has to be redefined in a feasible manner and is always decidable.

A variable p in H is called modalized in H if every occurrence of p is contained
within the scope of a 	, as is the case in ¬	p, ¬	¬p, and 	(p → q). By contrast,
p is not modalized in 	p → p. Another particularly interesting theorem is

7.4 The Modal Treatment of Self-Reference 225

Theorem 4.5 (DeJongh–Sambin fixed-point theorem). Let p be modalized in
H(p, q1, . . . , qn), n � 0. Then there exist a formula F = F (�q) from F� such that

(a) F ≡G H(F, �q), (b) �G
∧2

i=1[(pi ↔ H(pi, �q))∧	(pi ↔ H(pi, �q))] → (p1 ↔ p2).

From this theorem we easily obtain a corresponding result for theories T :

Corollary 4.6. If p is modalized in H = H(p, �q) and T satisfies D1–D4, then there
is an F = F (�q) ∈ F� with F (�α) ≡T H(F (�α), �α) for all �α = (α1, . . . , αn), αi ∈ L0.
For each �α there is only one β ∈ L0 modulo T such that β ≡T H(β, �α).

Proof. Choose F according to (a) of the theorem. Then F (�α) ≡T H(F (�α), �α) by
Lemma 4.1 (�q ı = �α). To prove uniqueness let βi ≡T H(βi, �α) for i = 1, 2. By D1,
�T (βi ↔ H(βi, �α))∧	(βi ↔ H(βi, �α)). Inserting βi for pi and αi for qi in the
formula under (b) in the theorem then yields �T β1 ↔ β2 by Lemma 4.1.

Example 3. For H = ¬	p (n = 0), F = ¬	⊥ is a “solution” of (a) in Theorem 4.5
because ¬	⊥ ≡G ¬	(¬	⊥). According to Corollary 4.6, ConT (= ¬	⊥) is modulo
T the only fixed point of ¬ bwbT . For H = 	p → q (here n equals 1), F = 	q → q is
a solution of F ≡G H(F, �q). The corollary states that 	α → α is modulo T the only
fixed point of bwbT (x) → α. This is exactly what was shown in Lemma 2.1.

Many special cases of the corollary represent older self-reference results from
Gödel, Löb, Rogers, Jeroslow, and Kreisel which, stated in terms of modal logic,
concern fixed points of ¬	p, 	p, ¬	¬p, 	¬p, 	p → q, and 	(p → q) (these are, in
order, ¬	⊥, �, ⊥, 	⊥, 	q → q, and 	q). Incidentally, for the listed formulas one
gets fixed points according to a simple recipe. All listed formulas are of the form

H = G �H’
p (p not modalized in G(p, �q); H ′(p, �q) chosen appropriately).

Then F = H G(�,�q)
p is the fixed point of H, as can be seen after some calculation.

For H = ¬	p is G = ¬p. Hence, F = ¬	p ¬�
p = ¬	¬� ≡G ¬	⊥. For H = 	p → q

is G = p → q, and so F = (p → q)�(� → q)
p = 	(� → q) → q ≡G 	q → q. For Kreisel’s

formula 	(p → q) we have G = p. Therefore, F = p�(� → q)
p = 	(� → q) ≡G 	q.

Exercises

1. Prove that the theory PAn from Example 2(d) has the provability logic Gn.

2. Show that PAn
⊥ := PAn + ¬ ConPAn equals PA + 	n+1⊥ ∧¬	n⊥ (= 	PA)

and has the provability logic G1 = G + 	⊥. Show the same for the theory
T = PA + 	(ConPA ∨ 	¬ ConPA) ∧ ¬(ConPA ∨ 	¬ ConPA).

3. Prove that the recipe given in the text above is correct.

4. (Mostowski’s theorem). Let T ⊇ PA be axiomatizable and suppose T � N .
Show that there are two mutually independent Σ1-sentences α, β in T , that is,
α, ¬α, α → β, α →¬β, ¬α → β, ¬α →¬β are unprovable in T .

226 7 On the Theory of Self-Reference

7.5 A Bimodal Provability Logic for PA

Hilbert remarked jokingly that the incompleteness phenomenon can be forcefully

removed from the world by use of the so-called ω-rule ρω :
X � ϕ(n) for all n

X � ∀xϕ
.

ρω has infinitely many premises. It is an easy exercise to derive with the aid of ρω

every sentence α valid in N from the axioms of PA, even from those of Q. Indeed,
all sentences can (up to equivalence) be obtained from variable-free literals with
∧ , ∨,∀,∃, bypassing formulas with free variables. Due to the Σ1-completeness of Q,
all valid variable-free literals are derivable. The inductive steps for ∧ , ∨,∃ are simple,
applying Σ1-completeness in the ∃-step once again. Only in the ∀-step rule ρω is
used. Clearly, the unrestricted use of the infinitistic rule ρω contradicts Hilbert’s
own intention of giving mathematics a finitistic foundation. However, things look
different if we restrict ρω each time to a single application. In view of Remark 1
in 6.2, we no longer distinguish between ϕ and ϕ̇, so that �ϕ� = ϕ. Let us define

1bwbPA(α) := (∃ϕ∈L1
ar)[bwbPA(∀xϕ → α) ∧∀n bwbPA(ϕ(n))].

This predicate is arithmetical; more precisely, it is Σ3 because of the ∃-quantifier
hidden in bwbPA. We read 1bwbPA(α) as “α is 1-provable.” Let 1bwb(x) be the
Σ3-formula in Lar defining 1bwbPA. Write 	1 α for 1bwb(�α�) and �1 α for ¬	1¬α.
As we know, 	α for α ∈ L0

ar can be read ‘PA + ¬α is inconsistent’, while 	1 α, by
Lemma 5.1, formalizes ‘PA + ¬α is ω-inconsistent’. Therefore, �1 � (≡ ¬	1 ⊥) means
‘PA (= PA + ¬⊥) is ω-consistent’. This explains the interest in the operator 	1 .

If bwbPA(α) then certainly 1bwbPA(α) (choose α for ϕ). The italicized statement
is reflected in PA as ‘�PA 	α → 	1 α for every α ∈ L0

ar ’. The converse implication
fails, because we know, �PA ConPA, while ConPA is easily 1-provable. Indeed, with
ϕ(x) := ¬ bewPA(x, ⊥) holds �PA ϕ(n) for all n, and trivially �PA ∀xϕ(x) → ConPA.

Define Ω := {∀xϕ | ϕ = ϕ(x) & �PA ϕ(n) for all n}, and PAΩ := PA+Ω. According
to its definition, Ω and hence also PAΩ are formally Σ3. As Theorem 5.2 will show,
PAΩ is properly Σ3, and therefore no longer recursively axiomatizable.

Lemma 5.1. The following properties are equivalent for α ∈ L0
ar :

(i) 1bwbPA(α), (ii) �PAΩ α, (iii) PA + ¬α is ω-inconsistent.

Proof. (i)⇒(ii) follows with a glance at the definitions (read (i) naively). (ii)⇒(iii):
Let �PAΩ α. Since Ω is closed under conjunctions, there is some ∀xϕ(x) ∈ Ω with
∀xϕ �PA α, hence �PA ¬α →∃x¬ϕ and so �PA+¬α ∃x¬ϕ. Now, ∀xϕ ∈ Ω, therefore
�PA ϕ(n) and a fortiory �PA+¬α ϕ(n), for all n. Thus, PA + ¬α is ω-inconsistent.
(iii)⇒(i): Let �PA+¬α β(n) for all n, but �PA+¬α ∃x¬β. Then �PA ∀xβ → α. With
ϕ(x) := ¬α → β(x) clearly �PA ϕ(n) for all n. Now, ∀xϕ ≡ α ∨ ∀xβ �PA α. Hence
�PA ∀xϕ → α. Thus, altogether 1bwbPA(α).

7.5 A Bimodal Provability Logic for PA 227

Theorem 5.2 (the 1-provable Σ3-completeness of PA). All true Σ3-sentences
are 1-provable. Moreover, for every β of this kind, �PA β → 	1 β.

Proof. Let N � β := ∃x∀yγ(x, y) where γ(x, y) is Σ1. Then there is some m such
that N � γ(m, n) for all n. Therefore, �PA γ(m, n) for all n, because PA is Σ1-
complete. Hence, ∀yγ(m, y) ∈ Ω and so �PAΩ ∃x∀yγ, or equivalently, 1bwbPA(β) by
Lemma 5.1. Because of the provable Σ1-completeness of PA, this argumentation is
comprehensible in PA, so that also �PA β → 	1 β.

D1–D4 are also valid for the operator 	1 : L0
ar → L0

ar . Indeed, D1 holds because
�PA α ⇒ �PA 	α ⇒ �PA 	1 α, and D2 formalizes ‘�PAΩ α, α → β ⇒ �PAΩ β’ in view
of Lemma 5.1. D3 is an application of Theorem 5.2 with β = 	1 α. The proof of
D4 in 7.2 uses, along with the fixed-point lemma, only D1–D3; so D4 holds as
well. Therefore, nearly everything said in 7.2 on 	 applies also to 	1 ; in particular
Theorem 2.2, which now reads �PA ¬	1 ⊥ (≡ �1 �). To put it more concisely, although
the consistency of PA is provable with the extended means, ω-consistency is not.
Hence, this property, which has a Π3-Definition according to Exercise 4 in 6.7,
cannot be Σ3 by Theorem 5.2, and must therefore be properly Π3.

Alongside 	α → 	1 α, there are other noteworthy interactions between 	 and 	1 ,
in particular �PA ¬	α → 	1¬	α. This formalizes ‘If �PA α then ¬	α is 1-provable’.
To verify the latter notice that �PA α implies �PA ϕ(n) for all n, where ϕ(x) is
¬ bewPA(x, �α�), and since �PA ∀xϕ →¬	α, we obtain �PA 	1¬	α. On the other
hand, �PA ¬	α → 	¬	α is false in general; see Example 2(c) on page 223.

The language of the bimodal propositional logic GD now to be defined results from
F� by adding a further connective 	1 to F�, which is treated syntactically just as 	.
The axioms of GD are those of G both for 	 and 	1 , augmented by the axioms

	p → 	1 p and ¬	p → 	1¬	p.

The rules of GD are the same as those for G. Insertions ı to L0
ar are defined as in 7.4,

but with the addional clause (1 H)ı = 	1 H ı
(
= 1bwbPA(�H ı�)

)
. By the reasoning

above, all axioms and rules of GD are sound. This proves (the easier) half of the
following remarkable theorem from Dzhaparidze (1985):

Theorem 5.3. �GD H ⇔ �PA H ı for all insertions ı. Further, GD is decidable.

Thus, GD completely captures the interaction between bwbPA and 1bwbPA; also
Theorem 4.5 carries over. However, GD no longer has an adequate Kripke semantics,
which complicates the decision procedure. For further references see [Boo], [Be3] .

As an exercise, the reader should derive 	1 (p → p) from the axioms of GD. Thus,
�PA 	1 (α → α) for every α ∈ L0

ar , while �PA 	(α → α) does hold only if �PA α. In
other words, the local reflection principle {	α → α | α ∈ L0

ar} is 1-provable in PA.
Be careful : GD expands G conservatively, so that �GD 	p → p.

228 7 On the Theory of Self-Reference

7.6 Modal Operators in ZFC

Considerations regarding self-reference in ZFC are technically more easy, but from
the foundational point of view more involved because there is no superordinate
theory. If ZFC is consistent as we assume it is, then ConZFC is a true arithmetical
statement but is not provable in ZFC. Thus, true arithmetical statements may even
be unprovable in ZFC. It makes sense, therefore, to consider ZFC+ := ZFC+ConZFC,
because after all, we want set theory to embrace as many facts about numbers and
sets as possible from which interesting consequences may result.

As 7.2 shows, the consistency assumption for ZFC alone does not guarantee that
ZFC+ is consistent. The second incompleteness theorem excludes �ZFC ConZFC but
does not preclude the possibility �ZFC ConZFC → ConZFC+ . But then �ZFC+ ConZFC+ ,
and ZFC+ would be inconsistent. From certain assumptions regarding the existence
of large cardinals, the consistency of ZFC+ follows fairly easily. These assumptions
would then have to be jettisoned, and in the framework of ZFC the consistency of
ZFC would no longer have its external sense; although consistent, ZFC would then
prove along with true arithmetical facts also false ones. This sounds strange, but
there is no convincing argument that this cannot be so.

Even if �ZFC ¬ ConZFC, it may still be that one of the sentences from the sequence
	¬ ConZFC, 		¬ ConZFC, . . . is provable in ZFC. We exclude the latter only if we
assume that the ω-iterated consistency extension ZFCω is consistent, i.e., �ZFC 	n⊥

for all n (see page 220), so that by Theorem 4.3 G would be the provability logic of
ZFC. In fact, (∀n∈N) �ZFC 	n⊥ is equivalent to G’s being the provability logic of
ZFC, by the general Theorem 6.1 below. Therein Rf T := {	α → α | α ∈ L0} denotes
the already encountered local reflection principle. Theorem 4.3 is also a corollary of
the theorem, since (∀n∈N) �T 	n+1⊥ is equivalent to the consistency of T ω.

Theorem 6.1. For a sufficiently expressive theory T 6 the following are equivalent:
(i) T ω is consistent, (ii) T +Rf T is consistent, (iii) G is the provability logic of T .

Proof. (i)⇒(ii) indirect: Suppose T +Rf T is inconsistent. Then there are α0, . . . , αn

such that �T ¬ϕ, ϕ :=
∧n

i=1(αi → αi). Hence �T 	¬ϕ ≡T ¬�ϕ. Now, because
�T ω ¬	n+1⊥, by Example (d) in 7.3 and Lemma 4.1, we get �T ω �Rı

n (pı
i = αi).

Clearly, Rı
n = ϕ and so �T ω �ϕ. Since also �T ω ¬�ϕ, T ω is inconsistent. (ii)⇒(iii):

The proof of Theorem 4.2 for PA, as presented in [Boo], runs nearly the same for
T , because PA is transgressed in one place only: one uses the fact that N � Rf PA.
However, the existence of a corresponding T -model is ensured by (ii). (iii)⇒(i):
�G 	n+1⊥, hence �T 	n+1⊥ ≡T ¬ ConT n for all n, and so T ω is consistent.
6 By such a T we mean that the proof steps of Theorem 4.2 that do not transgress PA, can be
carried out in T , which does not yet imply the provability of the theorem itself.

7.6 Modal Operators in ZFC 229

The equivalence (i)⇔(ii) is a purely proof-theoretical one and called Goryachev’s
Theorem; see [Gor] or [Be2]. We obtained it using essentially some modal logic. For
T = ZFC, perhaps a bit more interesting than (i) or (ii) is the assumption

(∗) �ZFC (∃x∈ω)ϕ⇒ �ZFC ¬ϕ(n) for some n (ϕ(x) ∈ L∈),
the ω-consistency of ZFC. It implies D1∗ which in turn ensures �ZFC 	n+1⊥, that is,
(i) and hence all other conditions in Theorem 6.1 hold for ZFC.

Remark. It is worthwhile to notice that the consistency of ZFC + Rf ZFC and thereby
the proof of Solovay’s completeness theorem for ZFC follows directly from (∗), without
appealing to Goryachev’s theorem. What is needed to see this is the following
Lemma. If ZFC is ω-consistent then there exists a model V � ZFC with V � Rf ZFC.
Proof. Let Ω := {(∀x∈ ω)α |α = α(x), �ZFC α(n) for all n}. Then ZFC + Ω is consistent.
Otherwise �ZFC ¬(∀x∈ ω)α ≡ (∃x∈ ω)¬α for some (∀x∈ ω)α ∈ Ω because Ω is closed under
conjunction, in contradiction to (∗). Any V � ZFC + Ω satisfies the reflection principle
Rf ZFC as well, for if V � α then �ZFC α and therefore �ZFC ¬ bewZFC(n, �α�) for all n.
That means (∀y ∈ ω)¬ bewZFC(y, �α�) ∈ Ω, which clearly implies V � 	α.

Now we interpret the modal operator 	 no longer as provable in ZFC which is
equivalent to valid in all ZFC models, but rather as valid in particular classes of
ZFC-models. For the following undefined notions we refer to [Ku]. Particularly
interesting is a transitive model. This is a model V = (V, ∈ V) � ZFC, where the set
V is transitive (i.e., a ∈ b ∈ V ⇒ a ∈ V). Then ∈ V is the usual ∈-relation restricted
to V , a set in our metatheory (which itself is essentially ZFC). We write V for V .
Like any set, V has an ordinal rank, denoted by ρV , and ρU < ρV whenever U ∈ V .
To prove the soundness half of Theorem 6.3 we use the following

Lemma 6.2. ([JK]) Let V,W be transitive models such that ρV < ρW and suppose
V � α. Then W � ‘there is a transitive model U with U � α’.7

Let Gi result from augmenting G by the axiom 	(p → 	q) ∨ 	(q → p). In the
same sense that G is complete with respect to all finite partial orders, Gi is complete
with respect to all preference orders. This is a finite (strict) partial order (g, <) for
which there is some h : g → N with P < Q ⇔ hP < hQ, for all P,Q ∈ g. As for G,

���
���P

��
� � �

�
the finite model property ensures the decidability of Gi. The figure shows
a partial order, which is easily seen not to be a preference order and
in which the adjoined axiom is easily refuted choosing wp = {P} and
wq = ∅. Thus, the additional axiom does not belong to G; hence Gi ⊃ G. We
mention that in [So] and [Boo] a somewhat more complex axiom is considered.

7 In transitive models W the sentence in ‘ ’ (which with some encoding can be formulated in L∈) is
absolute, and therefore equivalent to the existence of a transitive model U ∈W with U � α. The
latter is much stronger than the consistency assumption of ZFC, but for the direction in which
the proof of the theorem is to go the stronger assumption is not needed.

230 7 On the Theory of Self-Reference

We define insertions ı : F� → L0
∈ as in 7.4 with the clause (H)ı = 	H ı, where 	α

for α = H ı ∈ L0
∈ is now to mean ‘α is valid in all transitive models’, more precisely,

the formalization of this property in the language L∈. Accordingly, �α = ¬	¬α

states ‘it is not the case that in all transitive models holds ¬α’, or in equivalent
terms, ‘α holds in some transitive model’.

Theorem 6.3. �Gi H iff �ZFC H ı for all insertions ı.

We prove only the direction ⇒, that is, soundness. As regards the axioms of Gi,
since 	p → 		p is provable from the other axioms of G (see 7.3), it suffices to prove

(A) 	(α → β)∧	α �ZFC 	β, (B) 	(α → α) �ZFC 	α,
(C) �ZFC 	(α → 	β) ∨ 	(β → α), for all α, β ∈ L0

∈ .
(A) is trivial, because the sentences valid in any class of models are closed under MP.
(B) is equivalent to (B′) �¬α �ZFC �(α∧¬α). Here is the proof: if a transitive
model exists in which ¬α holds, then there is also one with minimal rank, V say.
We claim that V � 	α. Otherwise V � �¬α, and hence there would be a transitive
model U ∈ V with U � ¬α and ρU < ρV , contradicting our choice of V . This
proves V � �(α∧¬α) and verifies (B′). Finally, (C) is verified by contraposition:
suppose there are transitive models V,W and sentences α, β such that

(a) V � ‘α holds in all transitive models and in some transitive model holds ¬β’,

(b) W � ‘β holds in all transitive models’, (c) W � ¬α.

From these assumptions it follows first of all that ρW < ρV . For suppose by (a)
that U ∈ V is a transitive model for ¬β. If ρV � ρW then ρU < ρW . Hence,
by Lemma 6.2, W � ‘there is a transitive model for ¬β’, contradicting (b). Now,
since W � ¬α by (c) and because of ρW < ρV , in V holds ‘there is some transitive
model for ¬α’ by Lemma 6.2, in contradiction to (a). This proves (C). For the
substitution rule, soundness follows as for G in 7.4. MN is trivially sound, because
if α is provable in ZFC then of course α is valid in all transitive models.

Another interesting model-theoretical interpretation of 	α is ‘α is valid in all Vκ’.
Here κ runs through all inaccessible cardinal numbers. The adequate modal logic
for this interpretation of 	 is Gj := G+	(p∧p → q) ∨ 	(q → p) according to [So]
(provided there are sufficiently many inaccessibles). This logic, often denoted by G.3,
is complete with respect to all finite strict linear orders, which of course are also

�
��P
��
� �

�
frames for Gi, so that Gi ⊆ Gj. The figure shows a Gi-frame on which the
additional axiom is easily refuted with wp = {P} and wq = ∅, hence it is
not a Gj-frame and so Gi ⊂ Gj. As usual, the finite model property of Gj

implies its decidability. This modal logic is sound for the above interpretation of 	,
and we recommend that the advanced reader carry out the proof, which is similar
to that of Gi. All one needs to know besides Lemma 6.2 is that Vκ is a transitive
model and that Vκ ∈ Vλ or Vλ ∈ Vκ, for arbitrary inaccessible cardinals κ �= λ.

Hints to the Exercises

Section 1.1
1. (a): Note that xk is a fictional variable in f iff ak = 0. (b): Because of the

uniqueness, 2n+1 (= number of subsets of {0, . . . , n}) is the number sought.

2. Proof by formula induction on ϕ. Consider the property E : ‘ξ is a prime formula
or there are α, β ∈ F with ξ = ¬α or ξ = (α∧β) or ξ = (α ∨ β) ’.

3. Verify by induction on ϕ the stronger property that no proper initial segment of
ϕ is a formula nor can ϕ be an initial segment of a formula. Let for instance
ϕ = ¬α (Exercise 2). A proper initial segment of ¬α is either the one-element
string ¬ or a proper initial segment of α.

4. Assume (α ◦ β) = (α′ ◦′ β′), hence α ◦ β = α′ ◦′ β′. Assume α �= α′. Then α

is a proper initial segment of α′ or conversely. This is impossible according to
Exercise 3. Consequently α = α′, hence ◦ = ◦′ and β = β′.

Section 1.2
2. ¬p ≡ p + 1, 1 ≡ p + ¬p, p↔ q ≡ p + ¬q, and p + q ≡ p↔ ¬q.

3. Induction on α shows that α(n) is monotonic; for if f, g ∈ B are monotonic then
so is �a
→ f�a ◦ g�a, ◦ ∈ {∧ , ∨ }. Converse: Induction on the arity. If f ∈ Bn+1

is monotonic then also fk : �x
→ f(�x, k) for k = 0, 1. Let fk be represented by αk

(k = 0, 1, induction hypothesis). Then f is represented by α0 ∨ α1 ∧pn+1.

4. A not representable f is not monotonic by Exercise 3. But then a suitable in-
stantiation of constants for all but one argument of ϕ easily yields negation.

Section 1.3
1. (a): MP easily yields p → q → r, p → q, p � r. Apply (D) three times.

2. With the deduction theorem one easily verifies (α → β) → (γ → α) → (γ → β).

5. X � X̄ � α⇒ X � α⇒ α ∈ X̄. Thus, X̄ is deductively closed.

Section 1.4
1. X ∪ {¬α | α ∈ Y } � ⊥⇒ X ∪ {¬α0, . . . ,¬αn} � ⊥ for some α0, . . . , αn ∈ Y . This

yields X � (
∧

i�n ¬αi) → ⊥, or equivalently, X �
∨

i�n ai.

2. Supplement Lemma 4.4 by the proof of X � α ∨ β ⇔ X � α or X � β.

231

232 Hints to the Exercises

3. Let X � ϕ, X �′ ϕ, say, and Y ⊇ X∪{¬ϕ} be maximally consistent in �. Further
define σ by pσ = � for p ∈ Y and pσ = ⊥ otherwise. Simultaneous induction on
α,¬α shows that α ∈ Y ⇒ � ασ and α /∈ Y ⇒ � ¬ασ. Hence � ¬ϕσ. Thus
�′ ¬ϕσ, and so Xσ �′ ¬ϕσ. But X �′ ϕ, therefore Xσ �′ ϕσ. Thus, Xσ �′ α for
all α according to (¬1). Hence �′ is inconsistent and so � is maximal.

4. There is a smallest consequence relation with the properties (∧1) – (¬), namely
the calculus � of this section. Since � ⊆ � and � is already maximal according
to Exercise 3, � and � must coincide.

Section 1.5
1. Add to the formulas in Example 1 the set of formulas {pab | a �0 b}.

2. ⇒: Assume M, N /∈ F . Then ¬M,¬N ∈ F ; hence \(M ∪ N) = \M ∩ \N ∈ F .
Therefore M ∪N /∈ F . ⇐ : M ∈ F implies M ∪N ∈ F by condition (b).

3. ⇒: Let U be trivial. Then E ∈ U for some finite F ⊆ I. Let E = E1 ∪ {i}
for some i ∈ E so that E1 ∈ U or {i} ∈ U (cf. Exercise 2). If {i} ∈ U we are
done. Otherwise replace E by the smaller E1 and repeat the argument. This
consideration leads to {i0} ∈ U for some i0 ∈ I. ⇐ : proved already in the text.

Section 1.6
1. First verify the deduction theorem, which holds for each calculus with MP as the

only rule and A1, A2 among the axioms; cf. Lemma 6.3. X is consistent iff X � ⊥,
for X � ⊥ implies X � (α → ⊥) → ⊥ = ¬¬α by A1, hence X � α by A3. Now
prove X � α → β iff X � α ⇒ X � β for maximally consistent X. This allows
you to proceed along the lines of Lemma 4.5 and Theorem 4.6.

2. Apply Zorn’s lemma on the partially ordered set H := {Y ⊇ X | Y � α}.

3. (a): Such a X satifies (∗) : X � ϕ → α for all α. For otherwise X,ϕ → α � ϕ,
hence X � (ϕ → α) → ϕ, and so X � ϕ by Peirce’s axiom. Suppose α /∈ X. Then
X,α � ϕ, ϕ → β by (∗), and so X,α � β. This confirms (a). (b): With (a) follows
X � α → β iff X � α⇒ X � β. Proceed with an adaptation of Lemma 4.5.

4. Prove (m) by induction. For example, if α � αβ then αγ � γα � γαβ � αβγ.
Although by (4) and (5) no parantheses in αβγ are needed, it is tricky to prove
α(βγ)δ � (αβ)γδ. (M) implies (∗): X,α � γ & X, β � γ ⇒ X,αβ � γ, because
X,α � γ ⇒ X,αβ � γβ �βγ and X, βγ � γγ � γ, therefore X,αβ � γ. From (∗)
follows

(∗
∗
)
: X �αβ ⇔ X �α or X �β, provided X is ϕ-maximal, for note that

X � α & X � β ⇒ X,α �ϕ & X, β �ϕ⇒ X,αβ �ϕ⇒ X � αβ. Having
(∗

∗
)

one
may proceed with a slight modification of Lemma 4.5.

Hints to the Exercises 233

Section 2.1
1. There are 10 essentially binary Boolean functions f . The corresponding algebras

({0, 1}, f) split into 5 pairs of isomorphic ones, e.g. ({0, 1}, ∧) � ({0, 1}, ∨).

4. Let r and f be unary. Then ra⇒ raj ⇒ rha, and hfa = h(fai)i∈I = faj = fha.

Section 2.2
1. A terminal segment of f�t has the form t′ktk+1 · · · tn (t′k a terminal segment of tk).

2. (a): Define W (ζ) = 1 if ζ is a variable or constant, W (ζ) = 1− n if ζ is a n-ary
function symbol and expand W to all strings of symbols ζ involved in building
terms by W (ζ1 · · · ζn) =

∑n
i=1 W (ζi). Show by term induction that W (t) = 1 for

all terms t, so that W (t1 · · · tn) = n. (b): If not, t would be a concatenation of at
least two terms by Exercise 1, which is impossible by (a). (c) derives from (b).
(d): t1 �= t′1 yields a contradiction to (b).

Section 2.3
1. LetMcd

xy � α∧α y
x (c �= d). Then for each a there is some b �= a withMb

y � ϕ y
x .

3. The Theorems 3.1 and 3.5 yield A � α [a]⇔ A′ � α [a]⇔ A′ � αx(a).

4. (b): ∃n ∧¬∃m is for n � m equivalent to
∨m

k=n ∃=k, and for n > m to ∃=0(≡ ⊥).

Section 2.4
1. α ≡ β ⇒ � ∀�x (α↔ β) ⇒ � (α↔ β) �t

�x

(
= α

�t
�x ↔ β

�t
�x

)
.

4. ∃x(Px →∀yPy) ≡ ∀xPx →∀yPy according to (10).

Section 2.5
2. Observe that S � ϕ → β ⇔ S, ϕ � β, and (e) page 62.

3. Prove first Tα = {β ∈ L0 | T, α � β} is a theory. Then show that Tα = T + α.

Section 2.6
1. Follow the proof of Theorem 6.1 (observe that y==== f�t ≡Tf

δf (�t , y)). Hint for the
“only if” part: y==== f�t ≡Tf

δf (�t , y), and Tf � ∀�x∃!y y==== f�x→ ∀�x∃!yδ(�x, y).

2. N � x==== 0↔ ∀y x �====Sy. An elementary calculation confirms the (quantifier-free)
definition x + y==== z ↔ S(x · z) · S(y · z)==== S(z2 · S(x · y)), where z2 := z · z.

3. Let xy==== xz ==== e (◦ and � not written) and choose some y′ with yy′ ==== e. Then
x==== x(yy′)==== (xy)y′ ==== y′, hence yx==== e. zx==== e is proved analogously. This yields
y==== y(xz)==== (yx)z ==== ez ==== (zx)z ==== z(xz)==== ze==== z.

4. Were < definable then < would be invariant under automorphisms of (Z, 0, +).
This is not the case for the automorphism n
→ −n (Padoa’s method).

234 Hints to the Exercises

Section 3.1
1. Let X � α t

x . Then X,∀x¬α � α t
x ,¬α t

x . Hence X,∀x¬α � ∃xα. Certainly also
X,¬∀x¬α � ∃xα (since ∃xα = ¬∀x¬α). Thus X � ∃xα according to (¬2).

2. Let α′ := α y
x , u /∈ var α, u �= y. Then ∀xα � α′ u

y (= α u
x) by (∀1). Hence we

obtain ∀xα � ∀yα′ (= ∀yα y
x) by (∀2).

Section 3.2
1. Theorem 2.6 and Exercise 4 in 3.1.

2. First verify tT = t by induction on t. Next prove by induction on ∧ ,¬
(∗) T � ∀�xϕ ⇔ T � ϕ

�t
�x for all �t ∈ T n (ϕ open). Let M � X. Then clearly

M � X̃ := {ϕ �t
�x | ∀�xϕ ∈ X, �t ∈ T n}. Finally proveM � ϕ⇔ T � ϕ, for all open

ϕ (induction on ∧ ,¬). Thus, T � X̃ and so T � X according to (∗).

3. Theorem 2.7 and the finiteness theorem for �.

Section 3.3
1. Prove ∀z x+(y + z)==== (x+y)+ z in PA by induction on z, then ∀y x+Sy==== Sx+y

and ∀y x + y==== y + x by induction on y. Quantify free variables at the end.

2. Informally: x < y implies ∃z Sz + x==== y. Therefore ∃z z + Sx==== y. The converse
Sx � y → x < y is clear since �PA x < Sx. Connexity: The induction hypothesis
may be written as x < y ∨ y � x. If x < y then Sx � y, hence Sx � y ∨ y � Sx
(induction claim). We get the same in case y � x, since then also y � Sx.

3. (a): We have to prove that ∀x(ϕ → α) �PA ∀xα, where ϕ := (∀y<x)α y
x . By

Exercise 2, y<Sx ≡PA y�x. Thus, ϕ, ∀x(ϕ → α) �PA ϕ∧α �PA (∀y<Sx)α y
x = ϕSx

x .
Therefore ∀x(ϕ → α) �PA ∀x(ϕ → ϕSx

x). Trivially also ∀x(ϕ → α) �PA ϕ 0
x . This

yields ∀x(ϕ → α) �PA ∀xϕ �PA ∀xϕ Sx
x �PA ∀xα by IS. (b): Follows from (a)

by contraposition. (c): For ϕ := (∀y<x)∃zα →∃u(∀y<x)(∃z<u)α clearly holds
�PA ϕ 0

x , and one readily shows that ϕ �PA ϕ Sx
x . This yields the claim by IS.

Section 3.4
1. X = T ∪ {vi �====vj | i �= j} is satisfiable because each finite subset is.

2. X = ThA ∪ {vn+1 < vn | n ∈ N} has a model with an infinite descending chain.

4. Let u ∈ Var. The following set (with symbols a for the a ∈ V) is consistent:

Th (V, ∈V) ∪ {a∈ b | a, b ∈ V, a∈V b} ∪ {a /∈ b | a, b ∈ V, a /∈V b} ∪ {a∈ u | a ∈ V }.

Hints to the Exercises 235

Section 3.5
1. β ∈ T ′ ⇔ α → β ∈ T (deduction theorem).

2. T ⊆
⋂
{T ′ ⊇ T | T ′ complete} follows indirectly: α /∈ T ⇒ T + ¬α is consistent.

Hence there is a completion T ′ ⊇ T with α /∈ T ′ (it may be that T ′ = T).

3. According to Exercise 2, there is a bijection between the set of consistent exten-
sions of T (including T) and the set of nonempty subsets of {T1, . . . , Tn} = set of
all completions of T . This proves both (ii)⇒(i) and the “Moreover” part.

4. With T also the Lindenbaum completion is effectively enumerable, [TMR, p. 15].

Section 3.6
1. x==== y � ∀xx==== y. Hence the same holds for |∼ in view of |∼ ⊆ �.

2. (a): Let (ϕn)n∈N and (An)n∈N be effective enumerations of all sentences and of
all finite T -models (up to isomorphy). In step n write down all ϕi for i � n with
An � ϕi. (b): Let (αn)n∈N and (βn)n∈N be effective enumerations of sentences
provable or refutable in T , respectively. Each α ∈ L0 occurs in one of these
sequences. Exactly in the first case α belongs to T .

3. Condition (ii) from Exercise 2 is then granted because the validity of only finitely
many axioms is tested in a finite structure.

Section 3.7
1. For H: Let h be a homomorphism. Put xhw := hxw. Then htA,w = tB,hw. For S:

(3) in 2.3. For P: Let B =
∏

i∈I Ai. Then tB,w = (tAi,wi)i∈I with xw = (xwi)i∈I .

2. αunc := ∼Oxx==== x is a sentence in L1
Q such that A � αunc ⇔ A is uncountable.

Formalize in LII ‘there is a continuous order without a greatest element’.

3. Informally: R is a continuously ordered set that has a countable dense subset.

4. Let x be a variable not in P,Q. A possible definition is provided by the program
x :==== 0 ; WHILE α∧x==== 0 DO P ; x :==== S0 OD ; WHILEx==== 0 DOQ ; x :==== S0 OD .

Section 4.1
1. Prove first (a) (∀i∈I)Ai � π [wi] ⇔ B � π [w] (xw = (xwi)i∈I) for prime formulas

π. Then prove (b) (∀i∈I)Ai � α [wi] ⇒ B � α [w] by induction over basic Horn
formulas α as in Theorem 1.3. (b) yields the induction steps over ∧ ,∀,∃. Observe
that tB,w = (tAi,wi)i∈I . For the universal case apply Theorem 2.3.2.

2. A set of positive Horn formulas has the trivial, one-element model.

236 Hints to the Exercises

Section 4.2
1. With w1 � p1, p3,¬p2 and w2 � p2, p3,¬p1 holds w1, w2 � P. Since w � P implies

w � p3 and w � p1 or w � p2, there is no valuation w � w1, w2 with w � P.

2. For arbitrary w � P, w � pm,n,m+n follows inductively on n. Hence wst � wP.

3. (a): resolution theorem. (b): wP � pn,m,k if k �= n + m; hence P,¬pn,m,k �
HR .

Section 4.3
2. ⇒: xi ∈ var tj ⇒ xσ

i = tj �= tσj = xσ2

i . ⇐: tσi = ti since xσ = x for all x ∈ var ti.

3. Let ω be an unifier of K0 ∪K1. Then Kω
0 = Kω

1 . Put xω′ = xρω for x ∈ var Kρ
0

and xω′ = xω else. Then Kρω′
0 = Kρ2ω

0 = Kω
0 (ρ2 = ι), and Kω′

1 = Kω
1 .

Section 4.4
1. Let K0, K1 be decomposed as in the definition of UR and let ρ be a separator of

K0, K1, and ω′ defined as in the hint to Exercise 3 in 4.3.

2. Join Pg and Ph and add to the resulting program the rules rf (�x, 0, u) :− rg(�x, u)
and rf (�x, Sy, u) :− rf (�x, y, v), rh(�x, y, v, u).

3. Add to the programs the rule rf�xu :− rg1�xy1, . . . , rgm�xym, rh�yu.

Section 5.1
3. Let a, b, c ∈ R with 0 � a < b, c. There is a linear function that represents an

automorphism of the (closed) interval [a, b] onto the interval [a, c].

4. W.l.o.g. let A ∩B = ∅. It suffices to show that DelA ∪Del B is consistent.

5. (a): {tA | t ∈ TG} is closed with respect to all fA and exhausts the domain A.
(b): According to (a), choose for each a ∈ A\G some ta ∈ TG with �T a==== ta.

Section 5.2
2. Tsuc � IS because (N, 0, S) � IS and Tsuc is complete. To prove the “no circle”

scheme from IS apply IS to α(xn) = ∀x0 · · ·xn−1(
∧

i<n Sxi ==== xi+1 → xn �====x0).

3. Let a ∈ G � T and a
n the element with n a

n = a, and m
n : a
→ m a

n for m
n ∈ Q.

Then G becomes the vector group of a Q-vector space that is ℵ1-categorical.

4. Each consistent extension T ′ of T is the intersection of its completions in T .

5. Each A � T has a countable elementary substructure (Theorem 1.5).

Hints to the Exercises 237

Section 5.3
1. For SO00: In the first round player II may play arbitrarily, then according to the

winning strategies for models of SO01 or SO10 in the decomposed segments.

2. If player I starts with a ∈ A and to the right and the left of a remain at least 2n−1

elements, player II should choose correspondingly. Otherwise he should answer
with the elements of the same distance from the left or right edge element.

3. For FO ⊆ SO11: SO11 � α⇒ A � α for a sufficiently large finite A � FO.

4. Prove first that SO11 ∪ {∃i | i > 0} is complete.

Section 5.4
1. Let h :A → B be a homomorphism, M = (A, w), M′ = (B, w′) with xw′ = hxw.

ShowM � ϕ [�a]⇒M′ � ϕ [h�a] by induction on ϕ.

2. Let A be an ordered set. Replace each a ∈ A by an exemplar of (Z, <) or (Q, <),
respectively. That results in a discrete or a dense order B ⊇ A, respectively.

3. Clearly T := T0 + T1 is inductive since both T0, T1 and hence T are ∀∃-theories.
Let A0 � T0. Choose A1 with A0 ⊆ A1 � T1, A2 with A1 ⊆ A2 � T0 etc.
This results in a chain A0 ⊆ A1 ⊆ A2 ⊆ · · · with A2i � T0, A2i+1 � T1. Then
A∗ :=

⋃
i∈NA2i =

⋃
i∈NA2i+1 � T0, T1 and so A∗ � T . Therefore T0 and T are

model compatible. Consequently also T1 and T .

4. The union S of a chain of inductive theories model compatible with T has again
these properties as is readily checked. By Zorn’s lemma there exists a maximal,
hence in view of Exercise 3 a largest theory of this kind.

Section 5.5
1. Let (i, j) �= (0, 0). Then DOij has models A ⊆ B with A �� B.

2. (a) Lindström’s criterion. T is ℵ1-categorical because a T -model can be under-
stood as a Q-vector space. (b) Each T0-model G is embeddable in a T -Modell
H. One gains such H by defining a suitable equivalence relation on the set of all
pairs a

n with a ∈ G and n ∈ Z\{0}.

3. Uniqueness follows similarly to uniqueness of the model completion.

4. The algebraic closure Fp of the prime field Fp is identical to
⋃

n�1Fpn , where Fpn

denotes the finite field of pn elements. Moreover, a sentence true in all a.c. fields
with prime characteristic holds already in all a.c. fields.

238 Hints to the Exercises

Section 5.6
1. Let A,B � ZG, A ⊆ B. Then also A′ ⊆ B′ for their ZGE expansions because m

has in ZG both an ∀- and an ∃-Definition. Thus A′ � B′ and hence A � B.

2. Very similiar to quantifier elimination in ZGE but somewhat more simple.

3. Inductively over quantifier-free ϕ = ϕ(x) follows: for each A � RCF◦ is ϕA or
(¬ϕ)A finite. This is not the case for α(x).

4. CS holds in the real closed field R, hence in each A ∈ RCF. The proofs from CS
of (∀x�0)∃y x==== y · y, and that each polynomial of odd degree has a zero must be
carried out without a theory of continuous functions, which is very instructive.

Section 5.7
1. If F is trivial then there is some i0 ∈ I with i0 ∈ J for each J ∈ F (Exercise 3

in 1.5). For a, b ∈
∏

i∈I Ai then a ≈F b ⇔ i0 ∈ Ia=b ⇔ ai0 = bi0 . This implies∏F
i∈I Ai � Ai0 (can be shown directly or with the homomorphism theorem).

2. x
→ xI/F (x ∈ A) is an embedding and moreover an elementary embedding.

3. Let X �K ϕ and I, Jα and F defined as in the proof of Theorem 7.3 and assume
that for each i ∈ I there is some Ai ∈K and wi : PV→ Ai such that wiα ∈ DAi

for all α ∈ i but wiϕ /∈ DAi . Put C :=
∏F

i∈I Ai (∈ K) and w = (wi)i∈I . Then
wX ⊆ DC and wϕ /∈ DC, hence X �C ϕ, a contradiction to X �K ϕ.

4. W.l.o.g. A = 2 and 2 ⊆ B ⊆ 2 I for some I according to Stone’s representation
theorem quoted in 2.1. 2 � α⇒ 2 I � α⇒ B � α according to Theorem 7.5.

Section 6.1
1. b ∈ ran f ⇔ (∃a�b)fa = b (this predicate is p.r. iff f is p.r.).

2. Put Sm :=
∑

i�m i. Injectivity : Let ℘(a, b) = ℘(a′, b′). Were a + b < a′ + b′ then
℘(a, b) < ℘(a, b) + a + 1 = Sa+b + a + b + 1 = Sa+b+1 � Sa′+b′ � ℘(a′, b′). Thus
a+b = a′+b′. But then a = ℘(a, b)−Sa+b = ℘(a′, b′)−Sa′+b′ = a′, hence also b = b′.
Surjectivity : Since ℘(0, 0) = 0 ∈ ran ℘ it suffices to prove ℘(a, b) + 1 ∈ ran ℘, for
all a, b. Clear for b = 0 because ℘(a, 0) + 1 = Sa + a + 1 = Sa+1 = ℘(0, a + 1).
In case b �= 0 is ℘(a, b) + 1 = Sa+1+b−1 + a + 1 = ℘(a + 1, b− 1). This proof also
confirms that the figure for ℘ has been drawn correctly.

3. ⇒: Let M = {a ∈ N | ∃bRab}, R recursive and c ∈ M fixed. Put fn = k in case
(∃m�n) n = ℘(m, k) & Rmk, and fn = c otherwise.

4. κ1n = (µk � n)[(∃m � n)℘(k, m) = n].

Hints to the Exercises 239

Section 6.2
1. Let α0, α1, . . . be a recursive enumeration of X and let βn = αn ∧ . . . ∧αn︸ ︷︷ ︸

n

. By

Exercise 1 in 6.1, {βn | n ∈ N} is recursive and axiomatizes T as well.

3. (a): Let Φn = (ϕ0, . . . , ϕn) be a proof of ϕ = ϕn in T + α. Suppose that proofs
Φ′

k for α → ϕk from Φi = (ϕ0, . . . , ϕi) for all i < n have already been constructed.
Define a proof Φ′

n for α → ϕ by p.r. case distinction according to the cases ϕ = α,
ϕ ∈ X ∪Λ (X is an axiom system for T) and ϕi results from ϕk and ϕm for some
k, m < i by applying MP. In other words, follow the proof of Lemma 1.6.3.

4. Prove this first for equations. Construct in a p.r. way for each t a normal form
Nf(t) = a0 +

∑
1�ν�n aν · vkν

0
0 · · · · · v

kν
n

n such that N � t1 ==== t2 iff Nf(t1) = Nf(t2).

Section 6.3
1. There are several proof methods. A natural way is to proceed stepwise over the

length n > 1 of �x, using the function ℘ which is ∆0 (Remark 2). It suffices
to notice that ∃x∃yα ≡N ∃z(z ==== ℘(x, y)∧α) and ∀x∀yα ≡N ∀z(z ==== ℘(x, y) → α),
where z /∈ var α. Note that for Σ1 also works ∃�xα ≡N ∃x(∃x1�x) . . . (∃xn�x)α
by Exercise 2. In all these equivalences ≡N could be replaced by ≡PA.

2. (∀z<y)∃xα ≡PA ∃u(∀z<y)(∃x<u)α (u /∈ var α, schema of bounds, see Exercise 3
in 3.3). From this it readily follows that (∃z<y)∀xα ≡PA ∀u(∃z<y)(∀x<u)α.

Section 6.4
1. (a): p� a⇒ a⊥p⇒ ∃xy xa+1==== yp (Euclid’s lemma) ⇒ ∃xy b==== ypb−xab⇒ p b.

(b): Let m := lcm{aν|ν�n} = aνcν for suitable cν . Assume (∀ν�n)p� aν . Then
(∀ν�n)p cν by (a). Thus m = pm′ and cν = pc′

ν for suitable m′, c′
ν . This leads to

contradition to the definition of m. (c) easily follows from (b).

2. ∃u[betau0==== 2 ∧ (∀v<x)(∃w, w′ �y)(betauvw ∧ betauSvw′ ∧w < w′

∧ prim w ∧ prim w′ ∧ (∀z<w′)(prim z → z�w) ∧ betauxy)].

3. (a): Prove this first for x instead of �x. (b): It suffices to show that sbx(ϕ̇) = ϕ̇

for x /∈ free ϕ. Observe that sbx((∀xα)·, x) = (∀xα)· for closed α.

Section 6.5
2. (ii)⇒(i): If T is complete and T ′ + T is consistent then T ′ ⊆ T .

3. Trivial if T +∆ is inconsistent. Otherwise let κ be the conjunction of all sentences
∀�x ∃!yα(�x, y), α running through all defining formulas for operations from ∆. If
T is decidable than so is T + κ. Moreover �T+∆ α⇔ �T+κ αrd.

240 Hints to the Exercises

4. fa = b iff Φ is a proof in Q and Φ̇ = a and (((Φ̇)))last = b, or else b = 0.

Section 6.7
2. ∆0 is r.e. but not ∆1 (Remark 2 in 6.4). Q̇ is Σ1 but not ∆1.

3. The functions ∧̃ , ¬̃, ∀̃, sbx as well as e.g. Lar are p.r. and hence ∆1. The same
holds for Tr0 by Exercise 4 in 6.2. Clearly

ϕ ∈ Trn+1 ⇔ ϕ ∈ Trn∨∨∨(∃α, β, x � ϕ)∀n[ϕ = ∀xα & αx(n) ∈ Trn

∨∨∨ϕ = α∧β & α, β ∈ Trn∨∨∨ϕ = ¬α & α /∈ Trn].

Section 7.1
1. For ℘: Prove �PA ∃z(2z ==== (x + y)2 + 3x + y) by induction on y.

2. (a): Follow the proof of the lemma in 6.4. (b): <-induction. (c): Use (a).

4. (a): For 	T+αϕ �T 	T (α → ϕ) use Exercise 3b in 6.2.

Section 7.2
1. �T 	α → α ⇒ �T ′ ¬	α ⇒ �T ′ ConT ′ , since by (5) ConT ′ ≡T ¬	¬¬α ≡T ¬	α.

Thus, T ′ is inconsistent by (1), hence �T α.

3. Clear if n = 0. Let T n = T +¬	n⊥ and ConT n ≡T ¬	n+1⊥ (induction hypothesis).
Since 	n⊥ �T 	n+1⊥ by D2, T n+1 = (T + ¬	n⊥) + ¬	n+1⊥ = T + ¬	n+1⊥.
Further, by (5), ConT n+1 ≡T ¬	¬(¬	n+1⊥) ≡T ¬	n+2⊥.

4. For any (not formalized) arithmetical sentence A the statement ‘If A is provable
in PA then A is true in N ’ is provable in ZFC. Formalized: �ZFC 	PAα → α, where
α formalizes A.

Section 7.4
1. Prove first Gn = {H ∈ F� | �G 	n⊥ → H}. We then obtain

�Gn H ⇔ �G 	n⊥ → H ⇔ �PA (n⊥ → H)ı for all ı (Theorem 4.2)
⇔ �PA 	n⊥ → H ı for all ı (property of ı)
⇔ �PAn H ı for all ı (PAn = PA + 	n⊥).

2. Put PAn
⊥ := PAn +¬ ConPAn . By (6) in 7.2, ConPAn

⊥ ≡PA ConPAn ≡ ¬		n⊥. Thus,
PAn

⊥ = (PA + ¬	n⊥) + 	n+1⊥. This theory is consistent (�PA 	n+1⊥ → 	n⊥).
Therefore PAn

⊥ has the provability logic G1 (Theorem 4.3). As regards T note that
	 ConPA ∨ 	¬ ConPA ≡PA 	⊥ ∨ 	2⊥ ≡PA 	2⊥, hence T = PA+	3⊥ ∧¬	2⊥ = PA2

⊥.

4. �G∗ ¬[¬	(p → q)∧¬	(¬p → q)∧¬	(p →¬q)∧¬	(¬p →¬q)] and Theorem 4.4.

Literature

[Ba] J. Barwise (editor), Handbook of Mathematical Logic, North-Holland 1977.

[BD] A. Berarducci, P. D’Aquino, ∆0-complexity of y =
∏

i�n F (i), Ann. Pure
Appl. Logic 75 (1995), 49–56.

[Be1] L. Beklemishev, On the classification of propositional provability logics, Izvestiya
35 (1990), 247–275.

[Be2] Iterated local reflection versus iterated consistency, Ann. Pure Appl. Logic
75 (1995), 25–48.

[Be3] Bimodal logics for extensions of arithmetical theories, Journ. Symb. Logic
61 (1996), 91–124.

[Be4] Parameter free induction and reflection, in Computational Logic and Proof
Theory, LN Comp. Science 1289, Springer 1997.

[Ben] M. Ben-Ari, Mathematical Logic for Computer Science, 2nd edition, Springer
2001.

[Bi] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Phil. Soc.
50 (1935), 433–455.

[BJ] G. Boolos, R. Jeffrey, Computability and Logic, 3rd ed. Cambridge Univ. Press
1992.

[BGG] E. Börger, E. Grädel, J. Gurevich, The Classical Decision Problem, Springer
1997.

[BM] J. Bell, M. Machover, A Course in Mathematical Logic, North-Holland 1977.

[Boo] G. Boolos, The Logic of Provability, Cambridge Univ. Press 1993.

[BP] P. Benacerraf, H. Putnam (editor), Philosophy of Mathematics, Selected Read-
ings, 2nd ed. Cambridge Univ. Press 1993.

[Bu] S.R. Buss (editor), Handbook of Proof Theory, Elsevier 1998.

241

242 Literature

[Bue] S. Buechler, Essential Stability Theory, Springer 1996.

[Ca] G. Cantor, Gesammelte Abhandlungen, Springer 1980.

[Ch] A. Church, A note on the Entscheidungsproblem, Jour. Symb. Logic 1 (1936),
40–41.

[CK] C.C. Chang, H.J. Keisler, Model Theory, 3rd ed. North-Holland 1990.

[CM] W. Clocksin, C. Melnik, Programming in PROLOG, 3rd edition, Springer
1987.

[CZ] A Chagrov, M. Zakharyashev, Modal Logic, Claredon Press 1997.

[Da] D. van Dalen, Logic and Structure, 2nd ed. Springer 1983.

[Dav] M. Davis (editor), The Undecidable, Raven New York 1965.

[De] R. Dedekind Was sind und was sollen die Zahlen?, (Braunschweig 1888), Vieweg
1969.

[Do] K. Doets From Logic to Logical Programming, MIT-Press 1994.

[EFT] H. Ebbinghaus, J. Flum, W. Thomas, Mathematical Logic, Springer 1996.

[En] H. Enderton, A Mathematical Introduction to Logic, Acad. Press 1972. 2nd edi-
tion 2001.

[Fe] W. Felscher, Lectures on Mathematical Logic, Gordon and Breach 2000.

[Fr] G. Frege, Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens (Halle 1879), Olms 1971.

[FS] H. Friedman, M. Sheard, Elementary decent recursion and proof theory, Arch.
Pure & Appl. Logic 71 (1995), 1–47.

[Ga] D. Gabbay, Decidability results in non-classical logic III, Israel Jour. Math 10
(1971), 135–146.

[Ge] G. Gentzen, Collected Works of Gerhard Gentzen, North Holland 1969.

[GJ] M. Garey, D. Johnson, Computers and Intractability, A Guide to the Theory
of NP-Completeness, Freeman 1979.

[Go1] K. Gödel, Die Vollständigkeit der Axiome des logischen Funktionenkalküls,
Monatshefte Math. u. Physik 37 (1930), 349–360, or Collected Works I.

[Go2] , Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I, Monatshefte für Mathematik und Physik 38 (1931), 173–198.

Literature 243

[Go3] , Collected Works, Oxford Univ. Press, Vol. I 1986, Vol. II 1990, Vol. III
1995.

[Gor] S.N. Goryachev, On the interpretability of some extensions of arithmetic, Math.
Notes 40 (1986), 561–572.

[Gr] G. Grätzer, Universal Algebra, 2nd ed. Springer 1979.

[HA] D. Hilbert, W. Ackermann, Grundzüge der theoretischen Logik, Springer 1928.

[HB] D. Hilbert, P. Bernays, Grundlagen der Mathematik, Band I Springer 1934,
Band II Springer 1939.

[He] L. Henkin, The completeness of the first-order functional calculus, Journ. Symb.
Logic 14 (1949), 159–166.

[Hej] J. Heijenoort, From Frege to Gödel, Harvard Univ. Press 1967.

[HeR] B. Herrmann, W. Rautenberg, Finite replacement and Hilbert-style axioma-
tizability, Zeitsch. Math. Log. Grundl. Math. 38 (1982), 327–344.

[Her] J. Herbrand, Recherches sur la théorie de la démonstration, in [Hej].

[Ho] W. Hodges, Model Theory, Cambridge Univ. Press 1993.

[HP] P. Hajek, P. Pudlak, Metamathematics of First-order Arithmetic, Springer
1993.

[HR] H. Herre, W. Rautenberg, Das Basistheorem und einige Anwendungen in der
Modelltheorie, Wiss. Zeitsch. Humboldt-Univ. 19 (1970), 575–577.

[Id] P. Idziak, A characterization of finitely decidable congruence modular varieties,
Trans. Am. Math. Soc. 349 (1997), 903–934.

[Ig] K. Ignatiev, On strong provability predicates, Journ. Symb. Logic 58 (1993), 249–
290.

[JK] R. Jensen, C. Karp, Primitive recursive set theory, in Axiomatic Set Theory,
AMS 1971, 143–167.

[Ka] R. Kaye, Models of Peano Arithmetic, Clarendon Press 1991.

[Ke] H.J. Keisler, Logic with the quantifier “there exist uncountably many”, Ann.
Pure Appl. Logic 1 (1970), 1–93.

[Kl1] S. Kleene, Introduction to Metamathematics, North-Holland 1952, 2nd edition,
Wolters-Noordhoff 1988.

[Kl2] , Mathematical Logic, Wiley & Sons 1968.

244 Literature

[KR] I. Korec, W. Rautenberg, Model interpretability into trees and applications,
Arch. Math. Logik 17 (1976), 97–104.

[KK] G. Kreisel, J. Krivine, Elements of Mathematical Logic, North-Holland 1971.

[Kr] J. Krajiček, Bounded Arithmetic, Propositional Logic, and Complexity Theory,
Cambridge Univ. Press 1995.

[Ku] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland
1980.

[Li] P. Lindström, On extensions of elementary logic, Theoria 35 (1969), 1–11.

[Ll] J.W. Lloyd, Foundations of Logic Programming, Springer 1987.

[Lo] M. Löb, Solution of a problem of Leon Henkin, Journ. Symb. Logic 20 (1955),
115–118.

[Ma] A.I. Malcev, The Metamathematics of Algebraic Systems, North-Holland 1971.

[Mal] J. Malitz, Introduction to Mathematical Logic, Springer 1979.

[Mar] D. Marker, Model Theory, An Introduction, Springer 2002.

[Mat] Y. Matiyasevich, Hilbert’s Tenth Problem, MIT Press 1993.

[Me] E. Mendelson, Introduction to Mathematical Logic, Van Nostrand 1979.

[Mo] D. Monk, Mathematical Logic, Springer 1976.

[ML] G. Müller, W. Lenski (editors) The Ω-Bibliography of Mathematical Logic,
Springer 1987.

[MS] A. Macintyre, H. Simmons, Gödel’s diagonalization technique and related prop-
erties of theories, Colloq. Math. 28, 1973.

[MW] A. Macintyre, A. Wilkie, On the Decidability of the Real Exponential Field,
Preprint 1995.

[MV] R. McKenzie, M. Valeriote, The Structure of Decidable Locally Finite Vari-
eties, Progress in Math. 79, Birkhäuser 1989.

[Po] W. Pohlers, Proof Theory – An Introduction, Springer Lecture Notes 1407 (1989)

[Pz] B. Poizat, A Course in Model Theory. An Introduction to Contemporary Math-
ematical Logic, Springer 2000.

[Pr] M. Presburger, Über die Vollständigkeit eines gewisses Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Congr.
Math. Pays Slaves (1) (1929), 92–101.

Literature 245

[RS] H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics, Polish Scien-
tific Publ. 1968.

[Ra1] W. Rautenberg, Klassische und Nichtklassische Aussagenlogik, Vieweg 1979.

[Ra2] , Elementare Grundlagen der Analysis, BI Verlag 1993.

[Ro1] A. Robinson, Introduction to Model Theory and to the Metamathematics of Al-
gebra, North-Holland 1974.

[Ro2] A. Robinson, Non-Standard Analysis, North-Holland 1970.

[Rob] J. Robinson, A Machine-oriented logic based on the resolution principle, Journ.
Ass. Comp. Machinery 12 (1965), 23–41.

[Rog] H. Rogers, Theory of Recursive Functions and Effective Computability, 2nd ed.
MIT Press 1988.

[Ros] J.B. Rosser, Extensions of some Theorems of Gödel and Church, Journ. Symb.
Logic 1 (1936), 87–91.

[Rot] P. Rothmaler, Introduction to model theory, Gordon & Breach, 2000.

[Ry] C. Ryll-Nardzewki, The role of induction in elemenary arithmetic, Fund. Math.
39 (1952), 87–91.

[RZ] W. Rautenberg, M. Ziegler Recursive inseparability in graph theory, Notices
Am. Math. Soc. 22 (1975).

[Sa] G. Sacks, Saturated Model Theory, Benjamin Reading 1972.

[Sam] G. Sambin, An effective fixed point theorem in intuitionistic diagonalizable alge-
bras, Studia Logica 35 (1976), 345–361.

[Se] A. Selman, Completeness of calculi for axiomatically defined classes, Algebra
Universalis 2 (1972), 20–32.

[Sh] S. Shelah, Classification Theory and the Number of Nonisomorphic Models,
North-Holland 1978.

[Shoe] J. Shoenfield, Mathematical Logic, Addison-Wesley 1967.

[Si] W. Sieg, Herbrand Analyses, Arch. Math. Logic 30 (1991), 409–441.

[Sm] C. Smoryński, Self-reference and Modal Logic, Springer 1984.

[Sm1] R. Smullyan, Theory of Formal Systems, Princeton Univ. Press 1961.

[So] R. Solovay, Provability interpretation of modal logic, Israel Jour. Math. 25
(1976), 287–304.

246 Literature

[Sz] W. Szmielew, Elementary properties of abelian groups, Fund. Math. 41 (1955),
287–304.

[Ta1] A. Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Studia Philo-
sophica 1 (1936), in [Ta3].

[Ta2] , A Decision Method for Elementary Algebra and Geometry, Berkeley 1948,
1951, Paris 1967.

[Ta3] , Logic, Semantics and Metamathematics, Clarendon Press 1956.

[Ta4] , Introduction to Logic and and to the Methodology of the Deductive Sci-
ences, Oxford Univerity Press 1994 (first edition in Polish, 1936).

[Tak] G. Takeuti, Proof Theory, North Holland, 1975.

[TMR] A. Tarski, A. Mostowski, R.M. Robinson, Undecidable Theories, 2nd ed.
North-Holland 1971.

[TV] A. Tarski, R. Vaught, Arithmetical extensions and relational systems, Compos-
ito Math. 13 (1957), 81–102.

[Tu] A. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proceedings of the London Mathematical Society 43 (1937), reprint
in [Dav].

[Vi] A. Visser, An Overview of Interpretability Logic, Advances in Modal Logic 1996,
Lecture Notes CSLI (ed. M. Kracht et al.), Stanford 1998.

[Wae] B. van der Waerden, Algebra I, Springer 1964.

[WR] A. Whitehead, B. Russell, Principia Mathematica, Cambridge Univ. Press
1910.

[Wi] A. Wilkie, Model completeness results for expansions of the real field II: the
exponential function, Journ. Am. Math. Soc. 9 (1996), 1051–1094.

[WP] A. Wilkie, J. Paris, On the scheme of induction for bounded arithmetic Formu-
las, Ann. of Pure & Appl. Logic 35 (1987), 261–302.

[Zi] M. Ziegler, Model theory of moduls, Ann. Pure Appl. Logic 26 (1984), 149–213.

Index of Terms and Names

A
a.c. (algebraically closed), 38
∀-formula, ∀-sentence, 54
∀-theory, 66
∀∃-sentence, ∀∃-theory, 148
abelian group, 38

divisible, 81
torsion-free, 82

absorption laws, 39
algebra, 34
algebraic, 38
almost all, 48, 163
alphabet, xvii
antisymmetric, 36
arithmetical, 184
arithmetical hierarchy, 205
Artin, 147
associative, 37
automated theorem proving, 94
automorphism, 40
axiom

of extensionality, 88
of choice, 90
of continuity, 85
of foundation, 90
of infinity, 90
of power set, 89
of replacement, 89
of union, 89

axiom system
logical, 29, 95
of a theory, 65

axiomatizable, 81
finitely, recursively, 81

B
β-function, 189
basis theorem

for formulas, 160
for sentences, 140

Behmann, 98
Birkhoff rules, 99
Boolean algebra, 39

atomless, 156
of sets, 39

Boolean basis
for L in T , 160
for L0 in T , 140

Boolean combination, 45
Boolean function, 2

dual, self-dual, 12
linear, 8
monotonic, 13

Boolean matrix, 40
Boolean signature, 4

C
cardinal number, 134
cardinality, 134

of a structure, 135
chain, 37

of structures, 148
elementary, 148
of theories, 80

characteristic, 39
Church’s thesis, 171
clause, 112, 118

247

248 Index of Terms and Names

definite, positive, negative, 112
closed under MP, 30
closure

deductive, 16
of a formula, 51
of a model in T , 152

closure axioms, 200
cofinite, 28
collision of variables, 55
collision-free, 56
commutative, 37
Compactness theorem, 24, 82
compatible, 65
Completeness theorem, 80, 96, 97

Birkhoff’s, 100
propositional, 23

completion, 93
inductive, 150

composition, xvi, 169
computable, 169
concatenation, xvii

arithmetical, 174
congruence, 41

in L, 58
congruence classes, 41
conjunction, 2
connective, 3
connex, 36
consequence relation, 16, 17

finitary, 16
local, global, 63
predicate logical, 51
propositional, 15

consistency extension, 220
consistent, 75, 123
constant, xvii
constant expansion, 76
constant-quantification, 76
continuity schema, 86

continuum hypothesis, 135
contradiction, 14
contraposition, 17
converse implication, 3
coprime, 185
course-of-values recursion, 174
cut rule, 20

D
∆-elementary class, 139
∆0-formula, 185
δ-function, 170
Davis, 199
decidable, 81
(recursively) decidable, 169
Deduction theorem, 17, 31
deductively closed, 16, 64
definable, 53

explicitly, 53, 69
implicitly, 69
in a structure, 53
in theories, 211
with parameters, 85

DeJongh, 225
derivability conditions, 210
derivable, 18, 19, 29
diagram, 132

elementary, 133
universal, 149

direct power, 42
disjunction, 2

exclusive, 2
distributive laws, 39
domain, xvi, 34

E
∃-formula, 54

simple, 158
Ehrenfeucht game, 142
elementary class, 139
elementary equivalent, 55
elementary type, 139

Index of Terms and Names 249

embedding, 40
elementary, 136

end extension, 84, 186
enumerable

effectively or recursively, 92, 174
equation, 45

Diophantine, 184, 198
equipotent, 87
equivalence, 3
equivalence class, 41
equivalence relation, 36
equivalent, 9, 50

in (or modulo) T , 65
in a structure, 59
logically or semantically, 9, 50

Euclid’s lemma, 189
existentially (or ∃-)closed, 149
existentially closed, 155
expansion, 36, 62
explicit definition, 68
extension, 36, 64

conservative, 52, 67
definitorial, 68
elementary, 133
finite, 65
immediate, 152
of a language, 62
of a theory, 64
transcendental, 138

F
f -closed, 35
factor structure, 41
falsum, 4
family (of sets), xvi
Fermat’s conjecture, 199
Fibonacci sequence, 174
fictional argument, 8
field, 38

algebraically closed, 38
of algebraic numbers, 134

of characteristic 0 or p, 39
ordered, 39
real closed, 153

filter, 27
proper, principal, 28

finitary, 16
finite model property, 97
Finiteness theorem, 21, 23, 73, 81
Fixed-point lemma, 194
formula, 45

Boolean, 4
closed, 47
defining, 67
dual, 12
first-order, 45
open (quantifier-free), 45
prenex, 61
representing, 8, 184
universal, 54

formula algebra, 34
formula induction, 5, 46
Four-colour theorem, 26
Frege, 60
function, xvi

bijective, xvi
characteristic, 169
identical, xvi
injective, surjective, xvi
partial, 138
primitive recursive, 169
recursive (= µ-recursive), 169

functional complete, 12
G

Gödel number, 173
of a number sequence, 173
of a proof, 177
of a string, 176

Gödel term, 191
gap, 37
generalization, 62

250 Index of Terms and Names

anteriour, posterior, 62
generalized of a formula, 51
generally valid, 50
(finitely) generated, 36
Gentzen calculus, 18
goal clause, 123
graph, 37

k-colorable, 25
of an operation, xvii
planar, simple, 25

ground (or constant) term, 44
ground instance, 107
group, 38

ordered, 38
groupoid, 38

H
H-resolution, 116
Harrington, 219
Henkin set, 77
Herbrand model, 108

minimal, 111
Herbrand universe, 108
Hilbert calculus, 29, 95
homomorphism, 40

canonical, 41
strong, 40

Homomorphism theorem, 41
Horn clause, 116
Horn formula, 109

basic, 109
positive, negative, 109
universal, 109

Horn resolution, 117
Horn sentence, 109
Horn theory, 109

universal, nontrivial, 110
hyperexponentiation, 186

I
I-tuple, xvi
idempotent, 37

identity, 99
immediate predecessor, 37
immediate successor, 37
implication, 3
Incompleteness theorem

first, 194
second, 217

inconsistent, 22, 75
independent (of T), 65
individual variables, 43
<-induction, 86
induction

on ϕ, 7, 46
on t, 44

∆0-induction, 206
induction axiom, 84
induction hypothesis, 83
induction schema, 83
induction step, 83
infimum, 39
infinitesimal, 86
instance, 107, 123
integral domain, 38
(relatively) interpretable, 200
interpretation, 49
Invariance theorem, 55
invertible, 37
irreflexive, 36
isomorphism, 40

partial, 138
J

ι-term, 68
Jeroslow, 225
jump, 37

K
König’s lemma, 26
kernel (of a prenex formula), 61
Kleene, 169, 205
Kreisel, 199, 225
Kripke semantics, 221

Index of Terms and Names 251

L
L-formula, 46
L-model, 49
Löb’s axiom, 221
Löb’s theorem, 218
L-structure (= L-structure), 35
language

arithmetizable, 177
first-order (= elementary), 43
of equations, 99
second-order, 102

lattice, 39
distributive, 39
of sets, 39

legitimate, 68
Lindström’s criterion, 156
literal, 10, 45
logic program, 122
logical matrix, 40
logically valid, 14, 50

M
µ-operation, 169

bounded, 172
mapping (see function), xvi
Matiyasevich, 198
ϕ-maximal, 32
maximal element, 37
maximally consistent, 22, 75
metainduction, xiii, 183
metatheory, xiii
model

free, 110
minimal, 117
of a theory, 64
predicate logical, 49
propositional, 7

model companion, 157
model compatible, 150
model complete, 151
model completion, 155

model interpretable, 202
modus ponens, 15, 29
monotonicity rule, 18
Mostowski, 168

N
n-tuple, xvii
negation, 2
neighbor, 25
nonstandard analysis, 85
nonstandard model, 83
nonstandard number, 84
normal form

canonical, 12
disjunctive, conjunctive, 10
prenex, 61
Skolem, 70

O
ω-consistent, 195
ω-rule, 226
ω-incomplete, 196
ω-term, 90
operation, xvii

essentially n-ary, 8
order, 37

continuous, 37
dense, 37, 137
linear, partial, 37

ordered pair, 89
P

Π1-formula, 184
pair set, 89
pairing function, 172
parameter definable, 85
Paris, 219
partial order, 37

irreflexive, reflexive, 37
particularization, 62

anterior, posterior, 62
persistent, 147
Polish (prefix) notation, 6

252 Index of Terms and Names

(monic) polynomial, 82
power set, xvi
predecessor function, 83
predicate, xvii

arithmetical, 184
Diophantine, 184
(primitive) recursive, 169
recursively enumerable, 175

preference order, 229
prefix, 45
premise, 18
Presburger, 159
p.r. (= primitive recursive), 169
prime field, 39
prime formula, 4, 45
prime model, 133

elementary, 133
primitive recursive, 169
principle of bivalence, 2
principle of extentionality, 2
product

direct, 42
reduced, 163

programming language, 103
projection, 42
projection function, 169
PROLOG, 122
proof (formal), 29, 95
propositional variables, 3
provable, 18, 29
provably recursive, 212
Putnam, 199

Q
quantification

bounded, 171, 185
quantifier, 33
quantifier compression, 188
quantifier elimination, 157
quantifier rank, 46
quasi-identity, quasi-variety, 100

query, 122
quotient field, 145

R
Rabin, 200
range, xvi
rank (of a formula), 6, 46
r.e. (recursively enumerable), 174
recursion equations, 169
reduced formula, 67, 68
reduct, 36, 62
reductio ad absurdum, 19
reflection principle, 220
reflexive, 36
refutable, 65
relation, xvi
P-relativised, 200
renaming, 60, 119

bound, free, 60
Replacement theorem, 10, 59
representability

of functions, 187
of predicates, 184

Representability theorem, 191
resolution calculus, 113
resolution closure, 113
resolution rule, 113
Resolution theorem, 115
resolution tree, 113
resolvent, 113
restriction, 35
ring, 38

ordered, 39
Abraham Robinson, 85
Julia Robinson, 199
Rogers, 225
rule, 18, 72

basic, 18, 72
derivable (provable), 18
Gentzen-style, 20
Hilbert-style, 95

Index of Terms and Names 253

of Horn resolution, 116
sound, 21, 72

rule induction, 21, 73
S

Σ1-completeness, 186
provable, 215

Σ1-formula, 184
special, 208

S-invariant, 145
Sambin, 225
satisfiability relation, 14, 49
satisfiable, 14, 50, 65, 112
satisfiably equivalent, 69
scope (of a prefix), 46
segment, xvii

initial, terminal, xvii, 37
semigroup, 38

free, 38
ordered, 38
regular, 38

semilattice, 39
semiring, 39

ordered, 39
sentence, 47
separator, 121
sequence, xvi
sequent, 18

initial, 18
set

countable, uncountable, 87
densely ordered, 137
discretely ordered, 142
finite, 87
ordered, 37
well-ordered, 37

Sheffer function, 2
signature

algebraic, 45
extralogical, 34
logical, 4

signum function, 170
singleton, 119
Skolem function, 69
Skolem’s paradox, 91
SLD-resolution, 126
solution, 123
soundness, 21, 73
string, xvii
structure, 34

algebraic, relational, 34
subformula, 6, 46
substitution, 47

global, 47
identical, 47
propositional, 15, 16
simple, 47
simultaneous, 47

substitution invariance, 99
Substitution theorem, 56
substring, xvii
substructure, 36

(finitely) generated, 36
elementary, 133

substructure complete, 160
subterm, 44
subtheory, 64
successor function, 83
supremum, 39
symbol, xvii
symmetric, 36

T
T -model, 64
Tarski, 16, 131, 168
tautologically equivalent, 61
tautology, 14, 50
term, 44
term algebra, 44, 106
term equivalent, 12
term function, 53
term induction, 44

254 Index of Terms and Names

term model, 106
tertium non datur, 14
theorem

Cantor’s, 87
Cantor–Bernstein, 135
Dzhaparidze’s, 227
Goodstein’s, 219
Goryachev’s, 229
Herbrand’s, 108
Löwenheim–Skolem, 87
Lagrange’s, 198
Lindenbaum’s, 22
Lindström’s, 101
�Loś’s, 164
Morley’s, 139
Mostowski’s, 225
Rosser’s, 195
Shelah’s, 164
Solovay’s, 223
Steinitz’s, 153
Trachtenbrot’s, 98
Visser’s, 224

theory, 64
(finitely) axiomatizable, 81
arithmetizable, 194
complete, 82, 137
consistent (satisfiable), 65
countable, 87
decidable, 93, 177
elementary or first-order, 64
equational, 99
inconsistent, 65
inductive, 148
κ-categorical, 137
undecidable, 93
universal, 66

transcendental, 38
transitive, 36, 229
truth function, 2

truth table, 2
truth value, 2
truth, true, 196
Turing machine, 171

U
U -resolution, 126
U -resolvent, 125
UH-resolution, 126
ultrafilter, 28

nontrivial, 28
Ultrafilter theorem, 28
ultrapower, 164
ultraproduct, 164
undecidable, 81

strongly, hereditarily, 197
unifiable, 119
unification algorithm, 119
unifier, 119

generic, 119
unit element, 38
universal closure, 51
universal part, 145
universe, 89
urelement, 88

V
valuation, 7, 49
variable, 43

free, bound, 46
variety, 99
Vaught, 139
verum, 4

W
w.l.o.g., xvii
word (over A), xvii
word semigroup, 38

Z
Z-group, 159
Zorn’s lemma, 37

Index of Symbols

N, Z, Q, R xvi
N+, Q+, R+ xvi
PM , ∅ xvi⋃

F,
⋂

F xvi
f : M → N xvi
x
→ t(x) xvi
idM xvi
dom f, ran f xvi
NM , (ai)i∈I xvi
�a xvii
P�a, ¬P�a xvii
graph f xvii
⇔,⇒, &,∨∨∨ xvii
Bn 2
∧ , ∨ ,¬ 3
F, PV 4
→ ,↔, �, ⊥ 4
Sf α, rk ϕ 6
wα, Fn 7
α(n) 8
α ≡ β 9
DNF, CNF 10
w � α, � α 14
X � α, X � Y 15
C+, C− 22
MP, |∼ 29
rA, fA, cA 35
A ⊆ B 36
charp 39
2 39

A � B 40
a/≈ 41∏

i∈I Ai 42∏
i∈I Ai, AI 42

Var, ∀, ==== 43
T (= TL) 44
var ξ, var t 44
∃, ∨, �==== 45
L, L∈, L==== 45
rk ϕ, qr ϕ 46
free ϕ, bnd ϕ 46
L0, Lk, Vark 47
ϕ(x1, . . . , xn) 47
ϕ(�x), t(�x) 47
�t , f�t , r�t 47
ϕ t

x , ϕx(t) 47

ϕ
�t
�x
, ϕ�x(�t) 47

ι (iota) 47
M = (A, w) 49
rM, fM, cM 49
tA,w, tM, �t M 49
wa

x, M�a
�x, Ma

x 49
M � ϕ 49
A � ϕ [w] 49
� ϕ, α ≡ β 50
A � ϕ, A � X 50
X � ϕ 50
ϕG, X G 51
TG, T ====

G 51
(A,�a) 53

A � ϕ [�a] 53
tA(�a), tA 53
ϕA 53
∃n, ∃=n, �, ⊥ 54
A ≡ B 55
Mσ 56
∃! 57
≡A, ≡K 59
PNF 61
(∀x�t)α 61
(∃x�t)α 61
(divides) 63

X �G ϕ 63
T, Md T 64
Taut 65
T + α, T + S 65
≡T , ≈T 65
ThA, ThK 66
K � α 66
SNF 70
� 72
mon, fin 73
Lc, LC 76
�T , X �T α 80
ACF, ACFp 82
N , S, Pd 83
Lar , IS, IA 83
PA 83
n (= Sn0) 83
M ∼ N 87

255

256 Index of Symbols

ZFC, ZF 88
{z ∈ x | ϕ} 89
{a, b}, (a, b) 89
ω, AC 90
MP, MQ, |∼ 95
Λ, Λ1− Λ10 95
Tautfin 97
Γ �B γ 99
LII , L∼O 102
F , FX 106
Fk, FkX 107
GI(X) 107
CU , CT 111

112
K � H 112
λ; λ̄, K̄ 113
RR, �RR

, Rc 113
HR, �HR 116
VP, wP, ρ

P
117

P , :− 122
P, GI(K) 123
UR, �UR 125
UHR, �UHR 125
UωR, UωHR 125
AA, BA 132
DA 132
DelA 133
A � B 133
|M| 134
ℵ0, ℵ1, 2ℵ0 135
CH 135
DO 137
L, R 138
DO00, . . . 138
〈X〉, ≡X 140

SO, SO00, . . . 142
Γk(A,B), ∼k 142
≡k 143
T ∀ 145
TJ , TF 146
⊆ec, D∀A 149
RCF 153
ZG, ZGE 159
≈F , a/F 163∏F

i∈I Ai 163
w/F , Iw

α 163
Fn 169
h[g1, . . . , gm] 169
P [g1, . . . , gm] 169
Oc, Op, Oµ 169
f = Op(g, h) 169
Inν , χ

P 169
·−, δ, sg 170
prim, pn 171
µkP (�a, k) 172
µk�m[· · ·] 172
℘(a, b) 172
〈a1, . . . , an〉 173
GN 173
(((a)))k, (((a)))last 173
� 173
∗, Oq 174
SL, ξ̇, ϕ̇, ṫ 176
¬̃, ∧̃ , →̃ 178
bewT , bwbT 178
=̃=== , ∀̃, S̃, . . . 179
Lprim 179
[m]ki 180
Q, N 182
∆0 185

Σ1, Π1, ∆1 185
⊥ (coprime) 185
I∆0 186
rem(a : b) 189
β, beta 189
�ϕ�, �t�, �Φ� 191
bewT , bwbT 191
cf 193
sbx, sb�x, sb∅ 193
α̇�x(�a) 193
prov 196
αP, XP 200
X∆, B∆ 200
ZFCfin 202
Σn, Πn, ∆n 205
	(x) 210
	α, �α 210
ConT 210
D0–D3 210
∂, d0, . . . 210
D1∗ 211
	[ϕ] 214
PA⊥ 218
D4, D4◦ 218
T n, T ω, 	nα 220
	, 	n, � 221
G, �G 221
P � H 221
�G, ≡G 221
Gn, GS 224
	1 , �1 , GD 226
Rf T 228
Gi, Gj 229

	0.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf

