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Preface

This book is intended to be the basis for a problem-oriented full-year
course in mathematical logic for students with a modicum of mathe-
matical sophistication. Volume II covers the basics of computability,
using Turing machines and recursive functions, and incompleteness.
It could be used for a one-semester course on these topics. Volume
I covers the basics of propositional and first-order logic through the
Soundness, Completeness, and Compactness Theorems, plus some ma-
terial on applications of the Compactness Theorem; it could also be
used as for a one-semester course on these topics. However, part of
Volume II, particularly the chapters on incompleteness, assume some
familiarity with the basics of first-order logic.

In keeping with the modified Moore-method, this book supplies
definitions, problems, and statements of results, along with some ex-
planations, examples, and hints. The intent is for the students, indi-
vidually or in groups, to learn the material by solving the problems
and proving the results for themselves. Besides constructive criticism,
it will probably be necessary for the instructor to supply further hints
or direct the students to other sources from time to time. Just how
this text is used will, of course, depend on the instructor and students
in question. However, it is probably not appropriate for a conventional
lecture-based course nor for a really large class.

The material presented here is somewhat stripped-down. Various
concepts and topics that are often covered in introductory courses on
computability are given very short shrift or omitted entirely, among
them models of computation other than Turing machines and recursive
functions, formal languages, and computational complexity." Instruc-
tors might consider having students do projects on additional material
if they wish to cover it. It might also be expedient, in view of the
somewhat repetitive nature of devising Turing machines and recursive

Future versions of both volumes may include more — or less! — material. Feel
free to send suggestions, corrections, criticisms, and the like — T’ll feel free to ignore
them or use them.
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functions for various purposes, to be selective about the problems the
students are required to do or to divide them up among the students.
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Introduction

The Entscheidungsproblem. Recall that a logic satisfies the
Completeness Theorem if, whenever the truth of a set of sentences
> implies the truth of a sentence ¢, there is a deduction of ¢ from
>.. Propositional and first-order logics both satisfy the Completeness
Theorem, though second- and higher-order logics do not. In the case
of propositional logic, the Completeness Theorem leads to a rote pro-
cedure for determining whether Y F ¢ or not, so long as Y is finite:
write out a complete truth table for all of > together with ¢ and check
whether every assignment that makes every sentence of ¥ true also
makes ¢ true. It is natural to ask whether something of the sort can
be done for first-order logic. If so, it might be very useful: since most of
mathematics can be formalized in first-order logic, such a method would
have the obvious use of putting mathematicians out of business. .. This
question is the general Entscheidungsproblem® for first-order logic:

ENTSCHEIDUNGSPROBLEM. Given a set > of formulas of a first-
order language £ and a formula ¢ of L, is there an effective method
for determining whether or not X F ¢?

Of course, the statement of the problem begs the question of what
“effective” is supposed to mean here. In this volume we’ll explore
two formalizations of the notion of “effective method”, namely Tur-
ing machines and recursive functions, and then use these to answer
the Entscheidungsproblem for first-order logic. The answer to the gen-
eral problem is negative, though decision procedures do exist for some
particular first-order languages and sets 3.

Historically, the Entscheidungsproblem arose out of David Hilbert’s
scheme to secure the foundations of mathematics by axiomatizing math-
ematics in first-order logic and showing that the axioms do not give rise
to any contradictions. It did so in two related ways. First, given some
plausible set of axioms, it is necessary to show that they do not lead
to a contradiction, such as a A (—a). Second, it is desirable to know

4Entscheidungspmblem = decision problem.

1



2 INTRODUCTION

whether such a set of axioms is complete; i.e. given any sentence ¢ of
the language, that the axioms either prove or disprove .

In the course of trying to find a suitable formalization of the no-
tion of “effective method”, mathematicians developed several different
abstract models of computation in the 1930’s, including recursive func-
tions, A-calculus, Turing machines, and grammars. Although these
models are very different from each other in spirit and formal defini-
tion, it turned out that they were all essentially equivalent in what they
could do. This suggested the (empirical!) principle:

CHURCH’S THESIS. A function is effectively computable in princi-
ple in the real world if and only if it is computable by (any) one of the
abstract models mentioned above.

Of course, this is not a mathematical statement... We will study
Turing machines and recursive functions, and then use this knowledge
to formulate and answer a more precise version of the general Entschei-
dungsproblem for first-order logic.

The development of the theory of computation actually began be-
fore the development of electronic digital computers. In fact, the com-
puters and programming languages we use today owe much to the ab-
stract models of computation which preceded them. For two, the stan-
dard von Neumann architecture for digital computers was inspired by
Turing machines and the programming language LISP borrows much
of its structure from A-calculus.

Approach. This book supplies definitions and statements of re-
sults, plus some explanations and a number of problems and examples,
but no proofs of the results. The hope is that you, gentle reader, will
learn the material presented here by solving the problems and proving
the results for yourself. Brief hints are supplied for almost all of the
problems and results, but if these do not suffice, you should consult
your peers, your instructor, or other texts.

Prerequisites. In principle, little is needed by way of prior math-
ematical knowledge to define and prove the basic facts about com-
putability. Some knowledge of the natural numbers and a little set the-
ory suffices. The material leading up to the Incompleteness Theorem
— the resolution of the general Entscheidungsproblem for first-order
logic — does require grounding in first-logic, such as that provided in
Volume I, as well as in computability.

What really is needed to get anywhere with all of the material
developed here is competence in handling abstraction and proofs, in-
cluding proofs by induction. The experience provided by a rigorous
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introductory course in algebra, analysis, or discrete mathematics ought
to be sufficient. Some problems and examples draw on concepts from
other parts of mathematics; students who are not already familiar with
these should consult texts in the appropriate subjects for the necessary
definitions.

Other Sources and Further Reading. [?], [?], [?], and [?] are
texts which go over at least some of the material, while [?] is a good
if terse reference for more advanced material. Entertaining accounts of
much of the material may be found in [?] and [?]; the latter discusses
the possibility that Church’s Thesis may not be true. Many of the
original sources for the material in this volume can be found in the
anthology [7].
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CHAPTER 10

Turing Machines

Of the various ways to formalize the notion an “effective method”,
the most commonly used are the simple abstract computers called Tur-
ing machines, which were introduced more or less simultaneously by
Alan Turing and Emil Post in 1936.! Like most real-life digital com-
puters, Turing machines have two main parts, a processing unit and
a memory (which doubles as the input/output device), which we will
consider separately before seeing how they interact. The memory can
be thought of as a tape, without end in one direction, which is divided
up into cells like the frames of a movie. The Turing machine proper is
the processing unit. It has a scanner or “head” which can read from or
write to a single cell of the tape, and which can be moved to the left
or right one cell at a time.

Tapes. The first thing we have to do in describing a Turing ma-
chine is to specify what symbols it is able to read and write on its
tape.

DEFINITION 10.1. An alphabet is a non-empty finite set X, the
elements of which are called symbols, such that 0 ¢ X.

The reason we don’t allow X to contain 0 is that we will use 0 to
mark all the otherwise blank cells on a tape.

DEFINITION 10.2. Given an alphabet X, a tape (with entries from
Y}) is an infinite sequence

a=4dapa;azas...

such that for each integer ¢ the cell a; € {0} UX. The ith cell is said
to be blank if a; is 0, and marked if a; is a symbol from ..

A blank tape is one in which every cell is 0. It will be shown later on
that it is possible to restrict the alphabet to just one non-blank symbol
without essentially diminishing what a Turing machine can accomplish,
but it is usually convenient to have more symbols about when actually
devising a Turing machine for a particular task.

!Both papers are reprinted in [?]. Post’s brief paper gives a particularly lucid
informal description.
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ExAMPLE 10.1. A blank tape looks like:
000000000000000000000000 - - -

The Oth cell is the leftmost one, cell 1 is the one immediately to the
right, cell 2 is the one immediately to the right of cell 1, and so on.

Letting our alphabet be ¥ = {1,z,y }, the following is a slightly
more exciting tape:

01022101121y01yy2000000000000000 - - -

In this case, cell 1 contains a 1, as do cells 5, 7, 8, 10, and 13; cells 3,
4, 9, and 16 each contain an z; cells 11, 14, and 15 each contain a y;
and all the rest contain a 0.

PrROBLEM 10.1. Write down tapes satisfying the following; you may
use any appropriate alphabets.

(1) Entirely blank except for cells 3, 12, and 20.

(2) Entirely marked except for cells 0, 2, and 3.

(3) Entirely blank except for a block of five consecutive cells just
to the right of cell 0.

(4) Entirely blank except that 1025 is written out in binary just to
the right of cell 2.

To keep track of which cell the Turing machine’s scanner is at, plus
some other information, we will usually attach additional information
to our description of the tape.

DEFINITION 10.3. A tape position is a triple (7, s,a), where i and s
are natural numbers with s > 0, and a is a tape. Given a tape position
(i, s,a), we will refer to cell i as the scanned cell and to s as the state.

The number s mentioned above will be used to keep track of which
instruction the Turing machine is to execute next.

Conventions for tapes. Unless stated otherwise, we will assume
that all but finitely many cells of any given tape are blank, and that any
cells not explicitly described or displayed are blank. We will usually
depict as little of a tape as possible and omit the ---s we used above.
Thus

010z21011z1y01yyx

represents the tape given in the Example 77. In many cases we will
also use z" to abbreviate n consecutive copies of z, so the same tape
could be represented by

01022101%x1y01y2x .
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Similarly, if o is a finite sequence of elements of 3 U {0}, we may write
o™ for the sequence consisting of n copies of ¢ stuck together end-to-
end. For example, (010)3 is 010010010.

In displaying tape positions we will usually underline the scanned
cell and write s to the right of the tape. For example, we would display
the tape position using the tape from Example 7?7 with cell 4 being
scanned and state 2 as follows:

010x2101%21y01y x: 2

PrROBLEM 10.2. Using the tapes you gave in the corresponding part
of Problem 7?7, write down tape positions satisfying the following con-
ditions.

(1) Cell 7 being scanned and state 4.
(2) Cell 4 being scanned and state 1.
(3) Cell 0 being scanned and state 3.
(4) Cell 3 being scanned and state 413.

Turing machines. The “processing unit” of a Turing machine is
just a finite list of specifications describing what the machine will do in
various situations. (Remember, this is an abstract computer...) The
formal definition may not seem to amount to this at first glance.

DEFINITION 10.4. A Turing machine (with alphabet ¥) is a func-
tion M such that for some natural number n,

dom(M) C{1,...,n} x ({0} UX)

and
ran(M) C ({0} UX) x {—=1,1} x {1,...,n}.
Note that M need not be defined for all possible pairs

(s,7) € {1,....n} x ({0} U) .

We will sometimes refer to a Turing machine simply as a machine
or TM . If n > 1 is least such that M satisfies the definition above, we
shall say that M is an n-state Turing machine and that {1,...,n} is
the set of states of M.

Intuitively, we have a processing unit which has a finite list of basic
instructions, the states, which it can execute. Given a combination of
current state and the symbol marked in the cell of the tape currently
being scanned that it is equipped to handle, the processor specifies

e a symbol to be written in the currently scanned cell, overwrit-
ing the symbol being read, then
e a move of the scanner one cell to the left or right, and then
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e the next instruction to be executed.

That is, M(s,c) = (b,d,t) means that if our machine is in state s (i.e.
executing instruction number s), scanning the ith cell, and a; = ¢ (i.e.
cell i contains ¢), then the machine M should

e set a; = b (i.e. write b instead of ¢ in the scanned cell), then

e move the scanner to a;,4 (i.e. move one cell left if d = —1 and
one cell right if d = 1), and then

e enter state ¢ (i.e. go to instruction t).

If our processor isn’t equipped to handle input ¢ for instruction s (i.e.
M (s,a) is undefined), then the computation in progress will simply
stop dead.

ExaAMPLE 10.2. We will usually present Turing machines in the
form of a table, with a row for each state and a column for each possible
entry in the scanned cell. Instead of —1 and 1, we will usually use L

and R when writing such tables in order to make them more readable.
Thus the table

M| o0 |1
1 [1R2|0R1
2 | 0L2

defines a Turing machine M with alphabet {1} and two states such that
M(1,0) = (1,1,2), M(1,1) = (0,1,1), and M(2,0) = (0,—1,2), but
M(2,1) is undefined. (So M has domain {(1,0), (1,1), (2,0) } and
range {(1,1,2), (0,1,1), (0,—1,2) }.) If the machine M were faced
with the tape position

01001111: 1,

it would, being in state 1 and scanning a cell containing 0,

e write a 1 in the scanned cell,
e move the scanner one cell to the right, and
e go to state 2.

This would give the new tape position
01011111: 2.

Since M doesn’t know what to do on input 1 in state 2, the computation
could go no further.

PROBLEM 10.3. In each case, give the table of a Turing machine
M meeting the given requirement.

(1) M has alphabet {x,y,z} and has three states.
(2) M has alphabet {1} and changes 0 to 1 and vice versa in any
cell it scans.
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(3) M is as simple as possible. How many possibilities are there
here?

Computations. Informally, a computation is a sequence of actions
of a machine M on a tape according to the rules above, starting with
instruction 1 and the scanner at cell 0 on the given tape. A computation
ends (or halts) when and if the machine encounters a tape position
which it does not know what to do in or runs off the left end of the tape.
(If it never does either, the computation will never end — not quite
like real computers, Turing machines succeed only when they crash!)
The formal definition makes all this seem much more formidable.

DEFINITION 10.5. Suppose M is a Turing machine. Then:

o If p = (i,s,a) is a tape position using the same alphabet as
M and M (s,a;) = (b,d,t) is defined, then M(p) = (i+d,t,a’)
is the successor tape position, where a; = b and a} = a; for
J# i

e A partial computation with respect to M is a sequence pi1ps . . . pi
of tape positions such that p,1 = M(p,) for each ¢ < k.

e A partial computation p1ps ... px with respect to M is a com-
putation (with respect to M) with input tape a if p; = (0,1,a)
and M(py.) is undefined. The output tape of the computation
is the tape of the final tape position py.

Note that a computation must have only finitely many steps.

ExXAMPLE 10.3. Let’s see the machine M of Example 77 perform a
computation. Our input tape will be a = 1100, that is, the tape which
is entirely blank except that ag = a; = 1. The initial tape position of
the computation of M with input tape a is then

1100: 1.
The subsequent steps in the computation are:

0100: 1

0000: 1

0010: 2

0010: 2
We leave it to the reader to check that this is indeed a partial com-
putation with respect to M. Since M(2,1) is undefined the process

terminates at this point and this partial computation is indeed a com-
putation.
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PROBLEM 10.4. Give the (partial) computation of the Turing ma-
chine M of Example 77 when the input tape is:
(1) 00.
(2) 110.
(3) The tape with all cells marked with 1s and cell 5 being scanned.

PrROBLEM 10.5. For which possible input tapes does the partial com-
putation of the Turing machine M of Example 7?7 eventually terminate?

PROBLEM 10.6. Find a Turing machine that (eventually!) fills a
blank input tape with the pattern ryyz3xyyz3dxzyyz3. ...

PrROBLEM 10.7. Find a Turing machine with alphabet {$, Q}that
never halts, no matter what is on the tape.

EXAMPLE 10.4. The Turing machine P given below is intended to
produce output 01™ on input 01"01™ whenever n,m > 0.
Pl 0 1
0R2

1R3
OR4 | OR3
OR4 | ORS
0L8 | 1L6
0L6 | 1RT7
1R4
0L8 | 119
119

Trace P’s computation on, say, input 01201* to see how it works.

00 O UL i W N+

Ne)

PROBLEM 10.8. In each case, find a Turing machine (with the al-
phabet of your choice) that:

)

(2) Halts with output 01™0 on input 00™1.

(3) Halts with output 012 on input 01™.

(4) Halts with output 0(10)™ on input 01".

(5) Halts with output 01™01™ on input 01™0*1™, if n,m, k > 0.

(6) Halts with output 01™01"01% on input 01701%01™, if n,m, k >
0.

(7) Halts with output 01™01"01¥01™01"01% on input 01™01"01*,
if n,m,k > 0.

(8) On input 01™01", where m,n > 0, halts with output 01 if
m # n and output 011 if m = n.

It is quite possible to find such machines with just {1} as an alphabet.
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NOTE. It doesn’t matter what the machine you define in each case
does on other inputs, so long as it does the right thing on the given
one(s).






CHAPTER 11

Variations and Simulations

The definition of a Turing machine given in Chapter ?7 is arbitrary
in a number of ways, among them the use of an arbitrary finite al-
phabet, a single read-write scanner, and a single one-way infinite tape.
One could restrict the definition we gave by allowing

e the machine to move the scanner only to one of left or right in
each state,
e only {1} as an alphabet,

or both, among various possibilities. One could also define apparently
more powerful Turing machines by allowing the use of

e two-way infinite tapes,
e multiple tapes,
e two- and higher-dimensional tapes,

or various combinations of these, among many other possibilities. We
will construct a number of Turing machines that simulate others with
additional features; this will show that none of the modifications men-
tioned above really change what the machines can compute.

ExaMPLE 11.1. Consider the following Turing machine:

M| 0 |1
1 |1R2|0L1
2 |0L2|1L1

Note that in state 1, this machine may move the scanner to either
the left or the right, depending on the contents of the cell being scanned.
We will construct a Turing machine, with alphabet {1}, that emulates
the action of M on any input, but which moves the scanner to only
one of left or right in each state. There is no problem with state 2 of
M, by the way, because in state 2 M always moves the scanner to the
left.

The basic idea is to add some states to M which replace part of the
description of state 1.

15
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M| 0 |1
1 |1R2|0R3
2 [0L2]1L1
3 |0L4|1L4
4 | 0L1

This machine is just like M except that in state 1 with input 1,
instead of moving the scanner to the left and going to state 1, the
machine moves the scanner to the right and goes to the new state 3.
States 3 and 4 do nothing between them except move the scanner two
cells to the left without changing the tape, thus putting it where M
would have put it, and then entering state 1, as M would have.

PrROBLEM 11.1. Compare the computations of the machines M and
M’ of Example 7?7 on the input tapes
(1) 0
(2) 011
and explain why is it not necessary to define M’ for state 4 on input 1.

PROBLEM 11.2. Given a Turing machine M with an arbitrary al-
phabet X3, explain in detail how to construct a machine M’ that simu-
lates what M does on any input, but which moves the scanner only to
one of left or right in each state.

PROBLEM 11.3. Given a Turing machine M with an arbitrary al-
phabet 33, explain in detail how to construct a machine N with alphabet
{1} that simulates M.

To define Turing machines with two-way infinite tapes we need
only change the definition of the tape: instead of having tapes be
sequences a = (ag, ay, as, .. .) indexed by N, we let them be sequences
b= {(..,b_9,b_1,by,b1,by,...)indexed by Z. In defining computations
for machines with two-way infinite tapes, we adopt the same conven-
tions that we did for machines with one-way infinite tapes, such as
the scanner starts off scanning cell 0 on the input tape. The only real
difference is that a machine with a two-way infinite tape cannot halt
by running off the left end of the tape...

ExAMPLE 11.2. Consider the following two-way infinite tape Turing
machine with alphabet {1}

T 0 |1
1[1L1 [ 0R2
2 |0R2 | 1L1

The biggest problem in trying to emulate 7" with a one-way infinite
tape Turing machine O is representing a two-way infinite tape on a
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one-way infinite tape. To do this, we choose an alphabet for O with
malice aforethought:

o 1 0 0 1 1
S? S? 07 17 07 1

We can now represent the tape a,
ceey @2, @1, Qo, A1, A2, ...,

for T by the tape a’,

a0 al a2
S? a1 a’g)

for O. In effect, this device allows us to split O’s tape into two tracks,
each of which accomodates half of the tape of T
The key remaining idea is to split each state of T"into a pair of states
for O: one for the lower track and one for the upper track. One must
take care to keep various details straight: when O changes a “cell” on
one track, it should not change the corresponding “cell” on the other
track; directions are reversed on the lower track; one has to “turn a
corner” moving past cell 0; and so on.
22 NV T - SO O S
1L | LR3|ILY1 | L1 | SR2 | 0R2 | °R2
2 |9R2|SR2|0R2|°R2 | LR3 | 'L1| L1
3| R3|LR3|YR3| L4 | SR2 | 1R3| L4
4904 | SR2 | 9L4 | R3 | LR3| L4 | 'R3
States 1 and 3 are the upper- and lower-track versions, respectively,
of T’s state 1; states 2 and 4 are the upper- and lower-track versions,
respectively, of T"s state 2. We leave it to the reader to check that O
actually does simulate T'. ..

PROBLEM 11.4. Trace the (partial) computations of T, and their
counterparts for O, for each of the following input tapes for T', shown
with a bar over cell 0:

(1) 0 (i.e. a blank tape)
(2) 10
(3) ...1111111... (i.e. every cell marked with 1)

PrROBLEM 11.5. Explain in detail how, given a Turing machine N
with an arbitrary alphabet and a two-way infinite tape, one can con-

struct a Turing machine P with an one-way infinite tape that simulates
N.

PROBLEM 11.6. Give a precise definition for Turing machines with
two tapes. Explain how, given any such machine, one could construct
a single-tape machine to simulate it.
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PROBLEM 11.7. Give a precise definition for Turing machines with
two-dimensional tapes. Fxplain how, given any such machine, one
could construct a single-tape machine to simulate it.

Taken together, these results mean that for the purposes of investi-
gating what can be computed in principle, we can use any of the above
variants on our definition of Turing machines without loss of generality.



CHAPTER 12

Universal Turing Machines and the Halting
Problem

In Chapter 7?7 we devised techniques for constructing, given a par-
ticular Turing machine (of some type), a Turing machine (of another
type) that would simulate it. We will go further and construct an wuni-
versal Turing machine (sometimes referred to as an UT'M): a machine
U that, when given as input (a suitable description of) some Turing
machine M and an input tape a for M, simulates the computation of
M on input a. In effect, an universal Turing machine is a piece of
“hardware” that lets us treat Turing machines as “software”.

As a bonus, constructing such a machine will give us the tools we
will need to answer the following question:

THE HALTING PROBLEM. Given a Turing machine M and an in-
put tape a, is there an effective method to determine whether or not
M eventually halts on input a?

An effective method to determine whether or not a given machine
will eventually halt on a given input — short of waiting forever! —
would be nice to have. For example, assuming Church’s Thesis is true,
such a method could let us identify computer programs which have
infinite loops before they tie computers up in knots.

An Universal Turing Machine. The first problem in trying to
build an universal Turing machine is finding a suitable way to describe
the machine which is to be simulated, as well as its input tape, on the
input tape of the universal Turing machine. We can simplify our task
somewhat by restricting our attention to simulating Turing machines
with one-way infinite tapes whose alphabet is just {1}. We lose no
real generality in doing so since, by the results in Chapter 77, such
machines can do just as much as any other type. Among the many
possible ways of describing such machines as input, the one given below
is fairly straightforward but woefully inefficient.! Essentially, it consists

IFor an example of a different method, one could combine the methods devel-
oped in Chapter ?? of representing Turing machines and tapes by integers with the
represention of integers on a tape used in Chapter ?77.

19
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of simply listing the table defining the Turing machine we wish to
specify.

DEFINITION 12.1. Suppose M is a Turing machine with alphabet
{1} and m states. If 1 <k <m and i € {0,1} and M(k,i) = (j,d,?),
let

LM (k,i)a=11+kom—ko1l+ipl=igrl+igl—ip12+dpl—dp1l+eigm—t;

if M(k, i) is not defined, just let j = d = ¢ = 0 above.

That is, LM (k,7)J is a string of 2m + 13 0s and 1s which represents
the (k,i)th entry of M’s table in five distinct blocks, separated by single
Os:

(1) one of length m + 1 codes k, represented by k + 1 1s followed
by a padding of Os;
(2) one of length 2 codes i, represented by 11 if i = 1 and 10 if

1=0;
(3) one of length 2 codes j, represented by 11 if j = 1 and 10 if
J=0;

(4) one of length 3 codes d, represented by 111 if d = 1, 100 if
d=—1,and 110 if d = 0 (i.e. if M(k,i) is undefined);

(5) one of length m + 1 codes ¢, represented by ¢ + 1 1s followed
by a padding of 0s.

DEFINITION 12.2. Suppose M is a Turing machine with alphabet
{1} and m states. The representation of M is

LM _=031"1103_ M(1,0),0%2. M (1,1),0%2. M (2,0)102...02L M (m,0) 102 M (m,1) 103 .

The representation of the machine M, LM 1, then consists of an
initial string of three Os, followed by m+1 1s giving the number of states
of M, three more Os, the representations of the entries of the table of
M — including the empty ones! — listed in order and separated by
pairs of 0s, and a final string of three Os.

ExAMPLE 12.1. The representation of the Turing machine

E| 0|1
1 [0R2 ,
2| 1L1|0R1

18
031303 120010010013013 02 12001201001200102 02 1301001201020120 02 130120100130120 03 .

PROBLEM 12.1. Pick a Turing machine different from the one in
Example 7?7 and give its representation.
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PROBLEM 12.2. Glive a table for the Turing machine whose repre-
sentation 1s

0001100011010011011101100110110100111011000 .

PROBLEM 12.3. How many possible representations are there for a
giwen Turing machine?

PROBLEM 12.4. Devise a more efficient way of representing Turing
machines than that given in Definition ?77.

We now have at least one way of completely describing a given
Turing machine M to another Turing machine. Of course, we have not
yet considered how this description would actually be used, but we first
need to find a way to describe M’s input anyway. The most naive way
to do this is to simply have the input for M follow the description of M.
Unfortunately, this won’t do because we will need to keep track which
cell is being scanned and what the current state is while simulating
M. To solve this problem, we’ll go whole hog and describe not just the
tape a that M is reading but a complete tape position (7, s,a). (Recall
that ¢ is an integer specifying the currently scanned cell, s is an integer
specifying which state M is in, and a is the tape.)

DEFINITION 12.3. Suppose (i,s,a) is the tape position of an m-
state Turing machine with alphabet{1}. For each ¢ € N, let

. 0 ¢+ (i.e. cell £is not being scanned)
|1 ¢=i (i.e. cell £is the scanned cell).

Let n be the least positive integer such that a = 0 for all & > n, if
such exists. If so, the representation of (i, s,a) is the finite sequence

L(i,8,a)0 = 031°T0™ 0% 1egaglerar Lesas . . . 16,a,0° ;

otherwise, the representation of (i, s,a) is the infinite sequence

L(i,8,a)0 = 0311 0™ 0% 1cpaglerar 1cqasy . . .

That is, each cell of a is described by a triple of cells in the represen-
tation of a. The first cell of this triple is simply a marker, one indicates
whether or not the cell of a being described is the one being scanned
by M, and the last gives the content of the cell being described. The
representation of a tape position (i,s,a) then consists of three Os, a
block of length m + 1 consisting of s + 1 1s padded out by m — s Os,
another three Os, the triples coding the cells of a, and, possibly, a final
three Os to mark the end of the code. Since we assume tapes to have
all but finitely many cells blank unless stated otherwise, almost all of
the representations of tape positions we will encounter will be finite.
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ExAMPLE 12.2. Consider the tape position (2,3,a) for a 5-state
Turing machine, where a = 01101. The representation of this tape
position is

000111100000 100101 111100101 000 .

Note that the only use of the 1 at the beginning of the represen-
tation of each cell is to mark the fact that a cell is being represented:
moving a scanner along the representation of a, one can identify the be-
ginning and end (if any) of the representation because one encounters
a 0 instead of a 1 marking the representation of another cell.

PROBLEM 12.5. What are the representations of the following tape
positions for a 5-state Turing machine?
(1) (0,4,11111)
(2) (3,1,101011)

PROBLEM 12.6. What tape positions are represented by the follow-
ing?
(1) 0001100000110100100101101100100101100000
(2) 00011111000101111101101101101101 ...

PROBLEM 12.7. Devise a more efficient way of representing tape
positions than that given in Definition 77.

We can now define our representation for M together with a tape
position (i, s,a). Except for inserting some extra 0s, this just amounts
to LM followed by (i, s,a)..

DEFINITION 12.4. Suppose M is an m-state Turing machine with
alphabet {1} and (4, s, a) is a tape position for M (so 1 < s < m). Then
the representation of the machine M together with the tape position
(1,s,a) is the sequence

|_M403m+33|_(i, s,a).

The 3m+33 0Os interpolated in the middle are intended to be used for
“scratch space” in the simulation of M by the universal Turing machine
we will construct in the following series of problems. Depending on
how these are solved, it may be possible to reduce — or necessary to
increase! — that 3m + 33.

NoOTE. The statements of Problems ?7-??7 below assume the use
of the representation schemes given in Definitions ?7-??. If you would
rather use the methods you devised in Problems 7?7 and 77, by all
means adapt the statements of Problems ?77-77 accordingly. You may
find it convenient to give the machines you build in these problems
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alphabets other than {1}, but one need not do so. (Why doesn’t it
really matter if one does?)

PROBLEM 12.8. Suppose M s an m-state Turing machine with
alphabet {1}, (i,s,a) is a tape position for M, and d = +1. Find a
Turing machine H which on input

OLM L03m+3912+dpl=d (5 5 a)
halts with output
O M 03 +3012H40 =4 _(j 1 d,5,a).
H should extend the representation of a if necessary.

PrROBLEM 12.9. Suppose M 1is an m-state Turing machine with
alphabet {1}, (i, s,a) is a tape position for M. Find a Turing machine
R which on input

0L M L0333 (4, 5,a)
halts with output
0L M 0P 3t Iregl=c (4, 5,a) 1,
where ¢ = q;.

PrROBLEM 12.10. Suppose M 1is an m-state Turing machine with
alphabet {1}, (i,s,a) is a tape position for M, and j € {0,1}. Find a
Turing machine W which on input

0L M L0330 (4,5, a)
halts with output

O M 0P 30 (7, 5,a") 4,
where a’ is identical to a except that a = j.

PrROBLEM 12.11. Suppose M 1is an m-state Turing machine with
alphabet {1}, (i,s,a) is a tape position for M, and ¢ € {0,1}. Find a
Turing machine E which on input

0L M 0P 3 epl=c (4, 5,a)
halts with output
OLM LM (s, ¢) 0™ 8110 ¢ (4, 5,a) .

PROBLEM 12.12. Suppose M 1is an m-state Turing machine with
alphabet {1} and (i,s,a) is a tape position for M. Find a Turing
machine S which on input

0L M L0333 (4, 5,a)
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halts with output
QLM403m+33LM(i, s,a)J.

Using these machines, we can finally assemble an universal Turing
machine.

THEOREM 12.13. There is a Turing machine U such that, for any
m > 1, m-state Turing machine M with alphabet {1}, and tape position
(1,s,a) for M, U acts on the input position
OLM L0333 (4, 5,a)
as follows:
e If M, starting from position (i, s,a), eventually halts in posi-
tion (4,t,b), then U eventually halts in the position

OLM L0*™ 33 (5,4, b)J.

o If M, starting from the initial tape position (i, s, a), eventually
runs off the left end of its tape, U eventually runs off the left
end of its own tape.

o If M, starting from the initial tape position (i,s,a), never
halts, then U never halts.

The Halting Problem. Given that we are using Turing machines
to formalize the notion of an effective method, one of the difficulties
with solving the Halting Problem is representing a given Turing ma-
chine and its input tape as input for another machine. As this is exactly
what was done above, we can now formulate a precise version of the
Halting Problem and solve it.

THE HALTING PROBLEM. Is there a Turing machine T which, for
any m > 1, m-state Turing machine M with alphabet {1}, and tape a
for M, halts on input

0L M L03™33.(0,1,a)
with output 011 if M halts on input a, and with output 01 if M does
not halt on input a?

Note that this version of the Halting Problem is equivalent to our
original one only if Church’s Thesis is true.

PrROBLEM 12.14. Find a Turing machine C which, for any Turing
machine M with alphabet {1}, on input

0.M .

eventually halts with output
0u(0,1,cM ).
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THEOREM 12.15. There is no Turing machine T which, for any

m > 1, m-state Turing machine M with alphabet {1}, and tape a for
M, halts on input

OLM L0°™33(0,1,a)

with output 011 if M halts on input a, and with output 01 if M does
not halt on input a.






CHAPTER 13

Computable and Non-Computable Functions

So far, the only substantial facts we have about what Turing ma-
chines can do is that they can be used to simulate other Turing ma-
chines, but cannot solve the Halting Problem. Neither fact is trivial,
but neither is really interesting unless Turing machines can also be
used to handle more natural computational problems. Arithmetic is a
common source of such problems in the real world; indeed, any notion
of computation that can’t handle it is unlikely to be of great use.

Notation and conventions. To keep things as simple as pos-
sible, we will stick to computations involving the natural numbers,
i.e. the non-negative integers, the set of which is usually denoted by
N=1{0,1,2,...}.. The set of all k-tuples (nq,...,nx) of natural num-
bers is denoted by N¥. For all practical purposes, we may take N' to
be N by identifying the 1-tuple (n) with the natural number n.

For k > 1, f is a k-place function (from the natural numbers to the
natural numbers), often written as f: N*¥ — N, if it associates a value,
f(ni,...,ng), to each k-tuple (ny,no,...,ny) € NE. Strictly speaking,
though we will frequently forget to be explicit about it, we will often
be working with k-place partial functions which might not be defined
for all the k-tuples in N¥. If f is a k-place partial function, the domain
of f is the set

dom(f) = {(n1,...,nx) € N*| f(n1,...,ny) is defined } .
Similarly, the image of f is the set
lm(f):{f(nlaank’> | (nla"'ank’> Edom(f)}

In subsequent chapters we will also work with relations on the nat-
ural numbers. Recall that a k-place relation on N is formally a subset
P of N*; P(ny,...,ng) is true if (ny,...,n,) € P and false otherwise.
In particular, a 1-place relation is really just a subset of N.

Relations and functions are closely related. All one needs to know
about a k-place function f can be obtained from the (k + 1)-place
relation Py given by

Pr(n, .o yng,ngra) = f(na, .. ng) = ngpa
27
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Similarly, all one needs to know about the k-place relation P can be
obtained from its characteristic function :

xp(ni,...,ng) =

1 if P(nq,...,ng) is true;
0 if P(nq,...,ny) is false.

The basic convention for representing natural numbers on the tape
of a Turing machine is a slight variation of unary notation : n is rep-
resented by 1", (Why would using 1" be a bad idea?) A k-tuple
(n1,ma9,...,n;) € N will be represented by 1" 1017210 ... 01"+ 4e.
with the representations of the individual numbers separated by Os.
This scheme is inefficient in its use of space — compared to binary
notation, for example — but it is simple and can be implemented on
Turing machines restricted to the alphabet {1}.

Computable functions. With suitable conventions for represent-
ing the input and output of a function on the natural numbers on the
tape of a Turing machine in hand, we can define what it means for a
function to be computable by a Turing machine.

DEFINITION 13.1. A k-place function f is Turing computable, or
just computable, if there is a Turing machine M such that for any
k-tuple (nq,...,ng) € dom(f) the computation of M with input tape
01™m+10172+1 01"+ eventually halts with output tape 017(-mk)+1,
Such an M is said to compute f.

Note that for a Turing machine M to compute a function f, M
need only do the right thing on the right kind of input: what M does
in other situations does not matter. In particular, it does not matter
what M might do with k-tuple which is not in the domain of f.

ExAMPLE 13.1. The identity function iy: N — N, i.e. in(n) = n,
is computable. It is computed by M = (), the Turing machine with an
empty table that does absolutely nothing on any input.

EXAMPLE 13.2. The projection function 7% : N> — N given by
72(n,m) = n is computed by the Turing machine:

Pl 0 | 1
1 [0R2

2 | OR3 | 1R2
3 | 0L4 | OR3
4 | 0L4 | 1L5
5 1L5



13. COMPUTABLE AND NON-COMPUTABLE FUNCTIONS 29

P? acts as follows: it moves to the right past the first block of 1s
without disturbing it, erases the second block of 1s, and then returns
to the left of first block and halts.

The projection function 72 : N> — N given by 72(n, m) = m is also
computable: the Turing machine P of Example 7?7 does the job.

PrROBLEM 13.1. Find Turing machines that compute the following
functions and explain how they work.
(1) O(n) =0.
(2) S(n) =n+1.
(3) SuM(n,m) =n+m.
(4)

-1 >1
4) PRED(n) = {g n_()'
n =

n—m n>m
0 n<m

(5) DIFF(n,m) = {
(6) m3(p,q,7) = q.

We will see how to build complex functions computable by Turing
machines out of simpler ones in the next chapter.

A non-computable function. In the meantime, it is worth ask-
ing whether or not every function on the natural numbers is com-
putable. No such luck!

PROBLEM 13.2. Show that there is some 1-place function f which
s mot computable by comparing the number of such functions to the
number of Turing machines.

The argument hinted at above is unsatisfying in that it tells us there
is a non-computable function without actually producing an explicit
example. We can have some fun on the way to one.

DEFINITION 13.2 (Busy Beaver Competition). A machine M is an
n-state entry in the busy beaver competition if:

e M has a two-way infinite tape and alphabet {1};

e M has n+ 1 states, but state n+ 1 is used only for halting (so
both M(n +1,0) and M(n + 1,1) are undefined);

e M eventually halts when given a blank input tape.

M’s score in the competition is the number of 1’s on the output tape of
its computation from a blank input tape. The greatest possible score
of an n-state entry in the competition is denoted by (n).
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Note that there are only finitely many possible n-state entries in the
busy beaver competition because there are only finitely many (n + 1)-
state Turing machines with alphabet {1}. Since there is at least one
n-state entry in the busy beaver competition for every n > 0 , it follows
that ¥(n) is well-defined for each n € N.

EXAMPLE 13.3. M = () is the only O-state entry in the busy beaver
competition, so ¥(0) = 0.

ExXAMPLE 13.4. The machine P given by

Pl 0 |1
1 |1R2[1L2
2 | 1L1 | 1L3

is a 2-state entry in the busy beaver competition with a score of 4, so
¥(2) > 4.

The function ¥ grows extremely quickly. It is known that 3(0) = 0,
Y(1) =1, ¥(2) =4, ¥(3) =6, and X(4) = 13. The value of X(5) is
still unknown, but must be quite large.!

PROBLEM 13.3. Show that:

(1) The 2-state entry given in Example 7?7 actually scores 4.
(2) (1) =1.

(3) X(3) > 6.

(4) X(n) < X(n+1) for every n € N.

PROBLEM 13.4. Deuwise as high-scoring 4- and 5-state entries in the
busy beaver competition as you can.

The serious point of the busy beaver competition is that X is not a
Turing computable function.

PROPOSITION 13.5. ¥ is not computable by any Turing machine.

Anyone interested in learning more about the busy beaver com-
petition should start by reading the paper [?] in which it was first
introduced.

IThe best score known to the author as of this writing by a 5-state entry in
the busy beaver competition is 4098. One of the two machines achieving this score
does so in a computation that takes over 40 million steps! The other requires only
11 million or so...



CHAPTER 14

Primitive Recursive Functions

Starting with a small set of computable functions, and applying
computable ways of building functions from simpler ones, we will build
up a useful collection of computable functions. This will also go a long
way toward giving us a characterization of computable functions which
does not mention any particular computing devices.

The initial functions. The set of computable functions that will
be the fundamental building blocks for all that follows is infinite only
because of the presence of all the projection functions.

DEFINITION 14.1. The following are the initial functions:

e O, the 1-place function such that O(n) =0 for all n € N;
e S, the 1-place function such that S(n) =n + 1 for all n € N;

and,
e foreach k > 1and 1 <1 <k, Wf, the k-place function such
that 7¥(ny,...,ng) = n, for all (ny,...,n;) € N~

O is often referred to as the zero function, S is the successor function,
and the functions 7¥ are called the projection functions.

Note that 7} is just the identity function on N. We have already ob-
served that O, S, 7], 77, 72, and 75 are Turing computable in Chapter
29

PROBLEM 14.1. Show that all of the initial functions are Turing
computable.

Composition. The first of our methods for assembling computable
functions from simpler ones should be thoroughly familiar from many
parts of mathematics.

DEFINITION 14.2. Suppose that m, k > 1, g is an m-place function,
and hq, ..., h,, are k-place functions. Then the k-place function f is
said to be obtained from g, hq, ..., h,, by composition, written as

f=go(hy,...,hn),
if for all (nq,...,n;) € N¥,

f(ni,...,ng) =glhi(ny,...,ng), ... h(na, .. ng)).

31
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EXAMPLE 14.1. The constant function c}, where c}(n) = 1 for all
n, can be obtained by composition from the initial functions S and O.
For any n € N,

ci(n) = (So0)(n) =S(0O(n))=S(0)=0+1=1.

PROBLEM 14.2. Suppose k > 1 and a € N. Use composition
to define the constant function c&, where cf(ny,...,ny) = a for all
(n1,...,n.) € N*_ from the initial functions.

PRoOPOSITION 14.3. Suppose that 1 < k, 1 < m, g is a Turing
computable m-place function, and hq, ..., hy,, are Turing computable
k-place functions. Then g o (hy, ..., hy) is also Turing computable.

Unfortunately, one can’t do much else of interest using just the
initial functions and composition. ..

PROPOSITION 14.4. Suppose f is a 1-place function obtained from
the initial functions by finitely many applications of composition. Then
there is a constant ¢ € N such that f(n) <n+c for alln € N.

Primitive recursion. Primitive recursion boils down to defining
a function inductively, using different functions to tell us what to do
at the base and inductive steps. Together with composition, it suffices
to build up just about all familiar arithmetic functions from the initial
functions.

DEFINITION 14.3. Suppose that k£ > 1, g is a k-place function, and
h is a k + 2-place function. Let f be the (k + 1)-place function such
that

(1) f(ny,...,ng0) = g(ny,...,nx) and

(2) f(ny,...,ng,m+1)=h(ny,...,ng,m, f(ny,...,ng,m)
for every (ny,...,nz) € N¥ and m € N. Then f is said to be obtained
from g and h by primitive recursion.

That is, the initial values of f are given by ¢, and the rest are given
by h operating on the given input and the preceding value of f.

For a start, primitive recursion and composition let us define addi-
tion and multiplication from the initial functions.

EXAMPLE 14.2. SUM(n, m) = n+m is obtained by primitive recur-
sion from the initial function 7r{ and the composition S o 73 of initial
functions as follows:

e SuM(n,0) = m(n);
e SuM(n,m+ 1) = (S om3)(n,m, SUM(n,m)).
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To see that this works, one can proceed by induction on m:
At the base step, m = 0, we have

SuM(n,0) =mi(n) =n=n+0.
Assume that m > 0 and SuM(n, m) = n + m. Then
SuM(n,m + 1) = (S o 73)(n, m, SUM(n, m))
= S(73(n, m, SUM(n,m)))
= S(SuM(n,m))
= SuM(n,m) + 1
=n+m-+1,

as desired.

As addition is to the successor function, so multiplication is to
addition.

EXAMPLE 14.3. MUuLT(n,m) = nm is obtained by primitive recur-

sion from O and SuM o (73, 73):

e MuLT(n,0) = O(n);
e MULT(n,m + 1) = (SuM o (73, 7?))(n, m, MULT(n, m)).
We leave it to the reader to check that this works.

PROBLEM 14.5. Use composition and primitive recursion to obtain
each of the following functions from the initial functions or other func-
tions already obtained from the initial functions.

(1) Exp(n,m) =n™

(2) PRED(n) (defined in Problem 7?)
(3) Dirr(n,m) (defined in Problem ?7)
(4) Fact(n) = n!

PROPOSITION 14.6. Suppose k > 1, g is a Turing computable k-
place function, and h is a Turing computable (k + 2)-place function. If
f 1s obtained from g and h by primitive recursion, then f is also Turing
computable.

Primitive recursive functions and relations. The collection of
functions which can be obtained from the initial functions by (possibly
repeatedly) using composition and primitive recursion is useful enough
to have a name.

DEFINITION 14.4. A function f is primitive recursive if it can be
defined from the initial functions by finitely many applications of the
operations of composition and primitive recursion.
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So we already know that all the initial functions, addition, and
multiplication, among others, are primitive recursive.

PROBLEM 14.7. Show that each of the following functions is prim-
1tive recursive.

(1) For any k > 0 and primitive resursive (k + 1)-place function

g, and I g(nq, ..., nk, 1), the (k + 1)-place function f given

by
f(na,...,ng,m) =12 g(na, ..., ng, 1)
=g(ny,...,ng,0) ... g(ny,...,ng,m)
for any (k + 1)-tuple (n4,...,ng,m).
0
(2) For any constant a € N, x(q3(n) = ) " 7_& ¢
n=a.
f(ny,...,ng)  (nq,...,ng) # (c1,. ., Ck) .
(3) h(ny,...,ng) = L if
a (nl,...,nk):(cl,...,ck)
f 1s a primitive recursive k-place function and a,cq,...,cy € N

are constants.

THEOREM 14.8. Fvery primitive recursive function is Turing com-
putable.

Be warned, however, that there are computable functions which are
not primitive recursive.

We can extend the idea of “primitive recursive” to relations by using
their characteristic functions.

DEFINITION 14.5. Suppose k > 1. A k-place relation P C N* is
primitive recursive if its characteristic function

X (n n): 1 (nl,...,nk)ep
PR T 700 (g, ) € P

is primitive recursive.

EXAMPLE 14.4. P = {2} C N is primitive recursive since y{o} is
recursive by Problem ?7?.

PROBLEM 14.9. Show that the following relations and functions are
PTrimitive recursive.
(1) =P, i.e. N*\ P, if P is a primitive recursive k-place relation.
(2) PV Q,ie. PUQ, if P and Q are primitive recursive k-place
relations.
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(3) PANQ, ie. PNQ, if P and Q are primitive recursive k-place
relations.

(4) EQUAL, where EQUAL(n,m) <= n =m.

(5) h(ni,...,ne,m) = >0 g(na, ..., ng, 1), for any k > 0 and
primitive recursive (k + 1)-place functwn g.

(6) D1v, where D1v(n,m) <= n | m.
SPRIME, where ISPRIME(n) <= n is prime.
(7) ISPRIME, where ISPRIME(n) s pri
RIME = pr, where pg = 1 and py s the kth prime 1f k > 1.
8) P k h 1 and py, is the kth prime if k > 1
(9) POWER(n,m) = k, where k > 0 is mazimal such that n* | m.
(10) LENGTH(n) = ¢, where { is mazimal such that p; | n.
(11) ELEMENT(n, i) = n;, if n =p* ...p.* (and n; =0 if i > k).
ppl if1<i<j<
(12) SUBSEQ(n,i,j) = PP py s =)= k, when-
0 otherwise

ever n = pit.. .pZ’“.
(13) CoNCAT(n,m) = pi*...p, Pk+1 pk+z; ifn=pi"...pp
m=p"...p"

Parts of Problem ?7? give us tools for representing finite sequences of
integers by single integers, as well as some tools for manipulating these
representations. This lets us reduce, in principle, all problems involving
primitive recursive functions and relations to problems involving only
1-place primitive recursive functions and relations.

"k and

THEOREM 14.10. A k-place g is primitive recursive if and only if
the 1-place function h given by h(n) = g(nq,...,ng) if n = pi* ... pp*
18 primative recursive.

NOTE. It doesn’t matter what the function 2 may do on an n which
does not represent a sequence of length k.

COROLLARY 14.11. A k-place relation P is primitive recursive if
and only if the 1-place relation P’ is primitive recursive, where

ni,...,ng) € P <= pt...pi* e P.
k

Computable non-primitive recursive functions. While primi-
tive recursion and composition do not suffice to build up all Turing com-
putable functions from the initial functions, they are powerful enough
that specific counterexamples are not all that easy to find.

EXAMPLE 14.5 (Ackerman’s Function). Define the 2-place function
A from as follows:
e A(0,¢) =S(0)
o A(S(k),0) = A(k,1)
o A(S(K),S(0) = Ak, A(S(k), £))
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Given A, define the 1-place function «a by a(n) = A(n,n).

It isn’t too hard to show that A, and hence also «, are Turing
computable. However, though it takes considerable effort to prove it,
a grows faster with n than any primitive recursive function. (Try
working out the first few values of a...)

PROBLEM 14.12. Show that the functions A and « defined in Fx-
ample 7?7 are Turing computable.

If you are very ambitious, you can try to prove the following theo-
rem.

THEOREM 14.13. Suppose « is the function defined in Example 77?7

and f is any primitive recursive function. Then there is an n € N such
that for all k > n, a(k) > f(k).

COROLLARY 14.14. The function o defined in Example 77 is not
primitive recursive.

... but if you aren’t, you can still try the following exercise.

PROBLEM 14.15. Informally, define a computable function which
must be different from every primitive recursive function.



CHAPTER 15

Recursive Functions

We add one more computable method of building functions, un-
bounded minimalization, to our repertoire. The functions which can
be defined from the initial functions using unbounded minimalization,
as well as composition and primitive recursion, turn out to be precisely
the Turing computable functions.

Unbounded minimalization. Unbounded minimalization is the
counterpart for functions of “brute force” algorithms that try every
possibility until they succeed. (Which, of course, they might not. .. )

DEFINITION 15.1. Suppose k& > 1 and g is a (k + 1)-place func-
tion. Then the unbounded minimalization of g is the k-place function

f defined by

f(ni,...,n,) = m where m is least so that g(ny,...,ng,m)=0.
This is often written as f(ni,...,ng) = pmlg(ni,...,ng,m) = 0].

NOTE. If there is no m such that g(nq,...,ng,m) = 0, then the
unbounded minimalization of g is not defined on (ny,...,n;). This is

one reason we will occasionally need to deal with partial functions.

If the unbounded minimalization of a computable function is to be
computable, we have a problem even if we ask for some default out-
put (0, say) to ensure that it is defined for all k-tuples. The obvious
procedure which tests successive values of g to find the needed m will
run forever if there is no such m, and the incomputability of the Halt-
ing Problem suggests that other procedure’s won’t necessarily succeed
either. It follows that it is desirable to be careful, so far as possible,
which functions unbounded minimalization is applied to.

DEFINITION 15.2. A (k + 1)-place function g is said to be regular
if for every (ny,...,nz) € N¥ there is at least one m € N so that
g(ny,...,ng,m)=0.

That is, g is regular precisely if the obvious strategy of computing
g(ny,...,ng,m) form =0, 1, ...in succession until an m is found with
g(ny,...,ng,m) =0 always succeeds.
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PROPOSITION 15.1. If g is a Turing computable reqular (k + 1)-
place function, then the unbounded minimalization of g is also Turing
computable.

While unbounded minimalization adds something essentially new to
our repertoire, it is worth noticing that bounded minimalization does
not.

PROBLEM 15.2. Suppose g is a (k + 1)-place primitive recursive
reqular function such that for some primitive recursive k-place function
h,

Mm[g(nla SR 7nk7m) = O] S h(nla s 7”76)
for all (ny,...,ng) € N. Show that pm[g(ny,...,ng,m) = 0] is also
Primitive recursive.

Recursive functions and relations. We can finally define an
equivalent notion of computability for functions on the natural numbers
which makes no mention of any computational device.

DEFINITION 15.3. A k-place function f is recursive if it can be
defined from the initial functions by finitely many applications of com-
position, primitive recursion, and the unbounded minimalization of
regular functions.

Similarly, k-place partial function is recursive if it can be defined
from the initial functions by finitely many applications of composition,
primitive recursion, and the unbounded minimalization of (possibly
non-regular) functions.

In particular, every primitive recursive function is a recursive func-
tion.

THEOREM 15.3. Every recursive function is Turing computable.

We shall show that every Turing computable function is recursive
later on. Similarly to primitive recursive relations we have the follow-
ing.

DEFINITION 15.4. A k-place relation P is said to be recursive ( Tur-
ing computable) if its characteristic function xp is recursive (Turing
computable).

Since every recursive function is Turing computable, and vice versa,
“recursive” is just a synonym of “Turing computable”, for functions and
relations alike.

Also, similarly to Theorem 7?7 and Corollary 7?7 we have the follow-
ing.
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THEOREM 15.4. A k-place g is recursive if and only if the 1-place
function h given by h(n) = g(ny,...,ng) if n.=p*...p* is recursive.

As before, it doesn’t really matter what the function i does on an
n which does not represent a sequence of length k.

COROLLARY 15.5. A k-place relation P is recursive if and only if
the 1-place relation P’ is recursive, where

(n1,...,ng) € P <= p*...pik e P

Turing computable functions are recursive. By putting some
of the ideas in Chapters ?? and ??7 together, we can use recursive
functions to simulate Turing machines. This will show that Turing
computable functions are recursive and, as a bonus, give us another
way of constructing an universal Turing machine. Since recursive func-
tions operate on integers, we first need to specify some way to code
the tapes of Turing machines by integers. We’'ll try keep close to the
representation schemes given in Definitions ?? and ?7? in the process.
As we did in those definitions, we shall stick to Turing machines with
alphabet {1} for simplicity.

DEFINITION 15.5. Suppose (i, s,a) is a tape position such that all
but finitely many cells of a are blank. Let n be any positive integer
such that a; = 0 for all £ € N with & > n. Then the code of (i, s,a) is

"(i,s,@)7 = 2'3°5%07 11 . pln .
ExaMPLE 15.1. Consider the tape position (1,2,1001). Then
7(1,2,1001) = 2'3?5'7°11°13" = 1170.
PROBLEM 15.6. Find the codes of the following tape positions.
(1) (0,1,a), where a is entirely blank.
(2) (3,4,a), where a is 1011100101.
PROBLEM 15.7. What is the tape position whose code is 10314720 ¢

We'll also need to code sequences of tape positions when we deal
with computations.

DEFINITION 15.6. Suppose t1t5 ... t, is a sequence of tape positions.
Then the code of this sequence is

r PN N al r "
rt1t2...t2j22 2 3 t2 pnt" .

NoOTE. Both tape positions and sequences of tape positions also
have unique codes.
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PROBLEM 15.8. Pick some (short!) sequence of tape positions and
find its code.

Having defined how to represent tape positions as integers, we now
need to manipulate these representations using recursive functions.
The recursive functions and relations in Problem 7?7 provide the nec-
essary tools.

PROBLEM 15.9. Show that each of the following is primitive recur-
Stve.
(1) The 4-place function ENTRY, where
ENTRY(j,w,t,n) =
"i+w—1,t,a)" ifn="(i,s,a)”, j € {0,1},
w € {0,2}, and i +w — 1 > 0; where
a, = ay, for k #i and a), = j;
0 otherwise.
(2) For any Turing machine M with alphabet {1}, the 1-place
function TMy,, such that
"™™(i,s,a)" ifn="(i,s,a)"
TMy(n) = and M(i, s,a) is defined;
0 otherwise.

(3) For any Turing machine M with alphabet {1}, the 1-place re-
lation COMP);, where

CoMPy(n) <= n is the code of a computation of M.

The functions and relations above may be primitive recursive, but
the last step in showing that Turing computable functions are recursive
requires unbounded minimalization.

THEOREM 15.10. Any k-place Turing computable function is recur-
Stve.

One can push the techniques used above just a little farther to
get a recursive function that simulates any Turing machine. Since
any recursive function can be computed by some Turing machine, this
effectively gives us another universal Turing machine.

PROBLEM 15.11. Devise a suitable definition for the code "M of
a Turing machine M with alphabet {1}.

PROBLEM 15.12. Show, using your definition of " M from Problem
77?7, that the following are primitive recursive.
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(1) The 2-place function TM, where

"™M(i,s,a)" if m="M" for some machine M,
n="(is,a)’,
and M(i, s, a) is defined;

0 otherwise.

TM(m,n) =

(2) The 2-place relation COMP, where
CoMP(m,n) <= m="M"
for some Turing machine M and n is the code of a computation

of M.

PROBLEM 15.13. Show that the 2-place partial function SIM is re-
cursive, where, for any Turing machine M with alphabet {1} and input
tape a for M,

SmM("M™,7(0,1,a)7) =7(0,1,b)"
if M halts with output b on input a.
Note that Sim(m,n) may be undefined on other inputs.

Recursively enumerable sets. The following notion is of partic-
ular interest in the advanced study of computability.

DEFINITION 15.7. A subset (i.e. a 1-place relation) P of N is re-
cursively enumerable, often abbreviated as r.e., if there is a 1-place
recursive function f such that P =im(f) ={f(n) |n € N}.

Since the image of any recursive 1-place function is recursively enu-
merable by definition, we do not lack for examples. For one, the set £
of even natural numbers is recursively enumerable, since it is the image

of f(n) = MuLT(S(S(O(n))), n).

ProproOSITION 15.14. If P is a 1-place recursive relation, then P is
recursively enumerable.

This proposition is not reversible, but it does come close.

ProprosiTiON 15.15. P C N is recursive if and only if both P and
N\ P are recursively enumerable.

PROBLEM 15.16. Find an example of a recursively enumerable set
which s not recursive.

PrROBLEM 15.17. Is P C N primitive recursive if and only if both
P and N\ P are enumerable by primitive recursive functions?
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CHAPTER 16

Preliminaries

It was mentioned in the Introduction that one of the motivations for
the development of notions of computability was the following question.

ENTSCHEIDUNGSPROBLEM. Given a reasonable set 3 of formulas
of a first-order language £ and a formula ¢ of L, is there an effective
method for determining whether or not ¥ = ? 4

Armed with knowledge of first-order logic on the one hand and of
computability on the other, we are in a position to formulate this ques-
tion precisely and then solve it. To cut to the chase, the answer is“no”
in general. Godel’s Incompleteness Theorem asserts, roughly, that for
any computable set of axioms in a first-order language powerful enough
to prove certain facts about arithmetic, it is possible to formulate state-
ments in the language whose truth is not decided by the axioms. In
particular, it turns out that no consistent set of axioms can hope to
prove its own consistency.

We will tackle the Incompleteness Theorem in three stages. First,
we will code the formulas and proofs of a first-order language as num-
bers and show that the functions and relations involved are recursive.
This will, in particular, make it possible for us to define “computable
set of axioms” precisely. Second, we will show that all recursive func-
tions and relations can be defined by first-order formulas in the presence
of a fairly minimal set of axioms about elementary number theory. Fi-
nally, by putting recursive functions talking about first-order formulas
together with first-order formulas defining recursive functions, we will
manufacture a self-referential sentence which asserts its own unprov-
ability.

A language for first-order number theory. To keep things as
concrete as possible we will work with and in the following language
for first-order number theory, used as an example in Chapter 5.

DEFINITION 16.1. Ly is the first-order language with the following
symbols:
(1) Parentheses: ( and )

45
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2
3
4

) Connectives: = and —

) Quantifier: V

) Equality: =

5) Variable symbols: vy, vg, vs, ...

6) Constant symbol: 0

7) 1-place function symbol: S

(8) 2-place function symbols: +, -, and E.

(
(
(
(
(
(

The non-logical symbols of Ly, 0, S, 4, -, and FE, are intended
to name, respectively, the number zero, and the successor, addition,
multiplication, and exponentiation functions on the natural numbers.
That is, the (standard!) structure this language is intended to discuss
is M= (N,0,S,+, -, E).

NOTE. Notation for and the definitions of terms, formulas, sen-
tences, structures, interpretations, logical axioms, deductions, and so
on, of first-order languages, plus various conventions involving these,
are given in Chapters 5-8 of Volume 1. Look them up as (and if) you
need to.

Completeness. The notion of completeness mentioned in the In-
completeness Theorem is different from the one mentioned in the Com-
pleteness Theorem.! “Completeness” in the latter sense is a property of
a logic: it asserts that whenever I' = o (i.e. the truth of the sentence o
follows from that of the set of sentences I'), I' F o (i.e. there is a deduc-
tion of o from I'). The sense of “completeness” in the Incompleteness
Theorem, defined below, is a property of a set of sentences.

DEFINITION 16.2. A set of sentences Y of a first-order language £
is said to be complete if for every sentence 7 either ¥ - 7 or X F —7.

That is, a set of sentences, or non-logical axioms, is complete if it
suffices to prove or disprove every sentence of the langage in in question.

PROBLEM 16.1. Show that a consistent set 3 of sentences of a first-
order language L is complete if and only if the theory of X,

Th(X) ={7| 7 is a sentence of L and ¥+ 1},

18 maximally consistent.

'Which, to confuse the issue, was also first proved by Godel.



CHAPTER 17
Coding First-Order Logic

We will encode the symbols, formulas, and deductions of Ly as
natural numbers in such a way that the operations necessary to ma-
nipulate these codes are recursive. Although we will do so just for Ly,
any countable first-order language can be coded in a similar way.

DEFINITION 17.1. To each symbol s of Ly we assign an unique
positive integer "s™, the Gddel code of s, as follows:

(1) "("=1land ")7=2

(2) "=7'=3and "—"=4

(3) "V1=5

(4) T="=6

(5) '—vk—' =k+12

(6) "0 =7

(7) S =38

(8) "+17=9,77=10,and "ET =11

Note that each positive integer is the Godel code of one and only one
symbol of Ly. We will also need to code sequences of the symbols of
Ly, such as terms and formulas, as numbers, not to mention sequences
of sequences of symbols of Ly, such as deductions.

DEFINITION 17.2. Suppose $;Ss...s; is a sequence of symbols of
Ly. Then the Godel code of this sequence is

V_Sk—l

r U
S1...85 =p"t LoopSE

where p,, is the nth primes number.
Similarly, if o109 ... 0y is a sequence of sequences of symbols of Ly,
then the Gadel code of this sequence is

I—UZ—I

Toyp...op" :pzalj...pk
EXAMPLE 17.1. "Vo; = 0500, 1 = 2°31350710111313817719"3,
A particular integer n may simultaneously be the Godel code of a

symbol, a sequence of symbols, and a sequence of sequences of symbols
of L. We shall rely on context to avoid confusion, but, with some
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more work, one could set things up so that no integer was the code of
more than one kind of thing.

We need to show that various relations and functions for recognizing
and manipulating Gddel codes are recursive.

PROBLEM 17.1. Show that each of the following relations is primi-
tive recursive.
(1) TERM(n) <= n ="t" for some term t of Ly.
(2) FORMULA(n) <= n ="y for some formula ¢ of Ly.
(3) SENTENCE(n) <= n ="0" for some sentence o of L.
(4) LocICAL(n) <= n ="~" for some logical axiom ~y of L.

Using these relations as building blocks, we will develop relations
and functions to handle deductions of Ly. First, though, we need to
make “a computable set of formulas” precise.

DEFINITION 17.3. A set A of formulas of £ is said to be recursive
if the set of Godel codes of formulas of A,

TAT= {7575 e A},

is recursive. Similarly, A is said to be recursively enumerable if A7 is
recursively enumerable.

PROBLEM 17.2. Suppose A is a recursive set of sentences of Ly.
Show that each of the following relations is recursive.

(1) PREMISSA(n) <= n ="[" for some formula B of Ly which
is either a logical axiom or in A.

(2) FORMULAS(n) <= n = Tpi...¢ " for some sequence
©1. .. of formulas of Ly.

(3) INFERENCE(n,i,j) <= n = "p1...p, " for some sequence
01 ... of formulas of Ly, 1 <i,5 <k, and . follows from
@i and @; by Modus Ponens.

(4) DEDUCTIONA(n) <= n ="p1...p " for a deduction ¢y . ..y
from A in Ly.

(5) CONCLUSIONA(n,m) <= n = "p1...¢;" for a deduction
©1..- from A in Ly and m ="y .

If "A™ is primitive recursive, which of these are primitive recursive?

It is at this point that the connection between computability and
completeness begins to appear.

THEOREM 17.3. Suppose A is a recursive set of sentences of Ly.
Then "Th(A)™7 is

(1) recursively enumerable, and
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(2) recursive if and only if A is complete.

NoTE. It follows that "Th(A)™ is an example of a recursively enu-
merable but not recursive set if A is not complete.






CHAPTER 18

Defining Recursive Functions In Arithmetic

We will also need definitions and results complementing those ob-

tained in Chapter ?77: a set of non-logical axioms in £y which prove
enough to let us define all the recursive functions by suitable formulas
of Ly. The non-logical axioms in question essentially just ensure that
basic arithmetic works properly.

DEFINITION 18.1. Let A be the following set of sentences of Ly,

written out in official form.

(1) Yo (— = Sve0)
(2) Voo ((— = v00) — (=Vo1 (= = Svivp)))
(3) VUOVUl ( S’U[)S’Ul —= Uo’Ul)
(4) VUO = +U00U0

(5) VUOVvl = +U05’015 + YU
(6) VUO = U()OO

(7)
(8) \V/’U() = EU()OSO

(9) YuoVou, = EvgSv; - Evguyvg

Translated from the official forms, A consists of the following ax-

ioms about the natural numbers:

(1) Vex +1#0

(2) Ver #£0— Jyy+1==x

(B) VaVyz+1=y+1—ax=y
(4) Vex+0=2x

(5) VaVyz +y+1= (v +y)+1
(6) Vzx-0=0

(7) VxVya:-(y+1):(x-y)+x
(8) Vxa® =1

(9) VavVy vt = (2¥) - x
Each of the axioms in A is true in M = (N, 0, S, +, -, E). However,

they are a long way from being able to prove all the sentences of first-
order arithmetic true in 1. For example, though we won’t prove it,
it turns out that A is not enough to ensure that induction works:
that for every formula ¢ with at most the variable = free, if ¢f and
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Yy (py — ¢%,) hold, then so does Vx . On the other hand, neither Ly
nor A are quite as minimal as they might be. For example, one could
do without F and define it from - and +.

It will be convenient to use a couple of conventions in what follows.
First, we will often abbreviate the term of £y consisting of m Ss fol-
lowed by 0 by S™0. For example, S20 abbreviates SS550. We will use
S™0 to represent the natural number m in Ly. (The interpretation of
S™0 in N will, in fact, be the mth successor of 0, namely m.) Second, if
@ is a formula of Ly with all of its free variables among vy, ..., v,, and
mo, M1, ..., My, are natural numbers, we will write p(S™0,...,S™0)
for the sentence ¢gig"  gmyg, i-€. ¢ with every free occurrence of v;
replaced by S™0. Note that since the term S™0 involves no variables,
it must be substitutable for v; in .

DEFINITION 18.2. Suppose X is a set of sentences of L. A k-place
function f is said to be representable in Th(X) = {7 | X 7} if there
is a formula ¢ of Ly with at most vy, ..., vk, and vi,; as free variables
such that

f(ny,...,nk) =m <= @(5™0,...,5"0,5™0) € Th(X)
— Y F p(S™0,...,5m0,5™0)

for all ny, ..., ni in N. Such a formula ¢ is said to represent f in
Th(X).

Similarly, a k-place relation P C N is said to be representable in
Th(X) if there is a formula ¢ of Ly with at most vy, ..., v as free
variables such that

P(ny,...,n;) <= %(S™0,...,8™0) € Th(S)
e S (S™0,...,S™0)

for all ny, ..., ny in N. Such a formula ¢ is said to represent P in

Th(X).
We will use this definition mainly with ¥ = A.

ExAMPLE 18.1. The constant function ¢z given by c3(n) = 3 is
representable in Th(A); ve = SSS0 is a formula representing it. Note
that that this formula has no free variable for the input of the 1-place
function in question, but then the input is irrelevant. ..

Almost the same formula, vy = SS5S50, serves to represent the set
— i.e. l-place relation — {3} in Th(.A).

EXAMPLE 18.2. The set of all even numbers is a 1-place relation is
representable in Th(.A); Jugv; = S0 - v; is a formula representing it.
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EXAMPLE 18.3. The projection function 73 can be represented in
Th(A). vy = vy is one formula which represents 73; another is Jv; (vy =
vr A\ v = vy).

PROBLEM 18.1. Suppose ¥ and I" are sets of sentences of Ly and
Y ET,ie Xt for every y € I'. Then every function and relation
which is representable in Th(I") is representable in Th(X).

PROBLEM 18.2. Suppose ¥ is a set of sentences of Ly and [ is
a k-place function which is representable in Th(X). Then ¥ must be
consuistent.

It turns out that all recursive functions and relations are repre-
sentable in Th(.A).

PROBLEM 18.3. Show that the following functions are representable
in Th(A):
(1) The zero function O(n) = 0.
(2) The successor function S(n) =n+ 1.

(3) For every positive k and i < k, the projection function 7%

PROPOSITION 18.4. A k-place function f is representable in Th(A)
if and only if the k + 1-place relation Py defined by

Pr(ny,...,ng,ngy1) <= f(n1,...,nk) = N

is representable in Th(A).
Also, a relation P C N* is representable in Th(A) if and only if its
characteristic function xp is representable in Th(A).

PROPOSITION 18.5. Suppose g1, ..., gm are k-place functions and
h is an m-place function, all of them representable in Th(A). Then
f=ho(g1,...,9m) is a k-place function representable in Th(A).

PrROPOSITION 18.6. Suppose g is a k + 1-place regular function
which is representable in Th(A). Then the unbounded minimalization
of g is a k-place function representable in Th(A).

Between them, the above results supply most of the ingredients
needed to conclude that all recursive functions and relations on the
natural numbers are representable. The exception is showing that func-
tions defined by primitive recursion from representable functions are
also representable, which requires some additional effort. The basic
problem is that it is not obvious how a formula defining a function
can get at previous values of the function. To accomplish this, we will
borrow a trick from Chapter ?7.



54 18. DEFINING RECURSIVE FUNCTIONS IN ARITHMETIC

PROBLEM 18.7. Show that each of the following relations and func-
tions (first defined in Problem ?7?) is representable in Th(.A).
) Div(n,m) <= n|m
2) ISPRIME(n) <= n is prime
3) PRIME(k) = py., where pg = 1 and py, is the kth prime if k > 1.
4) POWER(n,m) = k, where k > 0 is mazimal such that n* | m.
5) LENGTH(n) = ¢, where ¢ is mazimal such that py | n.
6) ELEMENT(n,i) = n;, where n = pi*...p* (and n; = 0 if
i>k).

(1
(
(
(
(
(

Using the representable functions and relations given above, we can
represent the “history” function of any representable function. . .

PROBLEM 18.8. Suppose f is a k-place function representable in
Th(A). Show that

) f(n17"’7nk70) (n17 Nk, )

:pl pm+1

m
= [
=0

is also representable in Th(A).

F(ny,...,ng,m

..and use it!

ProproOSITION 18.9. Suppose g is a k-place function and h is a
k + 2-place function, both representable in Th(A). Then the k + 1-
place function f defined by primitive recursion from g and h is also
representable in Th(A).

THEOREM 18.10. Recursive functions are representable in Th(A).

In particular, it follows that there are formulas of Ly represent-
ing each of the functions from Chapter ?? for manipulating the codes
of formulas. This will permit us to construct formulas which encode
assertions about terms, formulas, and deductions; we will ultimately
prove the Incompleteness Theorem by showing there is a formula which
codes its own unprovability.



CHAPTER 19

The Incompleteness Theorem

By pulling the material in Chapters ??7-?? together, we can finally
state and prove the Incompleteness Theorem.

PROBLEM 19.1. Show that A is a recursive set of sentences of Ly .
PROBLEM 19.2. Show that the function

To(S*0)T if n ="y for a formula @ of Ly
SuB(n, k) = with at most vy free
0 otherwise

18 Tecursive.

The key result needed to prove the Incompleteness Theorem is the
following lemma.

LeEmMMA 19.3 (Fixed-Point Lemma). Suppose ¢ is a formula of Ly
with only vi as a free variable. Then there is a sentence o of Ly such
that

AF o« o(S70).

Note that o must be different from the sentence p(S ?'0): there is
no way to find a formula ¢ with one free variable and an integer k such
that "¢(S*0)7 = k. (Think about how Gddel codes are defined. .. )

With the Fixed-Point Lemma in hand, Godel’s Incompleteness The-
orem can be put away in fairly short order.

THEOREM 19.4 (Gddel’s Incompleteness Theorem). Suppose ¥ is
a consistent recursive set of sentences of Ly such that X+ A. Then ¥
18 not complete.

That is, any consistent set of sentences which proves at least as
much about the natural numbers as A does can’t be both complete
and recursive. The Incompleteness Theorem has many variations and
corollaries; [?] is a good place to learn about many of them.

PROBLEM 19.5. Prove each of the following.

(1) Let T be a complete set of sentences of Ly such that I'U A is
consistent. Then I' is not recursive.
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(2) Let A be a recursive set of sentences such that AU A is con-
sistent. Then A is not complete.
(3) The theory of M,

Th(MN) = {0 | 0 is a sentence of Ly and N =0 },
1S not recursive.

There is nothing all that special about working in £Ly. The proof
of Godel’s Incompleteness Theorem can be executed for any first order
language and recursive set of axioms which allow one to code and prove
enough facts about arithmetic. In particular, it can be done whenever
the language and axioms are powerful enough — as in Zermelo-Fraenkel
set theory, for example — to define the natural numbers and prove some
modest facts about them.

Godel also proved a strengthened version of the Incompleteness
Theorem which asserts that a consistent recursive set of sentences > of
L cannot prove its own consistency. To get at it, we need to express
the statement “X is consistent” in Ly.

PROBLEM 19.6. Suppose ¥ is a recursive set of sentences of L.
Find a sentence of Ly, which we’ll denote by Con(X), such that % is
consistent if and only if A+ Con(X).

THEOREM 19.7 (Gddel’s Second Incompleteness Theorem). Let
be a consistent recursive set of sentences of Ly such that X = A. Then

Y ¥ Con(Y).

As with the (First) Incompleteness Theorem, the Second Incom-
pleteness Theorem holds for any recursive set of sentences in a first-
order language which allow one to code and prove enough facts about
arithmetic. The perverse consequence of the Second Incompleteness
Theorem is that only an inconsistent set of axioms can prove its own
consistency. . .

The implications. Godel’s Incompleteness Theorems have pro-
found implications.

Since almost all of mathematics can be formalized in first-order
logic, the First Incompleteness Theorem implies that there is no effec-
tive procedure that will find and prove all theorems. This might be
considered as job security for research mathematicians. . .

The Second Incompleteness Theorem, on the other hand, implies
that we can never be completely sure that any reasonable set of axioms
is actually consistent unless we take a more powerful set of axioms on
faith. It follows that one can never be completely sure — faith aside —
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that the theorems proved in mathematics are really true. This might
be considered as job security for philosophers of mathematics. ..

Truth and definability. A close relative of the Incompleteness
Theorem is the assertion that truth in M = (N, S,+,-, E,0) is not
definable in 91. To make sense of this, of course, we first need to define
what “definable in 91 means.

DEFINITION 19.1. A k-place relation is definable in N if there is a
formula ¢ of L with at most vy, ..., v as free variables such that

P(ny,...,ng) <= MNE@ls(vi|ng) ... (ve|ng)]

for every assignment s of 1. Such a formula ¢ is said to define P in

N.

A definition of “function definable in 9%1” could be made in a similar
way, of course. Definability is a close relative of representability:

PROPOSITION 19.8. Suppose P is a k-place relation which is rep-
resentable in Th(A). Then P is definable in M.

PROBLEM 19.9. Is the converse to Proposition 77 true?

A counterpart for definability of the Entscheidungsproblem is the
question of whether the truth in 91 is a definable relation in 91, i.e.
whether the set of Godel codes of sentences of Ly true in N,

"Th(M)?'={"c"| o is a sentence of Ly and N =0},
is definable in M.

THEOREM 19.10 (Tarski’s Undefinability Theorem). "Th(D)" is
not definable in N.
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CHAPTER 10

Hints
?7?. This should be easy. ..
?7. Ditto.
?7. (1) Any machine with the given alphabet and a table with

three non-empty rows will do.

(2) Every entry in the table in the 0 column must write a 1 in the
scanned cell; similarly, every entry in the 1 column must write
a 0 in the scanned cell.

(3) What’s the simplest possible table for a given alphabet?

?7?7. Unwind the definitions step by step in each case. Not all of
these are computations. . .

??. Examine your solutions to the previous problem and, if neces-
sary, take the computations a little farther.

?7?. Have the machine run on forever to the right, writing down the
desired pattern as it goes no matter what may be on the tape already.

?7?. Consider your solution to Problem 7?7 for one possible approach.
It should be easy to find simpler solutions, though.

?7. (1) Use four states to write the 1s, one for each.

(2) The input has a convenient marker.

(3) Run back and forth to move one marker n cells from the block
of 1’s while moving another through the block, and then fill in.

(4) Modify the previous machine by having it delete every other
1 after writing out 1%".

(5) Run back and forth to move the right block of 1s cell by cell
to the desired position.

(6) Run back and forth to move the left block of 1s cell by cell
past the other two, and then apply a minor modification of
the previous machine.

(7) Run back and forth between the blocks, moving a marker
through each. After the race between the markers to the ends
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of their respective blocks has been decided, erase everything
and write down the desired output.



CHAPTER 11

Hints

?7?. This ought to be easy.

?77?7. Generalize the technique of Example 7?7, adding two new states
to help with each old state that may cause a move in different directions.
Be careful not to make a machine that would run off the end of the
tape when the original wouldn’t.

?7?. Note that the simulation must operate with coded versions of
Ms tape, unless ¥ = {1}. The key idea is to use the tape of the
simulator in blocks of some fixed size, with the patterns of Os and 1s
in each block corresponding to elements of X.

?7?. This should be straightforward, if somewhat tedious. You do
need to be careful in coming up with the appropriate input tapes for

0.

?7?. Generalize the technique of Example 77, splitting up the tape
of the simulator into upper and lower tracks and splitting each state of
N into two states in P. You will need to be quite careful in describing
just how the latter is to be done.

??7. If you're in doubt, go with one read/write scanner for each
tape, and have each entry in the table of a two-tape machine take
both scanners into account. Simulating such a machine is really just a
variation on the techniques used in Example ?77.

??. Such a machine should be able to move its scanner to cells up
and down from the current one, as well to the side. (Diagonally too, if
you want to!) Simulating such a machine on a single tape machine is
a challenge. You might find it easier to first describe how to simulate
it on a suitable multiple-tape machine.
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CHAPTER 12

Hints

?77?. Pick as simple a Turing machine as you can think of. ..
??. Unwind the representation using Definition ?7?.
?7?. Trick question!

??. One could omit the representations of any empty entries in the
table of a Turing machine, for one thing.

?7?7. Just use Definition 77 in each case.
??. Unwind each representation using Definition 77.

?7?. For one thing, is the leading 1 in the representation of each cell
really necessary?

?7?7. H needs to make exactly two changes to the representation of
the tape position. Note that ¢ = 0 is a special case.

?7?7. R needs to check the representation of a particular cell.

?7?7. W needs to make just one change to the representation of the
tape position.

??7. E must first find and then copy the representation of particular
entry in the table of M. Some of the machines in Problem ?? may come
in handy here.

?7?. Put the machines developed in Problems ?7-7? together.
?7?. Use the machine S of Problem ?? to do most of the work.
?77?7. Essentially, all C does is unwind Definition ?7?.

?77?7. Assume, by way of contradiction, that there was a Turing ma-
chine T which solved the Halting Problem. Modify T to get a machine
Y which, for any Turing machine M, halts on input 0. M _ if and only
if M does not halt on input OLM 1. Feed the input OLYJto Y. ..
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CHAPTER 13

Hints

?7. (1) Delete most of the input.
(2) Add a little to the input.
(3) Add a little to the input, and delete a little more elsewhere.
(4) Delete a little from the input most of the time.
(5) Run back and forth between the two blocks in the input, delet-
ing until one side disappears. Clean up appropriately!
(6) Delete two of blocks and move the remaining one.

??. There are just as many functions N — N as there are real
numbers, of which there are many more than there are natural numbers.

77. (1) Trace the computation through step-by-step.

(2) Consider the scores of each of the 1-state entries in the busy
beaver competition.

(3) Find a 3-state entry in the busy beaver competition which
scores Six.

(4) Show how to turn an n-state entry in the busy beaver com-
petition into an (n + 1)-state entry that scores just a little
better.

??. You could start by looking at modifications of the 3-state entry
you devised in Problem 77.

?7?. Suppose ¥ was computable by a Turing machine M. Modify
M to get an n-state entry in the busy beaver competition for some n
which achieves a score greater than X (n).
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CHAPTER 14

Hints

?7?7. You only need to take care of the projection functions, and these
can be computed by Turing machines very similar to one another.

?7?. Generalize Example ?77.

?7?. Use machines computing ¢, hy, ..., h,, as sub-machines of the
machine computing the composition. You might also find sub-machines
that copy the original input and various stages of the output useful. It
is important that each sub-machine get all the data it needs and does
not damage the data needed by other sun-machines.

?7?. Proceed by induction on the number of applications of compo-
sition used to define f from the initial functions.

77. (1) Exponentiation is to multiplication as multiplication
is to addition.
(2) This is straightforward except for taking care of PRED(0) =
PrRED(1) = 0.
(3) DIFF is to PRED as S is to SUM.
(4) This is straightforward if you let 0! = 1.

??. Machines used to compute g and h are the principal parts of the
machine computing f, along with parts to copy, move, and/or delete
data on the tape between stages in the recursive process.

77?. (1) fis to g as FACT is to the identity function.
(2) Use DIFF and a suitable constant function as the basic building
blocks.

(3) This is a slight generalization of the preceding part.

?7?. Proceed by induction on the number of applications of primitive
recursion and composition.

77?. (1) Use a composition including DIFF, xp, and a suitable
constant function.
(2) A suitable composition will do the job; it’s a little harder than
it looks.
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(3) A suitable composition will do the job; it’s much more straight-
forward than the previous part.

(4) Note tht n = m exactly when n —m =0 =m — n.

(5) Compare this with Problem ?7.

(6) First devise a characteristic function for the relation

DIVIDES(n, k,m) <= nk=m,

and then sum up.

7) Use D1v and sum up.

8) Use ISPRIME and some ingenuity.

9) Use ExP and D1v and some more ingenuity.

0) A suitable combination of PRIME with other things will do.
1) A suitable combination of PRIME and POWER will do.

2) Throw the kitchen sink at this one. ..

3)

(
(
(
1
1
1
13) Ditto.

(
(
(
(

?7?. For the hard direction, do an induction on how ¢ was built up
from the initial functions.

?7?7. A straightforward application of Theorem ?77.

?7?. This is not unlike, though a little more complicated than, show-
ing that primitive recursion preserves computability.

?7?7. It’s not easy! Look it up...
?77?. This is a very easy consequence of Theorem 77.

?77?. Listing the definitions of all possible primitive recursive func-
tions is a computable task. Borrow a trick from Cantor’s proof that
the real numbers are uncountable. (A formal argument to this effect
could be made using techniques similar to those used to show that all
Turing computable functions are recursive in the next chapter.)



CHAPTER 15

Hints

??. The strategy is obvious...Make sure that at each stage you
preserve a copy of the original input for use at later stages.

?7?. The primitive recursive function you define only needs to check
values of g(ni,...,ng,m) for m such that 0 < m < h(ny,...,ng), but
it still needs to pick the least m such that g(nq,...,ng, m) =0.

?7?7. This is very similar to Theorem 77.

?7?7. This is virtually identical to Theorem ?7?.

?7?. This is virtually identical to Corollary ?7?.

??. In both cases, emulate Example ?7.

??. Unwind Definition ?7; you will need to do some factoring.

?7?. Find the codes of each of the positions in the sequence you
chose and then apply Definition ?7.

?7. (1) It will probably be convenient to first devise a function
which recognizes whether the input is of the correct form or
not. You may find it convenient to first show that following
relation is primitive recursive:

e TAPEPOS, where TAPEPOS(n) <= n is the code of a
tape position.
If the input is of the correct form, make the necessary changes
to n using the tools in Problem ?7?.

(2) Piece TMy, together by cases using the function ENTRY in
each case. You may wish to look back to the construction of
an universal Turing machine in Chapter ?? for some idea of
what needs to be done.

(3) You may find it convenient to first show that following relation
is primitive recursive:

e TAPEPOSSEQ, where TAPEPOSSEQ(n) <= n is the
code of a sequence of tape positions.
Use the function TM,, to check that a sequence of tape posi-
tions is a computation.
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?7?. The last part of Problem ??7 and some unbounded minimaliza-
tion are the key ingredients. You may also find Theorem ?? useful if
you show that the following functions are recursive:

e CODEL(ny,...,n;) = (0,1,01™0...01™)7 for any fixed k >
1.

e DECODE(t) = n if t = (4, k,01"™)7 (and anything you like
otherwise).

?77?. Take some creative inspiration from Definitions 7?7 and ??. Fpr
example, if (s,i) € dom(M) and M(s,i) = (j,d,t), you could let the
code of M(s,i) be

"M (s,i)7 = 23577 11"

??7. Much of what you need for both parts is just what was needed
for Problem ??. The additional ingredients mainly have to do with
using m =" M ! properly.

?77?7. Essentially, this is to Problem 7?7 as proving Theorem 77 is to
Problem ?7.
??. Use xp to help define a function f such that im(f) = P.

?7?. One direction is an easy application of Proposition ??. For the
other, given an n € N, run the functions enumerating P and N\ P
concurrently until one or the other outputs n.

??. Consider the set of natural numbers coding (according to some
scheme you must devise) Turing machines together with input tapes
on which they halt.

??7. See how far you can adapt your argument for Proposition ?7.



CHAPTER 16

Hints

??. Compare Definition ?? with the definition of maximal consis-
tency.
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CHAPTER 17

Hints

??. In each case, use Definitions 7?7 and 77, together with the ap-
propriate definitions from first-order logic and the tools developed in
Problem 77.

?7?. In each case, use Definitions 77 and 77, together with the ap-
propriate definitions from first-order logic and the tools developed in
Problems ?? and ??. (They’re all primitive recursive if "A™ is, by the
way. )

?7. (1) Use unbounded minimalization and the relations in
Problem 7?7 to define a function which, given n, returns the
nth integer which codes an element of Th(A).

(2) If A is complete, then for any sentence o, either [o] or [—o
must eventually turn up in an enumeration of "Th(A)™. The
other direction is really just a matter of unwinding the defini-
tions involved.
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Hints

?7?. Every deduction from I' can be replaced by a dedudction of X
with the same conclusion.

?7?7. If X were insconsistent it would prove entirely too much. ..

??. (1) Adapt Example ?7.
(2) Use the 1-place function symbol S of Ly.
(3) There is much less to this part than meets the eye. ..

??. In each case, you need to use the given representing formula to
define the one you need.

?7?7. String together the formulas representing ¢;, ..., gm, and h
with As and put some existential quantifiers in front.

??. First show that that < is representable in Th(A) and then
exploit this fact.

?7. (1) n | mif and only if there is some k such that n-k = m.
(2) n is prime if and only if there is no ¢ such that ¢ | n and
1<l <n.
(3) pr is the first prime with exactly k& — 1 primes less than it.
(4) Note that k& must be minimal such that n*+ { m.
(5) You'll need a couple of the previous parts.
(6) Ditto.

??7. Problem 77 has most of the necessary ingredients needed here.

??. Problems 7?7 and 7?7 have most of the necessary ingredients
between them.

?7?. Proceed by induction on the numbers of applications of com-
position, primitive recursion, and unbounded minimalization in the
recursive definition f, using the previous results in Chapter 7?7 at the
basis and induction steps.
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CHAPTER 19

Hints

?7?7. Ais a finite set of sentences.

??7. First show that recognizing that a formula has at most v; as
a free variable is recursive. The rest boils down to checking that sub-
stituting a term for a free variable is also recursive, which has already
had to be done in the solutions to Problem ?77.

??. Let ¢ be the formula (with at most vq, vy, and v3 free) which
represents the function f of Problem ?? in Th(.A). Then the formula
Vs (Y*2v; — @p1) has only one variable free, namely vi, and is very
close to being the sentence o needed. To obtain ¢ you need to substitute
S*O for a suitable k for v;.

??7. Try to prove this by contradiction. Observe first that if ¥ is
recursive, then "Th(X)™ is representable in Th(.A).

?7. (1) If I' were recursive, you could get a contradiction to
the Incompleteness Theorem.
(2) If A were complete, it couldn’t also be recursive.
(3) Note that A C Th().

??7. Modify the formula representing the function CONCLUSIONy,
(defined in Problem ??) to get Con(X).

??. Try to do a proof by contradiction in three stages. First, find a
formula ¢ (with just vy free) that represents “n is the code of a sentence
which cannot be proven from »” and use the Fixed-Point Lemma to
find a sentence T such that ¥ F 7 < (S ™). Second, show that if
Y} is consistent, then > ¥ 7. Third — the hard part — show that
Y F Con(X) — ¢(S"™"). This leads directly to a contradiction.

?7. Note that Mt = A.

??. If the converse was true, A would run afoul of the (First) In-
completeness Theorem.

??. Suppose, by way of contradiction, that "Th(I)™ was definable
in 91. Now follow the proof of the (First) Incompleteness Theorem as
closely as you can.
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TERM, 46

TM, 39
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alphabet, 7, 13

blank
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tape, 7
bounded minimalization, 36
busy beaver competition, 27
n-state entry, 27
score, 27
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marked, 7
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scanned, 8
characteristic function, 26
Church’s Thesis, 2
code, 20

sequence of tape positions, 37

tape position, 37

Turing machine, 38
complete, 2

set of sentences, 44
completeness, 44
Completeness Theorem, 1
composition, 29
computable

function, 26

set of formulas, 46
computation, 11

partial, 11
constant function, 30

decision problem, 1
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function, 55
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domain of a function, 25

Entscheidungsproblem, 1, 43

first-order language

for number theory, 43
Fixed-Point Lemma, 53
function

bounded minimalization of, 36

composition of, 29

computable, 26

constant, 30

definable in 9, 55

domain of, 25

identity, 26

initial, 29

k-place, 25

partial, 25

primitive recursion of, 30

primitive recursive, 31

projection, 29

recursive, 36

regular, 35

successor, 29

Turing computable, 26

unbounded minimalization of, 35

zero, 29

Godel code
sequences, 45
symbols of Ly, 45

Godel Incompleteness Theorem, 43
(First) Incompleteness Theorem, 53
Second Incompleteness Theorem, 54

halt, 11
Halting Problem, 17, 22

identity function, 26
image of a function, 25
Incompleteness Theorem, 43
Godel’s First, 53
Godel’s Second, 54
initial function, 29
input tape, 11

k-place
function, 25
relation, 25

language
first-order number theory, 43

machine, 9
Turing, 7, 9

marked cell, 7

minimalization
bounded, 36
unbounded, 35

natural numbers, 25
n-state
entry in busy beaver competition,
27
Turing machine, 9
number theory
first-order language for, 43

output tape, 11

partial
computation, 11
function, 25
pig, yellow, 19
position
tape, 8
primitive recursion, 30
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primitive recursive successor, 11
function, 31 Tarski’s Undefinability Theorem, 55
relation, 32 theory
projection function, 29 of M, 54
of a set of sentences, 44
r.e., 39 T™, 9
recursion Turing computable
primitive, 30 function, 26
recursive relation, 36
function, 36 Turing machine, 7, 9
relation, 36 code of, 38
set of formulas, 46 n-state, 9
recursively enumerable, 39 representation of, 18
set of formulas, 46 table, 10
regular function, 35 universal, 17, 22, 38
relation two-way infinite tape, 13, 14
characteristic function, 26
definable in 9N, 55 unary notation, 26
k-place, 25 unbounded minimalization, 35
primitive recursive, 32 Undefinability Theorem
recursive, 36 Tarski’s, 55
Turing computable, 36 universal Turing machine, 17, 22, 38
UTM, 17

representable
function, 50
relation, 50
representation
of a tape position, 19
of a Turing machine, 18

zero function, 29

scanned cell, 8
scanner, 13
score
busy beaver competition, 27
state, 8, 9
successor
function, 29
tape position, 11

table

Turing machine, 10
tape, 7, 13

blank, 7

input, 11

output, 11

two-way infinite, 13, 14
tape position, 8

code of, 37

code of a sequence of, 37

representation of, 19



