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PORTRAITS OF SCIENCE

Kurt Godel—Separating Truth
from Proof in Mathematics

Keith Devlin

published a paper that sent shock waves

through the mathematical community
and forced mathematicians to take a fresh
look at their discipline. The mathematician
was Kurt Godel, and the result proved in his
paper became known as the Gddel Incom-
pleteness Theorem, or more simply Godel’s
Theorem—although it was by no means the
only major theorem he proved during his
highly successful career. He is also known
as one of the inventors of the theory of re-
cursive functions (which formed part of the
foundation for computers).

Godel was born on 28 April 1906, in what
was then Briinn in Austria, now Brno in the
Czech Republic. By all accounts he was an
outstanding pupil in high school and a star
student at the University of Vienna, where he
continued after graduation to obtain a doctoral
degree in 1929. He went straight to a faculty
position in Vienna, and it was there that he
proved his Incompleteness Theorem. Gddel
remained in Vienna until 1940, when he fled
the worsening Nazi atrocities to take up a po-
sition at the Institute for Advanced Study in
Princeton, which he had already visited in
1934. He remained at Princeton until his
death on 14 January 1978. It was an unlikely
death for the man who was arguably the
world’s foremost expert in logic. A hypochon-
driac for much of his adult life, as he grew
older, G6del became convinced that he was
being poisoned. He eventually stopped eating
altogether, and starved to death.

Godel’s decidedly illogical end did
nothing to diminish his reputation. When
Time magazine conducted a poll 2 years
ago to determine the most influential
thinkers of the 20th century, Godel was
one of just two mathematicians who made
the top 20, along with Alan Turing.

The Incompleteness Theorem forced
mathematicians to question what it means
to say something is true in mathematics.
The resulting change in our understanding
of mathematics was every bit as dramatic
as the change in our conception of geome-
try that followed the discovery of non-
Euclidean geometries in the 19th century.

I n 1931, a young Austrian mathematician
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Both of these major discoveries in-
volved axiomatic systems, and neither can
be properly understood without an appre-
ciation of what mathematicians means by
the word “axiom” and the role axioms play
in mathematics. A misunderstanding of the
nature of axioms is what lies behind a sig-
nificant amount of nonsense that has been
written about Gddel’s
Theorem over the years.

In brief, Godel’s Theo-
rem says that in any ax-
iomatic mathematical
system that is sufficiently
rich to do elementary
arithmetic, there will be
some statements that are
true but cannot be proved
(from the axioms). In
technical terminology, the
axiom system must be in-
complete.

At the time Godel
proved this theorem, it
was widely believed that,
with sufficient effort,
mathematicians would
eventually be able to for-
mulate axioms to support
all of mathematics. The
Incompleteness Theorem
flew in the face of this
expectation, and many
took it to imply that there
is a limit to the mathe-
matical knowledge we may acquire. Few
mathematicians think that way now, how-
ever. The change in our conception of
mathematical truth that Godel’s theorem
brought about was so complete, that today
most of us view the result itself as merely
a technical observation about the limita-
tions of axiom systems.

To appreciate the initial impact of
Godel’s Theorem, you have to adopt the
mind-set of the time. During the 19th cen-
tury, mathematicians learned that many
seemingly intuitive concepts were prob-
lematic, among them, the structure of the
real continuum and the nature of continu-
ous functions. To avoid what could be a
misleading dependency on unreliable as-
sumptions and intuitions, they began to put
greater emphasis on a mode of doing math-
ematics introduced by the ancient Greeks,
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and showed the
limitations of
axiom-based
systems.
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but which had been left largely on the side-
lines ever since then: the axiomatic
method. Here, the idea is to begin by writ-
ing down, precisely, an initial set of as-
sumptions—or axioms (from the Greek
word axioma)—that you believe to capture
the concept or system you are interested in.
You then proceed to establish truths about
that concept or system by
means of logical deduc-
tion from those axioms.

The most familiar ex-
amples of this approach
are Euclid’s axioms for
geometry. In his mam-
moth work Elements, Eu-
clid began by listing five
principles from which all
truths about plane geom-
etry were supposed to be
deduced. Because ax-
ioms are intended to be
the starting point of a
quest for truth, their own
validity should not be in
any doubt, of course. The
axioms should be simple
assertions that are self-
evident.

The fifth of Euclid’s
five axioms states that
“For every line / and for
every point P that does
not lie on /, there exists a
unique line m through P
that is parallel to /.” Questions about this
Parallel Postulate dogged Euclidean geom-
etry for hundreds of years. The axiom was
in doubt because it was far more difficult
to state than the other four. Attempts to re-
solve the issue by deducing it from sim-
pler assumptions continued in vain, until
the shocking discovery that its inclusion—
while arguably in line with a natural hu-
man intuition about parallel lines—was
entirely arbitrary. The familiar geometry
of Euclid, in which the Parallel Postulate
was taken as an axiom, was just one of a
number of possible geometries. Deciding
between them was purely a matter of taste
or of intended application.

In fact, there was a far greater problem
with Euclid’s axioms than his inclusion of
the Parallel Postulate. His axiom system
omitted many basic assumptions that he,
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and generations of subsequent scholars,
unconsciously used in deriving the theo-
rems that supposedly followed from the
axioms. It was left to the German mathe-
matician David Hilbert to set the record
straight in the late 19th century, by writing
down those crucial missing axioms.

To give some idea of the kind of prob-
lem that Hilbert noticed, consider one of
Euclid’s most elementary ruler-and-com-
pass constructions, that of an equilateral tri-
angle. You begin with a straight line, and
then draw arcs from the ends of the line,
with radius set equal to the line. The point
where the arcs intersect marks the third ver-
tex of your equilateral triangle. It all seems
fairly sound. You can, after all, carry out
these steps and draw an equilateral triangle.

But as Hilbert observed, how can you be
sure that the two arcs really do intersect?
That is, how do you know they have a point
in common? Just because the arcs you draw
on a sheet of paper look as though they
meet, that does not guarantee that
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place all talk about points and lines by ref-
erence to beer mugs and bar tables, provid-
ed you formulated the axioms in terms of
those objects, and the resulting theory
would be identical in all respects except
for the actual words being used.

By removing all intuitions so that
points and lines are no different from beer
mugs and bar tables, the reasoning went,
mathematics would be forever free from
the dangers of unrecognized and possibly
misleading assumptions. It would, in prin-
ciple, be possible to design mechanical de-
vices—which, of course, have no intu-
itions—to follow the rules and deduce all
the truths for you. (This, remember, was
before computers were invented.)

This approach to mathematics, to for-
mulate all the axioms you need to deduce
all the truths in a particular branch of
mathematics mechanistically, became
known as the Hilbert Program. For many,
the search for axioms became something

there really is a point of intersection.
After all, unlike the pencil lines you
actually draw, the idealized lines
and arcs of geometry have no thick-
ness. How can you be sure that two
arcs having no thickness have a
point in common? The answer is
that you cannot. If you want the two
arcs to intersect, you need to have
an axiom that implies that they do.
It is a reasonable axiom, completely
in line with our intuitions about
drawing arcs. But its status is that of
an assumption, not something that
can be proved.

The lesson to be learned from
Hilbert’s work is that it can be ex-
tremely difficult to identify all the
assumptions that are used in any
branch of mathematics. Following
his work on the axioms for geome-
try, Hilbert put forward a view of
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mathematics that was to gain con-
siderable acceptance. According to this
view, which became known as formalism,
mathematics should be regarded as being,
at heart, nothing other than a collection of
formal games, each one played according to
completely specified rules.

To do Euclidean geometry, for instance,
was to play the Euclidean geometry game.
In that game, you start with the axioms for
Euclidean geometry and then deduce all
the truths of Euclidean geometry by means
of mechanistic manipulations of symbols
according to totally specified rules. Noth-
ing could be used that was not specified by
the axioms or the manipulation rules. In
particular, no intuition about the nature of
points or lines could or should be used. As
Hilbert himself remarked, you could re-

of a Holy Grail, although Hilbert, who had
great respect for the role played by human
intuition in the practice of mathematics,
was not one of them, and never himself
proposed that the program to which others
attached his name should be carried out.

One of the most sustained efforts to
carry out the Hilbert Program was made by
the English philosophers Bertrand Russell
and Alfred North Whitehead. Their mam-
moth, three-volume work, Principia Math-
ematica, published from 1910 to 1913, was
an attempt to develop basic arithmetic and
logical reasoning itself from axioms.

It was the axiom system in Principia
Mathematica that Godel took, by way of an
exemplar, to demonstrate beyond any doubt
that the goal of the Hilbert Program was

unattainable. He called his dramatic paper
“On formal undecidable statements of Prin-
cipia Mathematica and related systems.” At
the time that Godel proved it, the Incom-
pleteness Theorem gained a reputation of
being difficult to follow. But that has long
ago given way to a realization that it is re-
ally a rather simple result. The complexi-
ties of Godel’s original proof are largely ir-
relevant, a consequence of the particular
way he presented the argument. In essence,
Godel took the familiar Liar Paradox and
showed how to reproduce it within any
axiom system that supported arithmetic.

The Liar Paradox, which goes back to
ancient Greece, arises when a person
stands up and says “I am lying.” If the per-
son is lying, then the statement is true, so
they are not lying; and if they are not lying,
the statement is false, so they are lying.
This is a seemingly inescapable paradox.
Godel took a similar statement, “This
statement is not provable,” and showed how
it could be formulated as a mathematical
formula within arithmetic.

This required, first of all, coding state-
ments as numbers—a process known as
Godel numbering. At the time, this was
regarded as a deep and difficult step, but
today any number of spy movies have
depicted the way in which English words
and sentences can be encoded as se-
quences of numbers, often as part of the
process of encrypting messages. Godel’s
next step was to show how the concept of
provability could be captured within arith-
metic. This was a somewhat deeper move,
but to today’s mathematicians it too seems
fairly routine.

Once the coding had been completed,
the noose was tight. If one assumed that the
axiom systems were consistent (that is, they
did not lead to any internal contradictions),
the statement clearly could not be provable
(since it declared its own unprovability).
Hence it was true—but unprovable.

To those mathematicians (the formal-
ists) who believed that mathematical truth
was the same as provability—that the true
statements of mathematics are precisely
the ones you can prove from the axioms
once you have formulated them all proper-
ly—Godel’s theorem was devastating. To-
day, however, as I remarked earlier, mathe-
maticians regard it simply as confirming
the limitations of what can be achieved
with axiom systems.

But they are able to do so only because
contemporary mathematics has learned the
lesson that Godel’s Theorem taught us.
Godel’s result may not have changed math-
ematics very much. But it changed the way
we view it. His selection as one of the most
influential thinkers of the 20th century is
undoubtedly well deserved.
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