
http://www.cambridge.org/9780521708777

The Mathematics of Logic

A guide to completeness theorems and their applications

This textbook covers the key material for a typical first course in logic for

undergraduates or first year graduate students, in particular, presenting a

full mathematical account of the most important result in logic: the

Completeness Theorem for first-order logic.

Looking at a series of interesting systems increasing in complexity, then

proving and discussing the Completeness Theorem for each, the author

ensures that the number of new concepts to be absorbed at each stage is

manageable, whilst providing lively mathematical applications throughout.

Unfamiliar terminology is kept to a minimum; no background in formal

set-theory is required; and the book contains proofs of all the required set

theoretical results.

The reader is taken on a journey starting with König’s Lemma, and

progressing via order relations, Zorn’s Lemma, Boolean algebras, and

propositional logic, to Completeness and Compactness of first-order logic.

As applications of the work on first-order logic, two final chapters provide

introductions to model theory and non-standard analysis.

dr richard kaye is Senior Lecturer in Pure Mathematics at the University

of Birmingham.

The Mathematics of Logic
A guide to completeness theorems
and their applications

Richard Kaye

School of Mathematics, University of Birmingham

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-70877-7

ISBN-13 978-0-511-34273-8

© Richard Kaye 2007

2007

Information on this title: www.cambridge.org/9780521708777

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

ISBN-10 0-511-34273-X

ISBN-10 0-521-70877-X

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (NetLibrary)

eBook (NetLibrary)

paperback

http://www.cambridge.org/9780521708777
http://www.cambridge.org

Contents

Preface page vii
How to read this book xii

1 König’s Lemma 1
1.1 Two ways of looking at mathematics 1
1.2 Examples and exercises 6
1.3 König’s Lemma and reverse mathematics* 9

2 Posets and maximal elements 11
2.1 Introduction to order 11
2.2 Examples and exercises 17
2.3 Zorn’s Lemma and the Axiom of Choice* 20

3 Formal systems 24
3.1 Formal systems 24
3.2 Examples and exercises 33
3.3 Post systems and computability* 35

4 Deductions in posets 38
4.1 Proving statements about a poset 38
4.2 Examples and exercises 47
4.3 Linearly ordering algebraic structures* 49

5 Boolean algebras 55
5.1 Boolean algebras 55
5.2 Examples and exercises 61
5.3 Boolean algebra and the algebra of Boole* 61

6 Propositional logic 64
6.1 A system for proof about propositions 64
6.2 Examples and exercises 75
6.3 Decidability of propositional logic* 77

v

vi Contents

7 Valuations 80
7.1 Semantics for propositional logic 80
7.2 Examples and exercises 90
7.3 The complexity of satisfiability* 95

8 Filters and ideals 100
8.1 Algebraic theory of boolean algebras 100
8.2 Examples and exercises 107
8.3 Tychonov’s Theorem* 108
8.4 The Stone Representation Theorem* 110

9 First-order logic 116
9.1 First-order languages 116
9.2 Examples and exercises 134
9.3 Second- and higher-order logic* 137

10 Completeness and compactness 140
10.1 Proof of completeness and compactness 140
10.2 Examples and exercises 146
10.3 The Compactness Theorem and topology* 149
10.4 The Omitting Types Theorem* 152

11 Model theory 160
11.1 Countable models and beyond 160
11.2 Examples and exercises 173
11.3 Cardinal arithmetic* 176

12 Nonstandard analysis 182
12.1 Infinitesimal numbers 182
12.2 Examples and exercises 186
12.3 Overspill and applications* 187

References 199
Index 200

Preface

Mathematical logic has been in existence as a recognised branch of mathe-
matics for over a hundred years. Its methods and theorems have shown their
applicability not just to philosophical studies in the foundations of mathemat-
ics (perhaps their original raison d’être) but also to ‘mainstream mathematics’
itself, such as the infinitesimal analysis of Abraham Robinson, or the more
recent applications of model theory to algebra and algebraic geometry.

Nevertheless, these logical techniques are still regarded as somewhat ‘diffi-
cult’ to teach, and possibly rather unrewarding to the serious mathematician. In
part, this is because of the notation and terminology that still survives as a relic
of the original reason for the subject, and also because of the off-putting and
didactically unnecessary logical precision insisted on by some of the authors
of the standard undergraduate textbooks. This is coupled by the professional
mathematician’s very reasonable distrust of so much emphasis on ‘inessen-
tial’ non-mathematical details when he or she only requires an insight into the
mathematics behind it and straightforward statements of the main mathemati-
cal results.

This book presents the material usually treated in a first course in logic, but
in a way that should appeal to a suspicious mathematician wanting to see some
genuine mathematical applications. It is written at a level suitable for an un-
dergraduate, but with additional optional sections at the end of each chapter
that contain further material for more advanced or adventurous readers. The
core material in this book assumes as prerequisites only: basic knowledge of
pure mathematics such as undergraduate algebra and real analysis; an interest
in mathematics; and a willingness to discover and learn new mathematical ma-
terial. The main goal is an understanding of the mathematical content of the
Completeness Theorem for first-order logic, including some of its mathemat-
ically more interesting applications. The optional sections often require addi-
tional background material and more ‘mathematical maturity’ and go beyond a

vii

viii Preface

typical first undergraduate course. They may be of interest to beginning post-
graduates and others.

The intended readership of this book is mathematicians of all ages and per-
suasions, starting at third year undergraduate level. Indeed, the ‘unstarred’
sections of this book form the basis of a course I have given at Birmingham
University for third and fourth year students. Such a reader will want a good
grounding in the subject, and a good idea of its scope and applications, but in
general does not require a highly detailed and technical treatment.

On the other hand, for a full mathematical appreciation of what the Com-
pleteness Theorem has to offer, a detailed discussion of some naive set theory,
especially Zorn’s Lemma and cardinal arithmetic, is essential, and I make no
apology for including these in some detail in this book.

This book is unusual, however, since I do not present the main concepts and
goals of first-order logic straight away. Instead, I start by showing what the
main mathematical idea of ‘a completeness theorem’ is, with some illustra-
tions that have real mathematical content. The emphasis is on the content and
possible applications of such completeness theorems, and tries to draw on the
reader’s mathematical knowledge and experience rather than any conception
(or misconception) of what ‘logic’ is.

It seems that ‘logic’ means many things to different people, from puzzles
that can be bought at a newsagent’s shop, to syllogisms, arguments using Venn
diagrams, all the way to quite sophisticated set theory. To prepare the reader
and summarise the idea of a completeness theorem here, I should say a little
about how I regard ‘logic’.

The principal feature of logic is that it should be about reasoning or deduc-
tion, and should attempt to provide rules for valid inferences. If these rules
are sufficiently precisely defined (and they should be), they become rules for
manipulating strings of symbols on a page. The next stage is to attach mean-
ing to these strings of symbols and try to present mathematical justification for
the inference rules. Typically, two separate theorems are presented: the first
is a ‘Soundness Theorem’ that says that no incorrect deductions can be made
from the inference rules (where ‘correct’ means in terms of the meanings we
are considering); the second is a ‘Completeness Theorem’ which says that all
correct deductions that can be expressed in the system can actually be made
using a combination of the inference rules provided. Both of these are precise
mathematical theorems. Soundness is typically the more straightforward of the
two to prove; the proof of completeness is usually much more sophisticated.
Typically, it requires mathematical techniques that enable one to create a new
mathematical ‘structure’ which shows that a particular supposed deduction that
is not derivable in the system is not in fact correct.

Preface ix

Thus logic is not only about such connectives as ‘and’ and ‘or’, though the
main systems, including propositional and first-order logic, do have symbols
for these connectives. The power of the logical technique for the mathemati-
cian arises from the way the formal system of deduction can help organise
a complex set of conditions that might be required in a mathematical con-
struction or proof. The Completeness Theorem becomes a very general and
powerful way of building interesting mathematical structures. A typical ex-
ample is the application of first-order logic to construct number systems with
infinitesimals that can used rigorously to present real calculus. This is the so-
called nonstandard analysis of Abraham Robinson, and is presented in the last
chapter of this book.

The mathematical content of completeness and soundness is well illustrated
by König’s Lemma on infinite finitely branching trees, and in the first chapter I
discuss this. This is intended as a warm-up for the more difficult mathematics
to come, and is a key example that I refer back to throughout the book.

Zorn’s Lemma is essential for all the work in this book. I believe that by final
year level, students should be starting to master straightforward applications of
Zorn’s Lemma. This is the main topic in Chapter 2. I do not shy away from
the details, in particular giving a careful proof of Zorn’s Lemma for countable
posets, though the details of how Zorn’s Lemma turns out to be equivalent to
the Axiom of Choice is left for an optional section.

The idea of a formal system and derivations is introduced in Chapter 3, with
a system based on strings of 0s and 1s that turns out to be closely related to
König’s Lemma. In the lecture theatre or classroom, I find this chapter to be
particularly important and useful material, as it provides essential motivation
for the Soundness Theorem. Given a comparatively simple system such as this,
and asked whether a particular string σ can be derived from a set of assump-
tions Σ, students are all too ready to answer ‘no’ without justification. Where
justification is offered, it is often of the kind, ‘I tried to find a formal proof and
this was my attempt, but it does not work.’ So the idea of a careful proof by in-
duction on the length of a formal derivation (and a carefully selected induction
hypothesis) can be introduced and discussed without the additional compli-
cation of a long list of deduction rules to consider. The idea of semantics,
and the Soundness and Completeness Theorems, arises from an investigation
of general methods to show that certain derivations are not possible, and, to
illustrate their power, König’s Lemma is re-derived from the Soundness and
Completeness Theorems for this system.

The reader will find systems with mathematically familiar derivations for
the first time in Chapter 4. Building on previous material on posets, I develop
a system for derivations about a poset, including rules such as ‘if a < b and

x Preface

b < c then a < c’. The system also has a way of expressing statements of the
form ‘a is not less than b’, and this is handled using a Reductio Ad Absurdum
Rule, a rule that is used throughout the rest of the book. By this stage, it
should be clear what the right questions to ask about the system are, and the
mathematical significance of the Completeness Theorem (the construction of
a suitable partial order on a set) is clear. As a bonus, two pretty applications
are provided: that any partial order can be ‘linearised’; and that from a set of
‘positive’ assumptions a ‘negative’ conclusion can always be strengthened to
a ‘positive’ one.

The material normally found in a more traditional course on mathemati-
cal logic starts with Chapter 5. Chapters 5 to 8 discuss boolean algebras and
propositional logic. My proof system for propositional logic is chosen to be a
form of natural deduction, but set out in a linear form on the page with clearly
delineated ‘subproofs’ rather than a tree structure. This seems to be closest to
a student’s conception of a proof, and also provides clear proof strategies so
that exercises in writing proofs can be given in a helpful and relatively painless
way. (I emphasise the word ‘relatively’. For most students, this aspect of logic
is never painless, but at least the system clearly relates to informal proofs they
might have written in other areas of mathematics.) I do not avoid explaining the
precise connections between propositional logic and boolean algebra; these are
important and elegant ideas, and are accessible to undergraduates who should
be able to appreciate the analogies with algebra, especially rings and fields.
More advanced students will also appreciate the fact that deep results such as
Tychonov’s Theorem and Stone Duality are only a few pages extra in an op-
tional section. However, if time is short, the chapter on filters and ideals can
be omitted entirely.

Chapters 9 and 10 are the central ones that cover first-order logic and the
main Completeness Theorem. Apart from the choice of formal system (a
development of the natural deduction system already used for propositional
logic) they follow the usual pattern. These chapters are the longest in the book
and will be found to be the most challenging so I have deliberately avoided
many of the technically tricky issues such as: unique readability; the formal
definition of the scope of a quantifier; or when a variable may be substituted
by a term. An intelligent reader at this level using his or her basic mathemat-
ical training and intuition and following the examples is sure to do the ‘right
thing’ and does not want to be bogged down in formal syntactic details. These
technical details are of course important later on if one becomes involved in
formalising logic in a first-order system such as set theory or arithmetic. But
the place for that sort of work is certainly not a first course in logic. For those
readers that need it, further details are available on the companion web-pages.

Preface xi

The method of proof of the Completeness Theorem is by ‘Henkinising’ the
language and then using Zorn’s Lemma to find a maximal consistent set of
sentences. This is easier to describe to first-timers than tree-constructions of
sets of consistent sentences with their required inductive properties, but is just
as general and applicable. Two bonus optional sections for adventurous stu-
dents with background in point-set topology include a topological view of the
Compactness Theorem, and a proof of the full statement of the Omitting Types
Theorem via Baire’s Theorem, which is proved where needed.

Chapters 11 and 12 (which are independent of each other) provide appli-
cations of first-order logic. Chapter 11 presents an introduction to model the-
ory, including the Löwenheim–Skolem Theorems, and (to put these in context)
a short survey of categoricity, including a description of Morley’s Theorem.
This chapter is where infinite cardinals and cardinal arithmetic are used for the
first time, and I carefully state all the required ideas and results before using
them. Full proofs of these results are given in an optional section, using Zorn’s
Lemma only. The traditional options of using ordinals or the well-ordering
principle are avoided as being likely to beg more questions than they an-
swer to students without any prior knowledge in formal set theory. Chap-
ter 12 presents an introduction to nonstandard analysis, including a proof of the
Peano Existence Theorem on first-order differential equations. My presenta-
tion of nonstandard analysis is chosen to illustrate the main results of first-order
logic and the interplay between the standard and nonstandard worlds, rather
than to be optimal for fast proofs of classical results by nonstandard methods.

I have enjoyed writing this book and teaching from it. The material here
is, to my mind, much more exciting and varied than the standard texts I learnt
from as an undergraduate, and responses from the students who were given
preliminary versions of these notes were good too. I can only hope that you,
the reader, will derive a similar amount of pleasure from this book.

How to read this book

Chapters are deliberately kept as short as possible and discuss a single math-
ematical point. The chapters are divided into sections. The first section of
each chapter is essential reading for all. The second section generally contains
further applications, examples and exercises to test and expand on material pre-
sented in the previous section, and is again essential to read and explore. One
or more extra ‘starred’ sections are then added to provide further commentary
on the key material of the chapter and develop the material. These other sec-
tions are not essential reading and are intended for more inquisitive, ambitious
or advanced readers with the background knowledge required. Chapter 8 may
be omitted if time is short, and Chapters 11 and 12 are independent of each
other.

Mathematical terminology is standard or explained in the text. Bold face
entries in the index refer to definitions in the text; other entries provide further
information on the term in question.

Additional material, including some technical definitions that I have chosen
to omit in the printed text for the sake of clarity, further exercises, discussion,
and some hints or answers to the exercises here, will be found on the compan-
ion web-site at http://web.mat.bham.ac.uk/R.W.Kaye/logic.

xii

1

König’s Lemma

1.1 Two ways of looking at mathematics

It seems that in mathematics there are sometimes two or more ways of proving
the same result. This is often mysterious, and seems to go against the grain,
for we often have a deep-down feeling that if we choose the ‘right’ ideas or
definitions, there must be only one ‘correct’ proof. This feeling that there
should be just one way of looking at something is rather similar to Paul Erdős’s
idea of ‘The Book’ [1], a vast tome held by God, the SF, in which all the best,
most revealing and perfect proofs are written.

Sometimes this mystery can be resolved by analysing the apparently differ-
ent proofs into their fundamental ideas. It often turns out that, ‘underneath the
bonnet’, there is actually just one key mathematical concept, and two seem-
ingly different arguments are in some sense ‘the same’. But sometimes there
really are two different approaches to a problem. This should not be disturbing,
but should instead be seen as a great opportunity. After all, two approaches to
the same idea indicates that there are some new mathematics to be investigated
and some new connections to be found and exploited, which hopefully will
uncover a wealth of new results.

I shall give a rather simple example of just the sort of situation I have in
mind that will be familiar to many readers – one which will be typical of the
kind of theorem we will be considering throughout this book.

Consider a binary tree. A tree is a diagram (often called a graph) with
a special point or node called the root, and lines or edges leaving this node
downwards to other nodes. These again may have edges leading to further
nodes. The thing that makes this a tree (rather than a more general kind of
graph) is that the edges all go downwards from the root, and that means the
tree cannot have any loops or cycles. The tree is a binary tree if every node is
connected to at most two lower nodes. If every node is connected to exactly

1

2 König’s Lemma

�/0

�0 �1

�00 �01 �10 �11

�000 �001 �010 �011 �100 �101 �110 �111

� � � � � � � � � � � � � � � �

Figure 1.1 The full binary tree.

�/0

�0 �1

�00 �01 �10 �11

�000 �001 �100 �101 �110 �111

� � � � � � �

Figure 1.2 A binary tree.

two lower nodes, the tree is called the full binary tree. Note that in general,
a node in a binary tree may be connected to 0, 1 or 2 lower nodes. We will
label the nodes in our trees with sequences of integers. It is convenient to make
labels for the nodes below the node that has label x by adding either the digit 0
or 1 to the end of x, giving x0 and x1. Figure 1.1 illustrates the full binary tree,
whereas Figure 1.2 gives a typical (non-full) binary tree.

1.1 Two ways of looking at mathematics 3

Trees are very important in mathematics, because many constructions follow
trees in some way or other. Binary trees are especially interesting since a
walk along a tree, following a path that starts at the root, has at most two
choices of direction at every node. Binary trees arise quite naturally in many
mathematical ideas and proofs and general theorems about them can be quite
powerful and useful. One of the better known and more useful of these results
is called König’s Lemma.

To explain König’s Lemma, consider what it means for a tree T to be infinite.
There are two viewpoints, and two possible definitions.

Firstly, suppose you have somehow drawn the whole of the tree T on paper
or on the blackboard and are inspecting it. You are in a fortunate position to be
able to take in every one of its features, and to examine every one of its nodes
and edges. You will quite naturally say that the tree is infinite if it has infinitely
many nodes, or – amounting to the same thing – infinitely many edges. This is
a sort of ‘definition from perfect information’ and is similar to what logicians
call semantics, though we will not see the connection with semantics and the
theory of ‘meaning’ for a while.

Now consider you are an ant walking on the binary tree T , which is again
drawn in its entirety on paper. You start at the root node, and you follow the
edges, like ant tracks, which you hope will take you to something interesting.
Unlike the mathematician viewing the tree in its entirety, you can only see the
node you are at and the edges leaving it. If you take a walk down the tree,
you may have choices of turning left or right at any given node and continuing
your path. But it is possible that you have no choice at all, because either
there is only one edge out of the node other than the one you entered it by,
or possibly there is no such edge at all, in which case your walk has come
to an end. To the ant, which cannot perceive the whole of the tree, but just
follows paths, there is a quite different idea of what it means for the tree to be
infinite: the ant would say that T is infinite if it can find somehow (by guessing
the right combination of ‘left’ and ‘right’ choices) an infinite path through the
tree. The ant’s definition of ‘infinite’ might be thought of as a ‘definition from
imperfect information’ and is similar to the logician’s idea of proof. If you
like, you can think of an infinite path chosen by the ant as a proof that the tree
is infinite. Like all proofs, it supports the claim made, without giving much
extra information – such as what the tree looks like off this path.

König’s Lemma is the statement that, for binary trees, these two ideas of
a tree being infinite are the same. It is in fact a rather useful statement with
many interesting applications. The key feature of this statement is that it re-
lates two definitions, one mathematical definition working from perfect or total

4 König’s Lemma

information, and one working from the point of view of much more limited in-
formation, and shows that they actually say the same thing.

As with all ‘if and only if’ theorems, there are two directions that must be
proved. The first, that if there is an infinite path through the tree then the tree
is infinite, is immediate. This easier direction is called a Soundness Theorem
since it says the ant’s perception based on partial information is sound, or in
other words will not result in erroneous conclusions. The other direction is
the non-trivial one, and its mathematical strength lies in the way it states that
a rather general mathematical situation (that the tree is infinite) can always be
detected in a special way from partial information. The reason why it is called
Completeness will be discussed later in relation to some other examples.

This has been a long preliminary discussion, but I hope it has proved illumi-
nating. We shall now turn to the more formal mathematical details and define
tree, path, etc., and then state and prove König’s Lemma properly.

Definition 1.1 The set of natural numbers, N, will be taken in this book to be
{0, 1, 2, . . .}.

For those readers who expect the natural numbers to start with 1, I can only
say that I appreciate that there are occasions when it is convenient to forget
about zero, but for me zero is very natural, probably the most logically natural
number of all, so is included here in the set of natural numbers.

Definition 1.2 A sequence is a function s whose domain is either the set N

of all natural numbers or a subset of it of the form {x ∈ N : x < n} for some
n ∈N. Normally the values of the sequence will be numbers, 0 or 1 say, but the
definition above (with n = 0) allows the empty sequence with no values at all.
We write a sequence by listing its values in order, for example as 00110101001
or 0101010101. The length of a sequence is the number of elements in the
domain of the function. This will always be a natural number or infinity.

Definition 1.3 If s is a sequence of length l and n ∈ N is at most l, then s � n
denotes the initial part of s of length n.

For example, if s = 00100011 then s � 4 = 0010.

Definition 1.4 If s is a sequence of length l and x is 0 or 1 then sx is the
sequence of length l + 1 whose last element is x and all other elements agree
with those of s.

Our definition of a tree is of a set of sequences that is closed under the
restriction operation � .

1.1 Two ways of looking at mathematics 5

Definition 1.5 A tree is a set of sequences T such that for any s ∈ T of length
n and for any l < n then s � l ∈ T .

Think of a sequence s ∈ T as a finite path starting from the root and arriving
at some node. The individual digits in the sequence determine which choice of
edge is made at each node. The set of nodes of the whole tree is then the set of
sequences in the set T and two nodes s, t ∈ T are connected by a single edge
if one can be got from the other by adding a single number to the sequence. In
other words, s and t are connected if s � (n−1) = t when s is the longer of the
two and has length n, or the other way round if t is longer. Then the condition
in the definition says, not unreasonably, that each node that this path passes
through must also be in the tree. The root of the tree is the empty sequence of
length 0.

Definition 1.6 A subtree of a tree T is a subset S of T that is a tree in its own
right.

A subtree of a tree T might contain fewer nodes, and therefore fewer choices
at certain nodes.

Definition 1.7 A binary tree is a tree T where all the sequences in it are
functions from some {n ∈ N : n < k} to {0, 1}.

In other words, at any node, a path from the root of a binary tree has at most
two options: to go left (0) or right (1). However, it may turn out that only one,
or possibly neither, of these options is available at a particular node.

Definition 1.8 A tree T is infinite if it contains infinitely many sequences, or
(equivalently) has infinitely many nodes.

A path is a subtree with no branching allowed. That means for any two
nodes in the tree, one is a ‘predecessor’ of the other. More formally, we have
the following definition.

Definition 1.9 A path, p, in a tree T is a subtree of T such that for any s, t ∈ p
with lengths n, k respectively and n � k, we have s = t � n.

A tree T containing an infinite path p is obviously infinite. König’s Lemma
states that the converse is also true for binary trees.

Theorem 1.10 (König’s Lemma) Let T be an infinite binary tree. Then T
contains an infinite path p.

6 König’s Lemma

Proof Suppose T is an infinite binary tree. For a sequence s of length n let
Ts be {r ∈ T : r � n = s}∪ {s � k : k < n}, which we will call the subtree of T
below s. You will be able to check easily that Ts is a tree. In general it may or
may not be infinite.

We are going to find a sequence s(n) of elements of T such that

• s(n) has length n,
• s(n) = s(n+1) � n,
• the tree Ts(n) below s(n) is infinite.

This construction is by induction, using the third property above as our in-
duction hypothesis. When we have completed the proof the set {s(n) : n ∈ N}
will be our infinite path p in T .

So suppose inductively that we have chosen s = s(n) of length n and Ts is
infinite. Then since the tree is binary, made from sequences of 0s and 1s, we
have

Ts = {r ∈ T : r � (n+1) = s0}∪{r ∈ T : r � (n+1) = s1}∪{s � k : k � n} .

This is, by the induction hypothesis, infinite. Hence (as the third of these three
sets is obviously finite) at least one of the first two sets, corresponding to ‘0’ or
‘1’ respectively, is infinite. If the first of these is infinite we set s(n + 1) = s0
and in this case we have

Ts(n+1) = {r ∈ T : r � (n+1) = s0}∪{s0}∪{s � k : k � n}
which is infinite. If not we set s(n+1) = s1 which would then be infinite as be-
fore. Either way we have defined s(n+1) and proved the induction hypothesis
for n+1.

1.2 Examples and exercises

The central theorem of this book, the Completeness Theorem for first-order
logic, is not only of the same flavour as König’s Lemma, but is in fact a pow-
erful generalisation of it. To give you an idea of the power that this sort of
theorem has, it is useful to see a selection of applications of König’s Lemma
here.

We start by exploring the limits of König’s Lemma a little: it turns out that
the important thing is not that there are at most two choices at each node but
that the number of ways in which the branches divide is always finite.

Definition 1.11 If T is a tree and s ∈ T is a node of T then the valency or
degree of s is the number of nodes of T connected to s. Thus this is the number

1.2 Examples and exercises 7

of x such that sx ∈ T plus one (to cater for the edge back towards the root), or
just the number of such x if s is the root node.

Exercise 1.12 Prove the following generalisation of König’s Lemma: an infi-
nite tree in which every vertex has finite valency has an infinite path. Assume
that the tree has vertices or nodes which are sequences of natural numbers of
finite length and that for each s ∈ T there is a bound Bs ∈ N on the possible
values x such that sx ∈ T .

There are two ways that you might have done the last exercise. You might
have modified the proof given above, or you may have tried to reduce the
case of arbitrary finite valency trees to the case of binary trees by somehow
‘encoding’ arbitrary finite branching by a series of binary branches.

Exercise 1.13 Whichever method you used, have a go at proving the extension
of König’s Lemma by the other method.

Exercise 1.14 By giving an appropriate example of an infinite tree, show that
König’s Lemma is false for graphs with vertices of infinite valency.

König’s Lemma is an elegant but nevertheless not very surprising or difficult
result to see. Its truth, it seems, is reasonably clear, though a completely rigor-
ous proof takes a moment or two to come up with. It is all the more surprising,
therefore that there should be non-trivial applications. We will look at a few of
these now, though nothing later in this book will depend on them.

Example 1.15 The set X = [0, 1] has the property (called sequential compact-
ness, equivalent to compactness for metric spaces) that every sequence (an) of
elements of X has a subsequence converging to some element in X .

Proof Starting with [0, 1] we continually divide intervals into equal halves,
but at stage k of the construction we throw away any such interval that con-
tains none of the an with n > k. More precisely, the nodes of the tree at
depth k are identified with intervals I = [(r − 1)2−k, r2−k] for which r ∈ N

and {an : n > k and an ∈ I} is non-empty, and two nodes are connected if one
is a subset of the other.

This defines a binary tree. It is infinite because there are infinitely many
an and each lies in an interval. By König’s Lemma there is an infinite path
through this tree, and by the construction of the tree we may take an infinite
subsequence of an in this path, one at each level of the tree. This is the required
convergent subsequence.

8 König’s Lemma

Now consider infinite sequences u0u1u2. . . of the digits 0, 1, 2, . . ., k− 1. We
will call such sequences k-sequences. Say a k-sequence s is xn-free if there is
no finite sequence, x, of digits 0, 1, 2, . . ., k− 1, such that the finite sequence
xn (defined to be the result of repeating and concatenating x as xxxx. . .x, where
there are n copies of the string x) does not appear as a contiguous block of the
sequence s.

Exercise 1.16 (a) Show that there is no x2-free 2-sequence.
(b) Use König’s Lemma to show that there is an x3-free 2-sequence if and

only if there are arbitrarily long finite x3-free 2-sequences. State and prove a
similar result for x2-free 3-sequences.

(c) Define an operation on finite 2-sequences σ such that σ(0) = 01, σ(1) =
10, and σ(u0u1. . .um) = σ(u0)σ(u1). . .σ(um), where this is concatenation of
sequences. Let σn(s) = σ(σ(. . .(σ(s)). . .)), i.e. σ iterated n times. Show that
each of the finite sequences σn(0) is x3-free, and hence there is an infinite
x3-free 2-sequence.

(d) Show there is an x2-free 3-sequence.

Another example of the use of König’s Lemma is for graphs in the plane. A
graph is a set V of vertices and a set E of edges, which are unordered subsets of
V with exactly two vertices in each edge. In a planar graph the set of vertices
V is a set of points of R2, and the edges joining vertices are lines which are
‘smooth’ (formed from finitely many straight-line segments) and may not cross
except at a vertex.

A graph with set of vertices V can be k-coloured if there is a map f : V →
{0, 1, . . ., k−1} such that f (u) �= f (v) for all vertices u, v that are joined by
an edge. You should think of the values 0, 1, . . ., k − 1 as ‘colours’ of the
vertices; the condition says two adjacent vertices must be coloured differently.
Graph colourings, and especially colourings of planar graphs, are particularly
interesting and have a long history [12]. A deep and difficult result by Appel
and Haken shows that every finite planar graph is 4-colourable [10].

Exercise 1.17 Use König’s Lemma to show that an infinite graph can be k-
coloured if and only if every finite subgraph of it can be so coloured. (Make the
simplification that the vertices of our infinite graph can be ordered as v0, v1, . . .

with indices from N. Construct a tree where the nodes at level n are all k-
colourings of the subgraph with vertices v0, v1, . . ., vn−1, and edges join nodes
if one colouring extends another.) Deduce from Appel and Haken’s result that
every infinite planar graph can be 4-coloured.

Tiling problems provide another nice application of König’s Lemma. Con-

1.3 König’s Lemma and reverse mathematics* 9

sider a finite set of tiles which are square, with special links like jigsaw pieces
so that in a tiling with tiles fitting together, one edge of one tile must be next
to one of certain edges of other tiles. A tiling of the plane is a tiling using
any number of tiles of each of the finitely many types, so that the whole of the
plane is covered. Tiling problems ask whether the plane can or cannot be tiled
using a particular set.

Exercise 1.18 Prove that a finite set of tiles can tile the plane if and only if
every finite portion of the plane can be so tiled.

Finally, for this section, trees are also useful for describing computations.
We will not define any idealised computer here, nor provide any background
in computability theory, so this next example is for readers with such back-
ground, or who are willing to suspend judgement until they have such back-
ground. Normally, computations are deterministic, that is every step is deter-
mined completely by the state of the machine. A non-deterministic computa-
tion is one where the computer has a fixed number, B, of possible ‘next moves’
at any stage. The machine is allowed to choose one of these ‘at random’, or
by making a ‘lucky guess’ and in so doing it hopes to verify that some asser-
tion is true. This gives rise to a computation tree of all possible computations.
Suppose we somehow know in advance that whatever choices are made at any
step, every computation of the machine will eventually halt and give an answer.
That means that all paths through the computation tree are finite. Then by the
contrapositive of König’s Lemma the tree is finite. This means that the non-
deterministic computation can be simulated in finite time by a deterministic
one which constructs the computation tree in memory and analyses it.

1.3 König’s Lemma and reverse mathematics*

König’s Lemma is rather attractive and has some pretty applications. It has
been ‘traditional’ in logic textbooks to give some of the examples above as
applications of the much more powerful ‘Completeness Theorem for first-order
logic’. Whilst not incorrect, this has always seemed a pity to me, as it hardly
does the Completeness Theorem justice when the applications can be proved
directly from the more familiar König’s Lemma. Suffice it to say for now
that there will be plenty of interesting applications of the full Completeness
Theorem that cannot be argued from König’s Lemma alone.

It may be a good idea to say a few words about why König’s Lemma is pow-
erful, and where it does real mathematical work. The reason is that, although
there may be an infinite path in a tree, it is not always clear how to find one,

10 König’s Lemma

and in any case there are likely to be choices involved. In our proof of König’s
Lemma, to keep track of all these individual choices, we used the concept of a
certain subtree Ts being infinite. Being ‘infinite’ is of course a powerful math-
ematical property, and one about which there is a lot that can be said, both
within and outside the field of mathematical logic. This concept of an infinite
subtree is doing quite a lot of work for us here, especially as it is being used
infinitely many times in the course of an induction.

Some workers in the logic community study these ideas in more detail by
trying to identify which theorems need which lemmas to prove them. This
area of logic is often called reverse mathematics since the main aim is usually
to prove the axioms from the theorems. I am not going to advocate reverse
mathematics here, but there are plenty of times when it is nice to know that a
complicated lemma cannot be avoided in a proof. It is certainly true for many
of the exercises in the previous section that König’s Lemma (or something very
much like it) is necessary for their solution. In reverse mathematics one usually
works from a weaker set of axioms, one where the concept of an infinite set
is not available. It turns out, for example, that relative to this weak set of
axioms the sequential compactness of [0, 1] is actually equivalent to König’s
Lemma. For more information on reverse mathematics see the publications by
Harvey Friedman, Stephen Simpson and others, in particular Simpson’s 2001
volume [11].

The proof of König’s Lemma works, as we have seen, by making a series
of choices. The issue of making choices is also a very subtle one, but one
that will come up in many places in this book. We can always make finitely
many choices as part of a proof, by just listing them. (In this way, to make
n choices in a proof you will typically need at least n lines of proof, for each
n ∈ N.) But making infinitely many choices in one proof, or even an unknown
finite number of choices, will depend on being able to give a rule stating which
choice is to be made and when. This might be more difficult to achieve. Some
versions of König’s Lemma do indeed involve infinitely many arbitrary choices
as we turn ‘left’ or ‘right’ following an infinite path. This is a theme that will
be taken up in the next chapter. As a taster, you could attempt the following
exercise, a more difficult version of Exercise 1.12.

Exercise 1.19 Consider the generalisation of König’s Lemma that says that an
infinite tree T in which every vertex has finite valency has an infinite path. Do
not make any simplifying assumptions on the elements of the sequences s ∈ T .
What choices have to be made in the course of the proof, and how might you
specify all of these choices unambiguously in your proof?

2

Posets and maximal elements

2.1 Introduction to order

The idea of an order is central to many kinds of mathematics. The real num-
bers are familiarly ordered as a number-line, and even a collection of sets will
be seen to be partially ordered by the ‘subset of’ relation. We shall start by pre-
senting the axioms for a partially ordered set and then discuss one particularly
interesting question about such sets, whether they have maximal elements.

An order relation is a relation R between elements x, y of some set X , where
xRy means x is smaller than or comes before y. An alternative notation arises
when one thinks of the relation more concretely as a set of pairs (x, y), a subset
of X2 = {(x, y) : x, y ∈ X}. We can then write xRy in an alternative way as
(x, y) ∈ R.

Definition 2.1 A partial order on a set X is a relation R ⊆ X2 such that

(i) (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R
(ii) (x, x) �∈ R

for all x, y ∈ X .

Example 2.2 The relation on the set of real numbers R defined by ‘(x, y) ∈ R
if and only if x < y’ is a partial order, where < is the usual order on the set of
real numbers. In fact it is a special kind of partial order that we will later call
a total order or linear order.

Example 2.3 If X is any set and P is its power set, i.e. the set of all subsets
of X , then the relation R on P given by (A, B) ∈ R if and only if A is a proper
subset of B (i.e. A ⊆ B and A �= B) is also a partial order on P.

We usually use a symbol such as <, etc., for our relation R and when we do
we write x < y instead of (x, y) ∈ R.

11

12 Posets and maximal elements

There is another kind of partial order relation corresponding to � instead of
<. Here, the order relation is allowed to relate equal elements. In other words,
we will allow (x, x) ∈ R to be true. (This was explicitly disallowed for the first
kind of order as defined above.) Clearly we will need different axioms for such
an order relation, and the axioms we choose are as follows.

Definition 2.4 A non-strict partial order on a set X is a binary relation R ⊆ X2

such that

(i) (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R
(ii) (x, x) ∈ R

(iii) (x, y) ∈ R and (y, x) ∈ R implies x = y

for all x, y ∈ X .

We usually use a symbol such as �, etc., for a non-strict partial order. The
first kind of partial order is sometimes called a strict partial order to distinguish
it from the non-strict case.

If X is any set and P is its power set, then the relation S on P given by
(A, B) ∈ S if and only if A is a subset of B is a non-strict partial order on P
because of the law that says two sets A and B are the same if and only if A ⊆ B
and B ⊆ A.

If < is a strict partial order on X then we can turn it into a non-strict partial
order � by defining x � y if and only if x < y or x = y. In the other direction,
given a non-strict partial order � on X then we can define a strict partial order
by x < y if and only if x � y and x �= y. If we start with one kind of order and do
both of these processes, we get back to the original order relation, so strict and
non-strict partial orders are versions of the same idea. Some of the exercises
discuss these points further.

Definition 2.5 A poset is a non-empty set X with a partial order of either the
strict or non-strict variety.

The word poset is an abbreviation for Partially Ordered SET. Unless a dif-
ferent notation for the order relation is given, we shall use < for the strict
partial order on X and � for its non-strict version.

Example 2.6 Let T be a binary tree, i.e. a set of finite sequences of 0s and 1s
which is closed under taking initial segments. Define σ � τ to mean that σ is
an initial segment of τ . Then this is a (non-strict) partial order on T and makes
T into a poset.

2.1 Introduction to order 13

There will be several occasions throughout this book where we will be in-
terested in the notion of a maximal element in a poset. This is defined next.

Definition 2.7 If X is a poset and x ∈ X , we say that x is a maximal element of
X if there is no y in x such that x < y.

Be careful how you read this. The element x is maximal if there is nothing
bigger. This is not the same as saying that x is the biggest element. Indeed
a poset may have several maximal elements, as we will see, but there can
obviously only be one biggest element.

Example 2.8 In the poset P of the set of all subsets of X , with (non-strict)
order relation ⊆, there is a maximal element, X itself. This is because if A ∈ P
then A ⊆ X so we cannot have X ⊆ A and X �= A. In fact X is the only maximal
element since A ⊆ X for all A ∈ P, so no A �= X can also be maximal.

Example 2.9 In the poset R of the reals with the usual ordering there are no
maximal elements.

Example 2.10 Let X = {1, 2, 3}, and let Q be the set of all subsets of X with
at most two elements. This is a poset with the same ⊆ ordering. In this case
there are three distinct maximal elements, {2, 3}, {1, 3}, and {1, 2}.

As we have seen in the examples, some posets have a unique maximal el-
ement, some have many, and some have none. We are going to discuss some
criteria that can be used to determine whether a particular poset has a maximal
element. First, we say a poset is finite if its underlying set X is finite. Then we
have the following theorem.

Theorem 2.11 Any finite poset has at least one maximal element.

Proof This is another proof that involves making choices, somewhat similar
to those in the last chapter. Fortunately, only finitely many are required in this
case. Let X be our finite poset and let a ∈ X . Let a0 = a. We are going to
define a sequence of elements an ∈ X such that an < an+1 for each n.

Given an ∈ X , there are two possibilities. Either an is maximal, in which
case we are finished, or else there is some b ∈ X with an < b. In the latter case,
choose an+1 to be such a b.

Now the argument in the previous paragraph cannot give an infinite sequence
of elements of X . This is because X is finite and the sequence an is strictly
increasing, an < an+1, and hence by the axioms for a strict partial order, all the

14 Posets and maximal elements

elements an are different. Therefore we cannot always have the second option
in the previous paragraph, so at some point the an that we have obtained will
be maximal. That is, our finite poset has a maximal element, as required.

It may be useful to know when a poset has a biggest, or unique maximal ele-
ment. Say that a poset X is directed if for any two elements a, b in X there is
some c ∈ x such that a � c and b � c.

Theorem 2.12 Let X be a directed poset. Then if X has at least one maximal
element it has exactly one maximal element.

Proof Exercise.

This last result will not be needed in the sequel. Directed posets are occasion-
ally useful, but we are more intereested here in finding a condition for when
a poset has some maximal element. We have seen that finite sets always have
maximal elements. This is not true in general, as in the example of R. (In-
cidently, R is directed, so this property does not guarantee the existence of
maximal elements either.) We will next look at those sets that are ‘only just a
bit bigger than finite’, the countable sets.

Definition 2.13 A set X is said to be countable if either it is empty or else it is
of the form {an : n ∈ N} for some sequence of elements an from X .

Thus the elements of a countable set can be counted off as a0, a1, a2, . . .

(possibly with repetitions). If you think of n �→ an as a function N→X , this
means that a non-empty set X is countable if and only if X is empty or there is
a surjection from N onto X .

In particular the next proposition follows directly from this.

Proposition 2.14 Any finite set is countable. The set of natural numbers N is
countable.

The next theorem shows that the notion of ‘countable sets’ has some real
substance. It is due to Georg Cantor who ‘invented’ set theory towards the end
of the nineteenth century, and is not quite so straightforward. See Exercise 2.28
for hints on how to prove this result.

Theorem 2.15 The set of real numbers R is not countable.

To explore what properties a poset must have in order to contain maximal
elements, consider the set of rational numbers ordered in the usual way. This,

2.1 Introduction to order 15

like the set of reals, has no maximal element. It also happens to be countable.
(See the exercises.) The reason it fails to have a maximal element is that it is
‘all lined up’ nicely, or as we shall say, it is linearly ordered, or is a chain, but
this chain has no upper bound.

Definition 2.16 Let X be a poset. A subset Y ⊆ X is a chain if

• for all x, y ∈ Y , either x < y or y < x or x = y.

If this holds for all x, y ∈ X (i.e. if the whole of X is a chain) then we say the
poset X is linearly or totally ordered.

If we are to find maximal elements in a poset X we should at least be able to
deal with chains somehow. The next definition gives a possible way that this
might be done.

Definition 2.17 Let X be a poset. We say that X has the Zorn property if for
every chain Y ⊆ X there is an upper bound x ∈ X of Y . That is, there is x ∈ X
such that y � x for all y ∈ Y .

Note particularly that the element x need not be in Y itself. Sometimes it
will be, sometimes not. It must be in X though.

Here is the big theorem of this chapter. The proof is a more sophisticated
version of the proof that all finite posets have maximal elements.

Theorem 2.18 Let X be a countable poset with the Zorn property. Then X has
a maximal element.

Proof Let X = {xn : n ∈ N} be our countable poset. We try to repeat the main
idea of the previous result on finite posets, constructing an increasing sequence
of elements an ∈ X from X .

Take a0 = x0, the ‘first’ element in X . We will construct our sequence by
making ‘choices’ as before, but this time we will have infinitely many choices
to make so will need to specify how the choices are to be made carefully. At
each stage we will have chosen an ∈ X . Because an is in X it is equal to some
xk, and (in case there is more than one index k for which this is true) let us
choose the least k for which an = xk. Inductively we will assume that an is
maximal in {x0, . . ., xk} for this least k.

If an is maximal in the whole of X we are finished, having got what we set
out to prove. Otherwise there is x ∈ X such that an < x. We must choose one.
Do this by choosing an+1 = xm ∈ x where m ∈ N is the least natural number

16 Posets and maximal elements

such that an < xm. This m must be greater than k because an is maximal in
{x0, . . ., xk}. By our choice of xm, it must also be maximal in {x0, . . ., xm}.

Continuing in this way we get an increasing sequence an. If we never find
any maximal elements, this sequence must be infinite in length and all elements
in it distinct. But this would contradict the Zorn property.

To see this, observe first that the set Y = {an : n ∈ N} is a chain in X . The
Zorn property implies that it has an upper bound z ∈ X , and by the countability
of X we have z = xm for some m. However, since the sequence an has infinite
length there is some element in the sequence equal to xl for some l � m. This
quickly gives a contradiction, as xl is maximal in {x0, . . ., xl} so it cannot be
that xl < xm. On the other hand, xm is an upper bound for Y , so an = xl <

xm.

As mentioned, the proof of this theorem goes by choosing elements of X re-
peatedly. The proof works because we had a good recipe for making such a
choice – we chose xm ∈ X where m ∈ N was least possible each time. It seems
entirely reasonable that the theorem should be true even if X is not count-
able, but we would need a different way to make our choices – in fact a new
mathematical ‘choice principle’. The statement we would like to prove is the
following.

Theorem 2.19 (Zorn’s Lemma) Let X be a poset with the Zorn property.
Then X has a maximal element.

There is just such a choice principle, called (reasonably enough) the Axiom
of Choice that enables us to prove Zorn’s Lemma. The Axiom of Choice is
one of the usual axioms for set theory introduced in the 1920s by Zermelo,
Fränkel and others, and has been widely accepted. It turns out that not only
does the Axiom of Choice suffice to prove Zorn’s Lemma, but also that the
converse is true: from Zorn’s Lemma we can prove the Axiom of Choice.
Because of this, I will adopt the same approach as many other writers and
accept Zorn’s Lemma as an extra axiom for set theory, and assume it true and
use it whenever necessary. For those who really want to know the details, we
present the Axiom of Choice and the proof that it implies Zorn’s Lemma in the
optional Section 2.3 of this chapter.

Finally, we note a technical but rather general method for showing that the
Zorn property holds, one that will apply to almost all examples in this book,
including those given as illustrations in the next section. Here we consider
Zorn’s Lemma in the case of a poset X of subsets of another set B, where the
order relation is ⊆.

2.2 Examples and exercises 17

Proposition 2.20 Let X be a non-empty poset of subsets A ⊆ S having some
property Φ(A), where the order relation on X is ⊆, i.e.

X = {A ⊆ S : Φ(A)} .

Suppose also that the property Φ(A) defining X is such that

• if Φ(A) is false then there are finitely many a1, a2, . . ., an ∈ A such that
every A′ ⊇ {a1, a2, . . ., an} fails to satisfy Φ(A′).

Then X has the Zorn property.

Proof Let Y ⊆X be a chain, and let A =
⋃

Y = {x ∈ A : A ∈ Y}. Then A⊆C for
each C ∈Y . So it suffices to show that A has the property Φ(A). If not, there are
a1, a2, . . ., an ∈ A such that every A′ ⊇ {a1, a2, . . ., an} fails to satisfy Φ(A′).
In particular there are Ci ∈Y such that ai ∈Ci for each i. But Y is a chain under
⊆, so some Ci must contain all the others. That means Ci ⊇ {a1, a2, . . ., an}
and hence Ci fails to satisfy Φ(Ci) and thus Ci �∈ X , a contradiction.

2.2 Examples and exercises

Exercise 2.21 Suppose X is a poset with ordering < and suppose Y ⊆ X is
non-empty. Then < can also be regarded as a relation on Y , and Y is therefore
also a poset. What is it about the axioms for a poset that ensure that this is
the case? What other cases can you think of where a non-empty subset of the
domain of some mathematical structure you have studied is automatically a
‘sub-object’? And what about cases where this is not true?

Exercise 2.22 If < is a strict partial order on X then turn it into a non-strict
partial order � as described in the text, and then turn that into a strict partial
order <′. Show that < and <′ are the same.

Do the same exercise, this time starting from a non-strict �, getting the
corresponding < and from this a strict �′, and showing that � and �′ are the
same.

To understand the next definition and exercise, it would be instructive to
check your argument for the last exercise and identify where the third axiom
of a (strict) partial order is required.

Definition 2.23 A preorder is a binary relation on a set X satisfying the first
two axioms for a non-strict partial order.

18 Posets and maximal elements

Exercise 2.24 Let X be a non-empty set with a preorder �. Define an equiv-
alence relation ∼ on X by x ∼ y if and only if x � y and y � x. (You have to
prove this is an equivalence relation.) Let X/∼ denote the set of equivalence
classes and define [x] � [y] if and only if x � y, on equivalence classes [x] and
[y]. Show that this is well defined (i.e. the definition does not depend on the
choice of the representatives x, y of the equivalence classes [x] and [y]) and
defines a (non-strict) partial order on x/∼.

Exercise 2.25 Prove Theorem 2.12.

Exercise 2.26 Prove that the set Q of rational numbers is countable. (Hint:
first show that Z× (Z \ {0}) is countable, and then compose functions.)

The next exercise is often referred to as ‘a countable union of countable sets
is countable’. It is not quite straightforward how to state it, as some versions
of the result require the Axiom of Choice and others do not. The following is
a version which does not require the Axiom of Choice.

Exercise 2.27 Suppose that Xi is a countable set for each i ∈ N and that there
is a function f with domain N×N such that Xi = { f (i, j) : j ∈ N} for each i.
Show that ⋃

{Xi : i ∈ N} = {x : x ∈ Xi for some i ∈ N}
is countable.

Exercise 2.28 Prove that the set of real numbers is not countable. (Hint:
suppose R is countable and that rn is a sequence of reals in which every real
number appears at least once. Imagine writing down each rn in decimal form
and construct a number s ∈R that differs from each rn at the nth decimal place.
Conclude s is not anywhere in the sequence rn.)

Exercise 2.29 Let X be any set. Show that the power set P of X is not in
one-to-one correspondence with X , i.e. there is no bijection f : X → P, and
hence deduce that the power set of N is not countable. (Hint: consider the set
{x ∈ X : x �∈ f (x)}. Show that this cannot be f (y) for any y ∈ X .)

There are many applications of Zorn’s Lemma to algebra. For example, in
group theory, Zorn’s Lemma can be used to show the following result about
subgroups and transversals.

Proposition 2.30 Let G be a group and H a subgroup of G. Then there is a

2.2 Examples and exercises 19

transversal of H in G, i.e. a set T ⊆ G such that for each g ∈ G, g = ht for
exactly one pair of h ∈ H and t ∈ T .

Proof Let X be the poset of sets T such that

h1t1 = h2t2 implies h1 = h2 and t1 = t2

for all t1, t2 ∈ T and all h1, h2 ∈ H. For the order relation on X we take the
usual subset-of relation ⊆.

The poset X has the Zorn property since if Y ⊆ X is a chain and

S =
⋃

Y = {x ∈ T : T ∈ Y}
then clearly T ⊆ S for each S ∈ Y . We claim that S ∈ X . If not there are
h1, h2 ∈ H and t1, t2 ∈ S such that h1t1 = h2t2 and h1 �= h2 or t1 �= t2. But then
t1 ∈ T1 ∈ Y and t2 ∈ T2 ∈ Y for some T1, T2, and as Y is a chain either T1 ⊆ T2

or T2 ⊆ T1. Assuming T1 ⊆ T2 we have t1, t2 ∈ T2 and hence h1t1 = h2t2 shows
T2 �∈ X , which is impossible. T2 ⊆ T1 is similar.

By Zorn’s Lemma, X has a maximal element T . It suffices to show that every
g ∈ G is ht for one pair h ∈ H and t ∈ T . If not, suppose g ∈ G is not of the
above form. Then g �∈ T since 1∈H and if g∈ T then g = g1, and T ∪{g} ∈ X .
This last is because if h1t = h2g for h1t, h2 ∈ H and t ∈ T then g = h2

−1h1t
writes g as ht for h = h2

−1h1 ∈ H. But this contradicts the maximality of T
and hence there is no such g, as required.

Instead of proving the Zorn property directly in the above proof, Proposition
2.20 might have been used.

Exercise 2.31 Prove that the poset X in Proposition 2.30 has the Zorn property
by using Proposition 2.20.

A linearly independent subset of a vector space V is one for which no non-
trivial finite linear combination is zero. A basis of a vector space V is a linearly
independent set B such that each v ∈V is a linear combination of finitely many
elements of B. In general there is no way of defining infinite sums in a vector
space, so the use of the word ‘finite’ here is necessary. In other words the defi-
nition just given is the ‘correct’ one, but you may not be used to this emphasis
on finiteness. (A typical first course in linear algebra normally deals with fi-
nite dimensional spaces only, where this emphasis is unnecessary. For general
finite and infinite dimensional spaces, Zorn’s Lemma is required in a number
of places.) However, it is precisely this finiteness of linear combinations that
allows us to apply Proposition 2.20 in the next exercise.

20 Posets and maximal elements

Exercise 2.32 Let V be a vector space over a field F . Show that V has a basis.
(Hint: let X be the poset of all linearly independent subsets of V , ordered by
the usual set inclusion, ⊆. Explain why X has a maximal element, and then
show that a maximal element of X is in fact a basis.)

Exercise 2.33 Let V , W be vector spaces over a field F with bases B ⊆V and
C ⊆W . Suppose there is a bijection B→C. Show that V , W are isomorphic.

Another popular application of Zorn’s Lemma to algebra is to find maximal
ideals in a ring.

Exercise 2.34 Let I be a non-trivial ideal in a commutative ring R. Show that
I extends to a maximal non-trivial ideal M. Show that R/M is a field.

2.3 Zorn’s Lemma and the Axiom of Choice*

As indicated, Zorn’s Lemma is a version of a set theoretic principle called the
Axiom of Choice.

Lemma 2.35 (Axiom of Choice) If X is a set of non-empty sets then there is
a function f : X →⋃

X such that f (x) ∈ x for all x ∈ X.

In other words, given a collection of ‘choices’ to be made (one for each
x ∈ X) there is a function – a mathematical object in the realm of set theory –
that makes one choice for each simultaneously. This function f is often called
a choice function. The set

⋃
X here is simply the set {x : x ∈ y for some y ∈ X}

of all possible elements-of-elements of X .
As mentioned already, we can make any finite number of choices in a math-

ematical proof. The Axiom of Choice allows us to make an unbounded number
of choices, or indeed infinitely many choices in a single proof. Although it may
not be obvious from a rapid inspection of our proof above of Theorem 2.11,
this theorem, that any finite poset has a maximal element, does not require any
form of the Axiom of Choice. To see this, recall that by definition a set X is
finite if and only if there is a bijection f : X →{0, 1, . . ., n−1} for some n ∈N.
This enables us to define a choice function F : P0 →X where P0 is the set of
non-empty subsets of X , by setting F(A) to be the element a ∈ A for which
f (a) ∈ {0, 1, . . ., n−1} is least. In particular this definition does not require
the Axiom of Choice. This enables all the choices in the proof given above to
be made without recourse to the Axiom of Choice. The same applies to the
countable version of Zorn’s Lemma, Theorem 2.18, which also does not need
any form of the Axiom of Choice to work. However, the proof of the general

2.3 Zorn’s Lemma and the Axiom of Choice* 21

form of Zorn’s Lemma does need the Axiom of Choice, as the elements of the
poset X may not be so conveniently listed as those of a countable set are.

Most published proofs of Zorn’s Lemma are quite short but require extra
background knowledge in set theory. Here is a proof of Zorn’s Lemma from
the Axiom of Choice with the minimum of background knowledge required.

Theorem 2.36 (Zorn) The Axiom of Choice implies Zorn’s Lemma.

Proof Let X be a poset with the Zorn property and for which there is no
maximal element. This proof will construct a chain C0 in X with no upper
bound, which obviously contradicts the Zorn property.

We first apply the Axiom of Choice. Considering X as a non-empty set, and
P0 the set of all non-empty subsets of X , by the Axiom of Choice there is a
function f : P0 →X such that f (A) ∈ A for all A ∈ P0. Now let C ⊆ X be a
chain. By the Zorn property there is some upper bound, y ∈ X , for C. In other
words, the set UC = {y ∈ X :∀x ∈C x � y} is non-empty and hence in P0. Thus
f (UC) is an upper bound for C. Composing functions C �→ UC �→ f (UC) we
obtain a function u such that u(C) is an upper bound of C whenever C ⊆ X is a
chain.

Now we construct our impossible chain C0 of X . This chain (and others
that we consider in the argument) will have the special property that it is well-
ordered, which means, that it is linearly ordered by the order < on X and that
every non-empty subset of it has a least element.

Let D be the set of chains C ⊆ X which are well-ordered and for which we
have the following holding for every x ∈C:

x = u({y ∈C : y < x}).
In other words, every element of C should be determined via the function u by
its predecessors in C. Note that the empty chain ∅ is such a chain, so D is not
empty. The chain {u(∅)} consisting of a single element is also in D by the
same reasons.

There are two important facts about D that we must prove.
The first is that if C ∈ D then the chain C ∪{u(C)} formed by adding the

canonical choice for an upper bound of C is also in D. Checking the condi-
tions for C∪{u(C)} is quite straightforward. The most tricky one is the well-
ordering property; but if A ⊆C∪{u(C)} is non-empty then either A∩C is non-
empty and has a least element (since C is well-ordered) or else A = {u(C)}.

The second fact about D is that for any two chains C1 and C2 of D we have
that one is an initial segment of the other. Here is where we use the well-
ordering property. If either C1 or C2 is empty there is nothing to prove so

22 Posets and maximal elements

assume otherwise. Then the least element of C1 and the least element of C2

must both be u(∅), so C1 and C2 agree on their least element.
Suppose to start with that there is x ∈ C1 which is not in C2. Then there

is a least such x1 ∈ C1 \ C2, and C2 ⊆ {y ∈C1 : y < x1}. Now assume that
there is also a y ∈ C2 \ C1. Again, take the least such y2 ∈ C2 \ C1, and
observe that for this y2 we have {z ∈C1 : z < y2} = {z ∈C2 : z < y2}. But
y2 = u({z ∈C2 : z < y2}). There is also a least y1 ∈ C1 greater than all ele-
ments of {z ∈C1 : z < y2}. Clearly y1 �= y2 but for this y1 we have

y1 = u({z ∈C1 : z < y1}) = u({z ∈C2 : z < y2}) = y2

which is impossible. So this argument shows that there is in fact no element
y ∈ C2 \ C1, and hence that if there is x ∈ C1 which is not in C2 then C2 is
an initial segment of C1. If there is x ∈ C2 which is not in C1 then a similar
argument shows C1 is an initial segment of C2, and if neither of these applies
then C1 = C2.

These technical properties of D now complete the proof, for the fact that of
any two chains in D one is always an initial segment of the other shows that⋃

D = {x ∈ X : there exists C ∈ D such that x ∈C} is actually a chain. It is also
well-ordered, since if A ⊆ ⋃

D is non-empty there is x ∈C ∈ D with x ∈ A and
the least element of A can now be found in A∩C. Therefore

⋃
D ∈ D. But this

quickly gives us a contradiction as
⋃

D∪{u(
⋃

D)} is also a well-ordered chain
with all the required properties to be in D, but cannot be in D since u(

⋃
D) is

greater than all elements of
⋃

D.

The following direction is much easier.

Theorem 2.37 Zorn’s Lemma implies the Axiom of Choice.

Proof Given X , a set of non-empty sets, consider the set C of partial choice
functions, f : Y →⋃

X such that f (x) ∈ x for all x ∈Y where Y ⊆ X . C is made
into a poset by f < g if g extends f . It is straightforward to check that the Zorn
property holds and that a maximal element is a required choice function.

The Axiom of Choice and a related principle, the Well-Ordering Principle,
were around before Zorn, but Zorn’s contribution seems to be to provide a
useful and strong principle which is equivalent to these that can easily be used
in algebra and other settings, without the tricky set theoretical terminology that
was then common. From a more practical point of view, the Axiom of Choice
is the easiest to understand and justify as an axiom, but as we have seen it can
be tricky to use, and the more convenient Zorn’s Lemma is usually preferred.

2.3 Zorn’s Lemma and the Axiom of Choice* 23

It may be interesting to learn that Zorn’s Lemma directly implies König’s
Lemma. I am not sure how edifying this particular argument is, although it
does apply in the most general case discussed in the previous chapter, and it
does provide a useful link between the two chapters. We will return to this
point in the next chapter and give a less direct but more illuminating argument,
culminating with Theorem 3.13, showing that Zorn’s Lemma implies König’s
Lemma.

Theorem 2.38 Any infinite finitely branching tree has an infinite path.

Proof (Sketch) We consider the set X of all infinite subtrees S of T . This is
non-empty as it contains T itself. For the ordering we take, rather unusually,
the reverse of ⊆, that is we define S1 � S2 if and only if S1 ⊇ S2.

You should be able to convince yourself that a �-maximal subtree (i.e. a
⊆-minimal subtree) is actually a path. This is like the argument in the previous
chapter. If it is not in fact a path and has some branching, then we can find an
infinite subtree and hence show the tree is not maximal.

The awkward bit is to show that the poset x has the Zorn property. If C ⊆ X
is a chain of infinite subtrees it is fairly easy to show that Y =

⋂
C is also a

subtree. In fact Y is also infinite, though this takes a little bit of proving. The
trick required is to note that T has only finitely many nodes at each level n, and
hence a subtree of T is infinite if and only if it has at least one node at each
level n. This applied to

⋂
C since each tree in C has only finitely many nodes

at each of the levels, but all levels are represented.

For the most general form of König’s Lemma, some form of the Axiom of
Choice is necessary, but there are weaker forms that suffice to prove König’s
Lemma (though not, of course, Zorn’s Lemma). A full discussion of this will
take us too far off track and the reader is directed to set theory texts, such as
Lévy’s Basic Set Theory [8].

3

Formal systems

3.1 Formal systems

Formal systems are kinds of mathematical games with strings of symbols and
precise rules. They mimic the idea of a ‘proof’. This chapter introduces for-
mal systems through an example that turns out to be closely connected with
König’s Lemma. This simple example is based on the trees that we studied
earlier. Formal systems are the ‘arguments from limited knowledge’ that we
talked about earlier, and working in them is like being the ant following a tree
who cannot see beyond the immediate node it happens to be at.

The particular system that we shall look at here will put some more detail
on the ideas introduced earlier about ‘two ways of doing it’ and how they can
be played off against each other to advantage. It is based on finite sequences,
or strings, of 0s and 1s. The set of all such strings is denoted 2∗ or 2<ω and, as
we have seen, this set can be regarded as a full binary tree. We shall write the
empty string of length zero as ⊥.

Now consider a game starting from a subset Σ ⊆ 2∗ with the following rules
specifying when a string may be written down.

• (Given Strings Rule) You may write down any string σ in Σ.
• (Lengthening Rule) Once a string σ has been written down, you may

also write down one or both of the strings σ0 or σ1.
• (Shortening Rule) For any string σ , once you have written down both

σ0 and σ1 then you may write down σ .

These rules may be applied finitely many times, in any order, to any string
σ . The objective of the game is a further string τ ∈ 2∗. We want to know, given
Σ and τ , whether it is possible to write down τ following the rules above.

Definition 3.1 Let Σ ⊆ 2∗ and τ ∈ 2∗. We write Σ�τ to mean that it is possible

24

3.1 Formal systems 25

to write down τ in a finite number of steps that follow the rules of the game
for Σ.

If Σ� τ then there is a list of strings that can be written down in the game,
each of which is written down according to one of the three rules, the last one
in the list being τ . Sometimes this list of strings is called a formal proof or
formal derivation of τ from strings in Σ following the rules given. Thus Σ� τ
can be expressed as saying ‘there is a formal proof of τ from strings in Σ’.

Having got the rules of the game, we might see what we can do with it. For
example you should be able to see that {00, 01}�0 and {00, 01}�00100, and
you might be able to convince yourself that in fact from {00, 01} we can write
down any string starting with 0.

Is it possible to write down 1 starting from {00, 01}? It is easy to guess
the answer should be ‘no’, but to say {00, 01} �� 1 is a precise mathematical
statement, and one that should be proved carefully. It is not sufficient to write
down some formal derivation from {00, 01} and note that this derivation does
not include the string 1, since there are infinitely many formal derivations to
be considered and {00, 01} �� 1 says that none of them contain 1. In general,
to prove rigorously a statement like ‘there is no formal derivation of τ’ is of-
ten difficult, and is almost always achieved using mathematical induction with
some cleverly chosen induction hypothesis, if at all. (Later on, we will have the
Soundness Theorem that can be useful in such situations to avoid the induction
argument. But in fact the Soundness Theorem itself is proved by induction.)

Proposition 3.2 Suppose that τ ∈ 2∗ and {00, 01} � τ . Then τ must start
with 0.

Proof Consider a formal derivation of τ from {00, 01}. This derivation has
finitely many steps in it. We shall do induction on the number of steps in such
a formal derivation.

Our induction hypothesis H(n) is that if τ has a formal derivation from
{00, 01} with at most n steps then τ must start with a 0.

To see that H(1) is true observe first that the only formal derivations with
one step are those that write down a single σ ∈ Σ. But all strings in {00, 01}
start with 0, so all such σ that we could get in one step start with 0, and hence
H(1) is true.

Now suppose that H(n) is true and τ has a formal derivation from {00, 01}
with n + 1 steps. If the last step is ‘we write down τ because τ ∈ {00, 01}’
things are easy as all these strings start with 0. If the last step is ‘we write
down τ because τ = σ i and we have already written down σ ’ (where i is 0 or

26 Formal systems

1) then we can use our induction hypothesis. Since σ has already been written
down, it has a derivation of at most n steps so by H(n) σ starts with a 0, and
hence τ = σ i also starts with 0. Finally, if the last step is ‘we write down τ
because we have already written down τ0 and τ1’ then we use H(n) again.
Since both τ0 and τ1 have derivations of length at most n they both must start
with 0. In particular τ1 must start with 0. That means that τ is a non-empty
string that starts with a 0, as required. This proves H(n+1) and completes our
proof by induction.

It follows that {00, 01} ��1 as 1 does not start with 0, and this finally answers
our question.

Quite a lot more can be said about formal proofs in this system. To handle
infinite sets Σ we have the following proposition.

Proposition 3.3 Suppose Σ ⊆ 2∗ and Σ�τ . Then there is a finite subset Σ0 ⊆ Σ
such that Σ0 � τ .

Proof A formal derivation is a finite list of strings, so the Given Strings Rule
can only be used finitely many times. Let Σ0 be the set of strings from Σ for
which the Given Strings Rule is used in a derivation of τ . Then exactly the
same formal derivation shows Σ0 � τ .

Note that the particular set Σ0 ⊆ Σ in the last proposition depends on τ . It is
not necessarily the case that there is a finite Σ0 ⊆ Σ such that Σ0 � τ for all τ
that can be derived from Σ.

Formal derivations or proofs are finite mathematical objects, and as such are
the objects of a mathematical theory. This is because we have specified exactly
what rules are going to be allowed in a proof, and not left it to the subjective
judgment of another human being. Indeed, the branch of mathematical logic
called proof theory studies proofs as mathematical objects. The following is
a somewhat typical result in the proof theory of the particular rather simple
formal system being discussed here.

Proposition 3.4 Suppose Σ ⊆ 2∗ is finite and Σ� τ . Then there is a derivation
of τ from Σ taking the following form.

(i) First strings from Σ are written down, using the Given Strings Rule.
(ii) Next any required applications of the Shortening Rule are made.

(iii) Finally none, one or more applications of the Lengthening Rule are
used as necessary to derive τ .

3.1 Formal systems 27

Proof By induction on the number of steps in a formal derivation. We start
by assuming that we have a formal derivation of τ from Σ of length n +1 and
inductively assume that whenever σ has a derivation from Σ of length n then
there is a derivation of σ from Σ in the form required. We now transform the
formal derivation of τ from Σ using this induction hypothesis.

The base case of the induction is when the derivation has length 1. In this
case, the statement proved is some σ ∈ Σ using the Given Strings Rule, and
this proof is of the required form, as the Lengthening and Shortening Rules
need not be used at all for it to be in the correct form. More generally, any
proof of τ in which the last step is the Given Strings Rule can be rewritten as a
one-line proof of τ using the Given Strings Rule only.

Suppose τ is derived in length n + 1 where the last step is a derivation of τ
from some statement ρ by the Lengthening Rule. By induction, there is a proof
of ρ of the required form, where ρ is derived in the last step. Then we get a
derivation of τ by appending to this proof a single step using the Lengthening
Rule.

The only tricky case is when the last step is the Shortening Rule. Here τ
is derived from previous statements τ0 and τ1 by this rule. By our induction
hypothesis there is a proof from Σ of τ0 in three blocks, B1, B2, B3, where B1

uses Given Strings only, B2 uses Shortening only, and B3 uses Lengthening
only, and B2, B3 may be empty. Similarly there is a proof from Σ of τ1 in
three blocks, B1

′, B2
′, B3

′. If the last step in either of these proofs of τ0, τ1 is
the Lengthening Rule, then the statement τi would have been deduced from τ
itself, so there would be a proof of τ of the required form obtained by removing
this last step. Otherwise, the Lengthening Rule is never used in these proofs
and blocks B3 and B3

′ are absent. In this case a valid proof of τ in the required
form can be obtained by writing down B1, B1

′, B2, B2
′ (which derive both τ0

and τ1) and then following this by a single application of the Shortening Rule
to derive τ .

Formal systems typically have a mixture of rules, some of which make the
strings shorter and some of which make the strings longer. The particular sys-
tem here is rather straightforward in that any formal derivation can be rewritten
to use rules that shorten strings first, and then all rules to lengthen strings last.
This makes it rather easier to see what can and cannot be derived from a given
set Σ. In particular, the last proposition can be used to answer any question of
the form, ‘does Σ� τ?’ for finite sets Σ. Most other systems are rather harder
to work with than this one.

Here is a nice application of this result that, under certain conditions, allows
us to eliminate an unnecessary assumption in a formal derivation.

28 Formal systems

Proposition 3.5 Suppose Σ ⊆ 2∗, σ , τ ∈ 2∗ and both Σ∪{τ0} �σ and Σ∪
{τ1}�σ . Then Σ�σ .

Proof We suppose that Σ � �σ and by looking at formal derivations of σ from
Σ∪{τi} (i = 0, 1) we shall show that both τ0 and τ1 are initial segments of σ .
This is of course impossible!

To this end, consider a formal derivation of σ from Σ∪{τ0} in which all
applications of the Given Strings Rule come first, then all applications of the
Shortening Rule are used to derive an initial part of σ , and finally the Length-
ening Rule is applied to obtain σ . Since Σ � � σ the string τ0 must be used
somewhere. Consider in particular the first place where it is used. If this is
as an assumption to the Shortening Rule, then Σ� τ1 since τ1 is required as
the other assumption in the Shortening Rule and τ0 was not used earlier. This
would mean that Σ�σ as Σ∪{τ1}�σ . Therefore τ0 is not in fact used in the
Shortening Rule and hence is used in the Lengthening Rule, so τ0 is an initial
part of σ . The same argument with 0 and 1 swapped shows τ1 is also an initial
part of σ , and this gives our contradiction.

Proposition 3.4 has two nice consequences concerning the empty string.

Proposition 3.6 Suppose Σ ⊆ 2∗ and Σ�⊥. Then there is a formal derivation
of ⊥ from Σ using only the Given Strings and Shortening Rules.

Proof Let Σ0 ⊆ Σ be finite such that Σ0 �⊥. Then there is a formal proof of
⊥ from Σ0 in which any applications of the Lengthening Rule are at the end
and are used to derive ⊥. But the Lengthening Rule increases the length of a
string and ⊥ has the least possible length (zero) so there are no applications of
the Lengthening Rule in such a formal derivation.

Proposition 3.7 Suppose Σ⊆ 2∗ and Σ�⊥. Then there is a finite subset Σ0 ⊆Σ
and n ∈ N such that for all strings σ ∈ 2∗ of length n, Σ0 �σ using only the
Given Strings and Lengthening Rules.

Proof Let Σ0 ⊆ Σ be finite and such that Σ0 �⊥ using only the Given Strings
and Shortening Rules. Let Σ1 be the set of all strings derivable from Σ0 using
only the Given Strings and Shortening Rules. Let n be the maximum length of
strings in Σ0 and let σ have length n. Note that each string in Σ1 has length at
most n as the Shortening Rule shortens strings. We claim that σ can be derived
from some τ ∈ Σ0 using the Lengthening Rule only.

To see this, consider the string τ ∈ Σ1 of greatest length that is equal to σ

3.1 Formal systems 29

or to an initial segment of σ . There must be such a τ as ⊥ ∈ Σ1. If τ is in
Σ0 we are done; otherwise τ was derived from strings τ0 and τ1 in Σ1 by the
Shortening Rule, and the length of τ is strictly less than n as the Shortening
Rule is a string-shortening rule. But then one of τ0 or τ1 must be an initial
segment of σ , since τ is already an initial segment of length less than n, the
length of σ . This contradicts the maximality of the length of τ .

We have now explored this formal system in some detail. Most of our re-
sults have been mathematical theorems and arguments concerning what does
or does not have a formal proof. Some people like to call such mathematical
theorems and arguments metatheorems and metaproofs since they are theo-
rems and proofs about theorems and proofs. This terminology is sometimes
useful and you may use it if you wish, but there is nothing special about such
‘metamathematics’. Metamathematics is just the ordinary mathematics you
are already used to.

To take this study further, and in particular to apply it to other areas of mathe-
matics, we have to start thinking about what the formal system actually means.
A formal system is really just like a game with symbols. To prove anything in
this system you just follow the rules, nothing more. This is in some ways good,
because there is no thinking involved and because a machine could check your
working for you, but in other ways it is bad, because it does not seem that this
system is proving anything particularly useful, or about anything. So the next
step is to try to attach meaning or semantics to the symbols we are using, and
interpret the strings of symbols of the system.

It may not be clear that there is anything useful to say about this particular
system. After all, what could a rather boring string of zeros and ones really
mean? (We will look at a particular non-obvious but rather nice interpretation
in a moment.) A more subtle point, and one that is potentially very fruitful
to consider, is that we might be able to find more than one possible set of
meanings to the system. Just because we may choose to focus on one particular
meaning to the symbols does not mean that there are no other equally valid
semantics that are possible or useful. In fact, the particular system we have
here will later on be shown to be a special case of the system of propositional
logic involving ‘not’, ‘and’ and ‘or’ of Chapter 6.

If we are to attach any semantics at all, we need to interpret Σ�σ in some
other mathematical way. We shall use the notation Σ�σ for this interpretation
and then prove as part of our theory about this formal system that the two no-
tions � and � are equivalent. I want to relate the formal system here with trees
and infinite paths in a tree, so I propose the following somewhat complicated
looking definition of semantics.

30 Formal systems

Definition 3.8 Let Σ ⊆ 2∗ and σ ∈ 2∗. Write Σ�σ for the statement

• whenever p ⊆ 2∗ is an infinite path which passes through σ then p
passes through some τ ∈ Σ.

Be careful reading this statement, especially looking out for the ‘whenever’,
and the implicit ‘for all infinite paths p’ in it.

Example 3.9 If Σ = 2∗ and σ ∈ 2∗ then any infinite path passing through σ
passes through some τ ∈ Σ, namely σ itself. So Σ � σ . More generally, this
argument shows that Σ�σ whenever σ ∈ Σ.

Example 3.10 Suppose σ is the root ⊥. All infinite paths pass through the
root. So Σ �⊥ holds if and only if for every infinite path there is some τ ∈ Σ
that the path passes through.

The next step is to prove that Σ�σ and Σ�σ are equivalent, i.e. each one im-
plies the other. The two directions of implication here are called the Soundness
and Completeness Theorems.

Theorem 3.11 (Soundness) Let Σ ⊆ 2∗ and σ ∈ 2∗ and suppose that Σ�σ .
Then Σ�σ .

Proof By induction on the length of formal derivations of σ . Our induction
hypothesis H(n) is that, whenever Σ�σ with a derivation of length at most n
then Σ�σ . This is true for derivations of length one since σ ∈ Σ implies Σ�σ
by Example 3.9 above.

Now suppose Σ�σ with a formal derivation of length n + 1 and in which
the last step is the Lengthening Rule, so σ = τi where τ is derived in at most n
steps and i = 0 or 1. Suppose also p⊆ 2∗ \ Σ is an infinite path passing through
σ . Then p must also pass through τ , since τ has length one less than that of σ
and so, by H(n), the path p passes through some element of Σ.

Finally suppose Σ�σ with a formal derivation of length n+1 and in which
the last step is the Shortening Rule, so both σ0 and σ1 are derived with at
most n steps. Suppose again that p is an infinite path passing through σ . Then
p must pass through one of σ0 or σ1, so by the induction hypothesis H(n) p
must pass through some element of Σ.

Theorem 3.12 (Completeness) Let Σ⊆ 2∗ and σ ∈ 2∗ and suppose that Σ�σ .
Then Σ�σ .

Proof We start by assuming that Σ � �σ and find an infinite path p ⊆ 2∗ \ Σ that

3.1 Formal systems 31

contains σ . This will show that Σ ��σ , and hence give the contrapositive of the
required theorem.

Let X be the set of all supersets Σ′ ⊇ Σ such that Σ′ � �σ , and order X by
normal inclusion, ⊆. This makes X into a poset, and it has the Zorn property.
This is because if C ⊆ X is a chain then firstly

⋃
C ⊇ Σ, since each element of C

contains Σ as a subset, and secondly if
⋃

C�σ then there is a formal derivation
of σ from some finite subset Σ0 ⊆⋃

C; but each element σi of Σ0 is in some set
Ci in C and there are only finitely many such σi so all σi are in some Σ j ∈ C,
since C is a chain.

By Zorn’s Lemma, X has a maximal element Σ+. We shall show that Σ+ is
the complement of an infinite path that contains σ . Putting p = 2∗ \ Σ+ will
then complete the proof.

To see that σ �∈ Σ+ it suffices to observe that Σ+ ∪{σ} �σ by the Given
Strings Rule, and so Σ+ �= Σ+ ∪{σ}, because the latter is not in X .

Note next the following argument using maximality of Σ+: if τ is any string
then τ ∈ Σ+ if and only if Σ+ ∪{τ} ��σ . For one direction, if τ ∈ Σ+ then
Σ+∪{τ}= Σ+ � �σ as Σ+ ∈X . Conversely, if Σ+∪{τ} ��σ then Σ+∪{τ}⊇Σ+

is in X so these sets must be equal by the maximality of Σ+, and hence τ ∈ Σ+.
To see that 2∗ \ Σ+ is a tree, suppose τi �∈ Σ+ where i is 0 or 1. We show

that τ �∈ Σ+. By assumption and maximality, Σ+ ∪{τi}�σ . This means Σ+ ∪
{τ}�σ by the same derivation and one extra step using the Lengthening Rule,
so τ �∈ Σ+ as required.

Finally, to see that 2∗ \ Σ+ is an infinite path, suppose τ �∈Σ+ and we attempt
to show that τi �∈Σ+ for exactly one i from 0 or 1. By maximality, Σ+∪{τ}�σ .
If both τ0, τ1 ∈ Σ+ we would have Σ+ � σ by the same derivation and an
application of the Shortening Rule. This is impossible as Σ+ ∈X . Furthermore,
if neither of τ0, τ1 is in Σ+ we would have Σ+ ∪{τi}�σ for each i = 0, 1 by
the same maximality argument, and this implies Σ+ �σ by Proposition 3.5.
Thus exactly one of τ0, τ1 is in Σ+ and τ has a unique extension τi not in
Σ+.

Theorem 3.13 (König’s Lemma) An infinite tree T ⊆ 2∗ contains an infinite
path.

Proof Let T ⊆ 2∗ be a tree and let Σ = 2∗ \ T be its complement. Since T is a
tree and in particular closed ‘downwards’ by restriction, Σ is closed ‘upwards’
under applications of the Lengthening Rule.

Now suppose also that T contains no infinite paths. This means that Σ �⊥
since the complement of Σ does not contain an infinite path. By the Complete-
ness Theorem we have Σ�⊥. Then by Proposition 3.7 there is a finite subset

32 Formal systems

Σ0 ⊆ Σ and n ∈ N such that all strings σ ∈ 2∗ of length n are derivable from
Σ0 by the Given Strings and the Lengthening Rules only. But Σ0 ⊆ Σ and Σ
is closed under the Lengthening Rule, so Σ contains all strings of length n.
That means that T does not contain any strings of length n, and as it is closed
downwards all strings in T must have length less than n. Hence T is finite.

This has been a long and detailed discussion of one particular formal system.
It was nice that the system has some elegant mathematics and that the now
familiar König’s Lemma comes for free from the proof-theoretic analysis and
the Completeness Theorem. But it may not be obvious at this stage what the
formal system has to do with logic, and where the strange idea of semantics
we have discussed comes from.

As hinted already, there are many possible answers to this question. The
simplest one arises by trying to analyse a problem into many cases. Consider
a problem in which all possible situations are described by infinitely many
variables p0, p1, Each pi can take one of two values, 0 and 1 (which
you can think of as ‘false’ and ‘true’ respectively, if you like). A string σ =
s0s1. . .sk−1 ∈ 2∗ represents a situation where pi = si for each i < k and some
unknown values of pi for i � k. Think of this situation as being ‘impossible’
for some specific reason to do with the problem in hand; the situation is known
to be impossible because of the values of pi for i < k, irrespective of the values
of pi for i � k. Then a set Σ of strings represents a set of situations all known
to be impossible. Now we may review the proof rules with this interpretation:
if σ = s0s1. . .sk−1 ∈ 2∗ is impossible irrespective of what sk is, then σ0 and σ1
both represent impossible situations. This is a reasonable justification for the
Lengthening Rule. Also, if σ = s0s1. . .sk−10 and σ = s0s1. . .sk−11 are both
impossible, then σ = s0s1. . .sk−1 is also impossible because pk can only be
either 0 or 1, not anything else. And this is a reasonable justification for the
Shortening Rule.

Now consider a set Σ listing all impossible situations for the problem at
hand. Some situation is possible if it is described by a unique value from 0, 1
for every pi, and no finite string of such values is in Σ. Thus a situation is possi-
ble if it is described by an infinite path that avoids Σ completely. This is clearly
related to the notion of semantics we were studying above. In particular, Σ�σ
means that if every τ ∈ Σ is impossible then so is σ . The special case of this,
Σ�⊥, means that every situation is impossible, since the empty string does not
specify any value for any pi. We will use the symbol ⊥ throughout the rest of
the book to denote the impossible situation, i.e. to denote a contradiction.

As already mentioned, the system here is a fragment of ‘ordinary logic’;
see Example 7.27 where it is explained how to embed this system into propo-

3.2 Examples and exercises 33

sitional logic (a traditional system of logic involving the connecting words
‘not’, ‘and’ and ‘or’). In fact slightly more is true: we could formulate the
whole of propositional logic in the way indicated in this chapter using trees
and ‘possible situations’. Example 7.28 gives some details. But correct as
this might be, it is not the whole story, as logic should also relate to natural
mathematical deductions in systems looking very similar to the actual kinds
of arguments used as part of mathematical work. The system of this chapter
and this retrospective overview of it seems to show that, at a minimum, some
sort of case-by-case analysis is required for correct deductions, and a tree is a
useful tool for analysing such deductions. In the next chapter we shall look at
a more natural alternative technique for proof, that replaces the mode of proof
based on a tree of ‘bad’ or ‘impossible’ situations with the very familiar rule
of ‘Reductio Ad Absurdum’ instead.

3.2 Examples and exercises

The main point of this chapter has been to present an example of a formal
system and show that the analysis of even quite simple formal systems can be
mathematically interesting. For beginners, perhaps the most important thing to
learn is the way induction on length of derivations is used. This is the focus of
the first exercises.

For the next few exercises, σ ranges over elements of 2∗ and Σ0 is the set

{0, 10, 110, 1110, . . .} .

Exercise 3.14 Prove that Σ0 �σ implies that σ contains at least one 0. (Use
induction on the length of a derivation.)

Exercise 3.15 Show that Σ0 � �⊥.

Exercise 3.16 Let σ = 111. . .1 be a string of 1s (i.e. not containing any 0).
Use induction on the length of σ to show that Σ0 ∪{σ}�⊥.

Exercise 3.17 Let σ be a string containing at least one 0. Show that Σ0 �σ .

Exercise 3.18 Prove that there is a unique maximal element Σ+ in

X = {Σ ⊆ 2∗ : Σ0 ⊆ Σ and Σ � �⊥} .

(Here, X is ordered by ⊆.) Say what this maximal element Σ+ is. Say why it is

34 Formal systems

maximal and the only such maximal element in X . (Hint: Zorn’s Lemma will
not help you here. Argue directly.)

Exercise 3.19 Say what the path p = 2∗ \ Σ+ is, and justify your assertion.

Exercise 3.20 Use the Soundness Theorem to show that, for all σ ∈ Σ0,

Σ0 \ {σ} ��σ .

(Hint: define a suitable infinite path passing through σ .)

Thus Σ0 is an infinite non-trivial set of strings which does not prove the
whole of 2∗ and for which each σ ∈ Σ0 cannot be removed without changing
the set of consequences of Σ0. The fact there are such sets is quite interesting
in itself. For other systems, the existence of such sets is often a particularly
challenging question.

Exercise 3.21 Say that a set Σ ⊆ 2∗ is consistent if Σ � � ⊥. Give as many
possible interpretations as you can of what it means to say that Σ is consistent.
If you use the Completeness Theorem or the Soundness Theorem anywhere,
state which one you use at the point where it is needed.

Exercise 3.22 Give an algorithm that decides, on input a finite set Σ ⊆ 2∗ and
σ ∈ Σ∗, whether Σ�σ . Prove your algorithm always gives the correct answer.

The next exercises discuss other formal systems, and the fun of investigating
these is left up to you.

Exercise 3.23 A system P has symbols |, − and = and the following rules.

• You may write down |−|= | |.
• If you have written down σ you may write down |σ |.
• If you have written down σ =τ you may write down σ |= |τ .

Suggest a possible semantics for this system and state and prove the corre-
sponding Soundness and Completeness Theorems.

Exercise 3.24 In the MIU system (Hofstadter [6]) there are three symbols M,
I, and U. These can be combined to form strings of symbols, such as MIUUII.
The rules are as follows.

• You may write down MI.
• If you have written down σ I you may write down σ IU.
• If you have written down Mσ then you may write down Mσσ .

3.3 Post systems and computability* 35

• If you have written down σ IIIτ then you may write down σUτ .
• If you have written down σUUτ then you may write down στ .

Which of the following can be derived using these rules?

(i) MIU
(ii) MUIMUI

(iii) MIUU
(iv) MUIUIU
(v) MIUUIIUUI

(vi) MIIIIIIII
(vii) MIIIIIII

(viii) MIIIIII
(ix) MU

Justify all your assertions by providing proofs.

Exercise 3.25 ‘But that’s semantics. I’m not here to discuss semantics!’ How
many times have you heard a politician (or anyone else) say that? Assuming
that politicians do not concern themselves with semantics at all, discuss what
it is that politicians actually do.

3.3 Post systems and computability*

There have been many attempts to define the notion of ‘formal system’ and
study them in generality, rather than on a case-by-case basis. Unfortunately
the notion of ‘formal system’ is a little difficult to pin down. For example,
it is natural to focus on systems based on strings of symbols taken from a
finite alphabet, though some of the examples towards the end of this book will
require us to look at very large infinite alphabets too.

With this proviso in mind, we can present here a large family of formal
systems, called Post systems after Emil Post, which cover a surprisingly large
range of applications.

Definition 3.26 A Post system comprises a finite set of symbols A, called the
alphabet, another finite set of symbols V , disjoint from A and called the set of
variables, and a finite set of rules of the form

σ1, . . ., σk

τ
where σ1, . . ., σk, τ are finite strings of symbols from A∪V and k ∈N is possi-
bly 0. The idea is that this rule represents the derivation rule ‘if σ1, . . ., σk have
been written down (where each variable in the σi represents an arbitrary finite

36 Formal systems

string of symbols from A), then τ may be written down (with any variables in
τ substituted by the appropriate string from A)’. The strings σi are called the
premises of the rule and τ is the conclusion.

These rules replace the Lengthening and Shortening Rules of the main sys-
tem discussed in this chapter. In fact, Lengthening and Shortening are special
cases, and can be written as

x
x0

,
x

x1
,

y0, y1
y

in the new notation, where x, y are variables. Note that although these vari-
ables represent arbitrary strings of 0s and 1s, each instance of a variable must
represent the same string in each usage of the rule.

The Given Strings Rule, which says that in a derivation from a set Σ you
may write down any σ ∈ Σ, is available and present in all Post systems.

A great number of systems, even ones that are not themselves Post systems,
can be simulated by Post systems. The usual trick is to take a system S with a
finite alphabet, and add new symbols to the alphabet. Then by careful addition
of further symbols and rewriting the rules of S by rules in the Post style, it is
often possible to come up with a Post system SP such that Σ�σ in S holds if
and only if Σ�σ in SP. The following example gives the basic idea, but more
complex examples require some skill to find the right alphabet and proof rules.

Example 3.27 Developing on the system of Exercise 3.23, we devise a formal
system with symbols |, ∗ and = and the following rules.

• You may write down |∗ |= |.
• If you have written down σ ∗τ =ρ you may write down σ |∗τ =χ ,

provided τ −ρ =χ is also provable in the system of Exercise 3.23.
• If you have written down σ ∗τ =ρ you may write down σ ∗τ |=χ ,

provided σ −ρ =χ is also provable in the system of Exercise 3.23.

This is not itself a Post system, but can be simulated by a Post system. The
trick is to add the extra symbol − to the alphabet and combine the rules of the
two systems into one large system. In this case the Post-style rules are

|−|= | | ,
x
|x | ,

x=y
x |= |y ,

and

|∗ |= | ,
x∗y=z, y−z=w

x |∗y=w
,

x∗y=z, x−z=w
x∗y |=w

where x, y, z, w are variables. (Note the use of Post rules with empty premises
on the top to get us started. This is allowed in the definition.)

3.3 Post systems and computability* 37

Post systems, like the vast majority of other formal systems on finite alpha-
bets, are partially computable. A computer program can be written to check
that a formal derivation does indeed follow all the rules precisely, and also,
given a finite input set Σ it is possible to write a computer program that gen-
erates all possible σ such that Σ�σ . Such a program starts by writing down
each string in Σ and then repeatedly checks every combination of strings writ-
ten down and every rule to see whether that rule can be applied, and if so writes
down the result. Thus the computer program will generate a (possibly endless)
sequence of strings.

This gives a partial answer to Exercise 3.22 on decidability in the case of
a general Post system: to see whether Σ�σ we start our program and wait
to see whether σ is written down. If σ does have a formal derivation it will
indeed be written down and we will have our answer. However, if σ does not
have a formal derivation our computer program most likely will continue for
ever. Thus the program will never tell us that σ is not ever written down. So
this program does not provide a full algorithm deciding provability in the Post
system. In fact there are Post systems for which provability is not decidable by
a computer program.

Post systems provide an elegant introduction to the theory of computability.
It turns out that any computer program can also be simulated by a Post sys-
tem, and thus Post systems are effectively a formal mathematical model of a
computer. There are therefore many links between formal systems and com-
putability, and this is a subject that could take up a separate book. Instead of
getting side-tracked even further, I direct the reader to several excellent texts
that provide more information on computability and its links with logic, for
example those by Boolos and Jeffrey [2] and by Cutland [4].

4

Deductions in posets

4.1 Proving statements about a poset

The last chapter set out a formal system for which we had to work quite hard to
find a mathematically interesting semantics. In this chapter we study another
formal system for which the intended semantics is clear: it is about deductions
one can make in a poset or family of posets. In fact, the proof system we shall
give here provides a formal version of the sorts of arguments you may already
have used in an informal way when formulating an argument about a poset.

Amongst other things, we introduce here the important idea of subproofs
and the Reductio Ad Absurdum Rule that will be used in this system and other
systems throughout the rest of this book. Our logical analysis of posets will
result in some useful, though technical, existence theorems. As a corollary we
will deduce a nice result about converting a partial order into a linear order.

Suppose we have a poset X and elements a, b, c, d ∈ X . We might be inter-
ested in determining which of these four elements is less than or greater than
which of the others. If we know a small number of facts about them, we can
sometimes deduce other facts.

For example, if we know that a < b and b < c then we can deduce that a < c
by the transitivity axiom of a partial order. Similarly, if we know that b < c
and d �< c we can deduce that d �< b.

Can we describe all such deductions somehow? And more importantly, can
we put our theory of deductions to good mathematical use in the theory of
partial orders – similar to the way in which König’s Lemma was connected to
the theory of trees? The answer to these questions turns out to be yes, and such
a theory of deductions can be an important tool in understanding some rather
complicated partial orders.

We start by formulating some of the methods by which such statements can
be proved or deduced. In doing this I shall change the meaning of the symbol ⊥

38

4.1 Proving statements about a poset 39

and will use it in this chapter to mean ‘contradiction’ or ‘false’. It is possible
that you are used to a different symbol to mean ‘contradiction’ but the use of a
contradiction in ‘proof by contradiction’ or Reductio Ad Absurdum should be
familiar enough. These proofs all follow the pattern: if from some assumption
A it is possible to prove a contradiction, ⊥, then the assumption A must be
false.

We shall now present a list of rules of formal proof about a poset. In doing,
we imagine a non-empty set X . This set X may already be a poset, i.e. have
an order relation < on it, or we might be asking hypothetical questions such
as ‘what happens if b < c and d �< c?’ Therefore it helps to have two separate
symbols for the order, and we use ≺ for the symbol in our formal system, and
< for a real partial order on X (if there is any). Normally, we will be given a set
of statements or assumptions about the relationships between certain elements
of X . These ‘given’ statements may be all of the possible statements true of
the poset X , or only some of them, or they may include statements that are not
in fact true at all, but we wish to test to see what their consequences might be.

Definition 4.1 Let X be a poset, or just a non-empty set. We consider strings
of the form a ≺ b and of the form a �≺ b, where a, b range over elements of X
and where ≺ and �≺ are distinct symbols. The rules of proof about the poset X
are as follows.

• (Given Statements Rule) If a statement is in our set of given statements
or assumptions then it may be deduced (i.e. written down) directly.

• (Transitivity Rule) From statements a ≺ b and b ≺ c we may deduce
a ≺ c.

• (Irreflexivity Rule) From a ≺ a we may deduce ⊥.
• (Contradiction Rule) From a ≺ b and a �≺ b we may deduce ⊥.
• (Reductio Ad Absurdum (RAA) Rule) If it is possible to deduce ⊥

from the current assumptions together with an additional assumption
s (of the form a ≺ b or a �≺ b) then the opposite, or negation, of s
(i.e. a �≺ b or a≺ b, respectively) may be deduced without the additional
assumption.

Note particularly that any assumption whatsoever may be introduced as the
new assumption of a Reductio Ad Absurdum Rule. It is usual, however, to
introduce the negation of the statement that you are trying to prove.

Formal proofs are, just as in the last chapter and elsewhere in this book,
finite. That is, if some statement can be deduced from a set of given assump-
tions then there is a finite formal proof of this statement that consists of a list
of other statements taking part in the deduction. But a few remarks about the

40 Deductions in posets

Reductio Ad Absurdum Rule are necessary here. When it is used in a formal
proof it is necessary to indicate a subproof showing the new assumption and
deductions from it. So proofs in a system with Reductio Ad Absurdum are
not simple lists of statements, each following from previous statements, but
are structured lists of statements and subproofs. Note too that the Reductio
Ad Absurdum Rule, when applied carefully, can be nested, so a subproof can
contain other subproofs. In other words the deduction of ⊥ from a statement s
may already contain another ‘subproof’ by Reductio Ad Absurdum from some
other assumption t. If you examine textbooks (including this one) you will
find many such double proofs by contradiction, written in an informal style.
When writing proofs formally, I will denote subproofs and assumptions with a
vertical line indicating the part of the proof where the assumption is valid.

We will look at some examples of proofs next. The first is quite straightfor-
ward as it does not contain any subproofs.

Example 4.2 Let X ⊇ {a, b, c} and consider the following statements as as-
sumptions: a ≺ b, b ≺ c, and c ≺ a. Then these assumptions can prove ⊥.

Formal proof

a ≺ b (1) Given
b ≺ c (2) Given
a ≺ c (3) Transitivity
c ≺ a (4) Given
a ≺ a (5) Transitivity
⊥ (6) Irreflexivity

A simple modification of the above example gives the following.

Example 4.3 Let X ⊇ {a, b, c}. Then from assumptions a ≺ b and b ≺ c we
may deduce c �≺ a.

Formal proof

a ≺ b (1) Given
b ≺ c (2) Given
a ≺ c (3) Transitivity

c ≺ a (4) Assumption
a ≺ a (5) Transitivity
⊥ (6) Irreflexivity

c �≺ a (7) Reductio Ad Absurdum

Similarly, we have the following.

4.1 Proving statements about a poset 41

Example 4.4 Let X ⊇ {a, b}. Then from the assumption a ≺ b we can prove
b �≺ a.

Formal proof

a ≺ b (1) Given

b ≺ a (2) Assumption
a ≺ a (3) Transitivity
⊥ (4) Irreflexivity

b �≺ a (5) Reductio Ad Absurdum

A set of statements Σ involving elements from a set X and a partial order on
X can therefore be used to deduce or prove other statements using the above
rules. As mentioned already, to ‘play the game’ of making a proof, there is
no requirement that the statements in the assumptions be actually true in the
partially ordered set. They are just statements and we are investigating those
strings that are available as conclusions in this formal system.

Definition 4.5 Let Σ be a set of statements involving elements from a set X
and let σ be ⊥ or else a single string, a ≺ b or a �≺ b for some a, b ∈ X .

• Σ�σ means there is a formal proof of the statement σ from the as-
sumptions in Σ and the rules above.

• In particular Σ�⊥ means that there is a formal proof of the contradic-
tion from Σ. We say Σ is inconsistent.

• Σ � �σ means there is no formal proof of σ from Σ.
• In particular Σ � �⊥ means that there is no formal proof of the contra-

diction from Σ. We say Σ is consistent.

Note that, by the rule of given statements above, Σ� σ for every σ ∈ Σ.
Therefore the set of statements provable from Σ is a superset of the set Σ.

Example 4.6 Let X ⊇ {a, b, c}. Then {c ≺ b, a �≺ b}�a �≺ c.

Formal proof

c ≺ b (1) Given
a �≺ b (2) Given

a ≺ c (3) Assumption
a ≺ b (4) Transitivity
⊥ (5) Contradiction

a �≺ c (6) Reductio Ad Absurdum

42 Deductions in posets

We therefore have a system of formal proof, in fact one separate system for
each set of individuals X . We have been able to write down and deduce facts
like a ≺ b and a �≺ b from a set of assumptions Σ, irrespective of whether our
assumptions are true or not, or whether a really is less than b or not. We shall
now attach meanings or semantics to our formal system. To do this we imagine
all possible partial orderings < on our set X , and for each such partial order on
X we consider the set of all statements about elements of X that are actually
true.

Definition 4.7 Let X be a poset. Then the set of statements true in X is defined
to be

TX = {a ≺ b : a, b ∈ X and a < b in X}∪{a �≺ b : a, b ∈ X and a �< b in X} .

We would hope that it should at least be the case that such a set TX is con-
sistent, i.e. TX � �⊥. This is in fact the case, but is a little harder to prove than
might seem at first sight. You might remember from the last chapter that show-
ing some system does not derive some statement is usually proved by induction
using a clever induction hypothesis. That is exactly what happens here, and we
will prove a more general ‘Soundness Theorem’ that will give the consistency
of TX as a corollary.

Definition 4.8 We write Σ � σ to mean: for every poset X , if X makes every
statement in Σ true, X also makes σ true.

Theorem 4.9 (Soundness) Σ�σ implies Σ�σ .

Before I give the proof, I must issue a general warning – one that will be
applicable on many other similar occasions – about how to read this statement.
In particular, if there are no posets making the whole of Σ true, as indeed
happens with the inconsistent set Σ = {a ≺ b, b ≺ c, c ≺ a}, then the statement
of the Soundness Theorem is still valid. For this particular inconsistent set, and
any statement σ (or even the statement ⊥ which is false in all posets) Σ�σ is
a correct assertion because it says that any poset that makes Σ true will make
σ true. In other words, it says that if at any time you managed to find a poset
making Σ true then the statement σ would also be true for this poset. Of course,
the reason this holds is simply because you will always fail to find a suitable
poset. If no structure makes the whole of Σ true, we shall often say that Σ�σ
holds vacuously.

Proof of the Soundness Theorem By induction on the number of steps in a

4.1 Proving statements about a poset 43

formal derivation. The induction hypothesis H(n) is that if p is a proof in the
system given above with at most n steps and p is a proof of σ from a set of
given statements Σ, then σ is true in all posets on X that make all the statements
in Σ true.

Assume H(n) and that a proof p of σ from Σ has n + 1 steps, and consider
the very last step in the proof p.

If it is from the ‘given statements’ rule then σ is in the set Σ so any poset
making Σ true automatically makes σ true. (This easy argument also covers
the base case H(1) of the induction.)

If the last step uses the transitivity rule then σ is a≺ c where a≺ b and b≺ c
have previously been deduced from Σ in at most n steps. Then by H(n) any
partial order < on X making Σ true makes both a ≺ b and b ≺ c true. Thus any
such < has a < b and b < c so, by transitivity of <, a < c and hence the partial
order makes a ≺ c true, as required.

If the last step uses the irreflexivity rule then σ is ⊥ where a ≺ a has previ-
ously been deduced from Σ in at most n steps. Then by H(n) any partial order
< on X making Σ true makes a ≺ a true. But a partial order is always irreflex-
ive so cannot make a ≺ a true, hence we conclude that there is no such partial
order. So as there is no partial order < on X making Σ true it is vacuously the
case that every partial order < on X making Σ true also makes ⊥ true.

If the last step uses the contradiction rule then σ is ⊥ where a ≺ b and a �≺ b
have been deduced from Σ in at most n steps. Then by H(n) any partial order
< on X making Σ true makes both a ≺ b and a �≺ b true. Again, the only way
this can happen is if there is no such partial order. Then we conclude that as
there is no such partial order making Σ true, it is vacuously the case that any
partial order making Σ true makes ⊥ true.

If the last step uses the Reductio Ad Absurdum Rule, it means that σ has
been deduced from Σ by first deducing ⊥ from Σ∪{σ ′}, where σ ′ is the nega-
tion of σ . Thus by H(n) every partial order making Σ∪{σ ′} true also makes
⊥ true, or, put more naturally, there are no partial orders making Σ∪{σ ′} true.
In other words any partial order making Σ true must necessarily make σ ′ false,
and hence must make σ true, as required.

A formal derivation or proof is like the ant’s view of the tree in König’s
Lemma – it is a sort of view from incomplete information about any given
poset, and supports exactly the statement it claims to be true. Like König’s
Lemma, the interesting part here is the converse direction, which in this case
is the statement that if something is true in all posets, then there is a formal
derivation of it. Such a theorem is called a Completeness Theorem as it says
that the rules of derivation are sufficient or complete for the intended applica-

44 Deductions in posets

tion. By switching the implication round to the contrapositive, completeness
theorems can also be seen as mathematical theorems that say certain mathe-
matical structures exist, in this case, saying that certain order relations < exist.
We are going to present our Completeness Theorem in this second form first.

Theorem 4.10 (Completeness) Suppose Σ is a consistent set of statements
about elements of a set X. Then there is a partial order < on X making every
statement in Σ true.

Proof Define a partial order < on X by

a < b if and only if Σ�a ≺ b.

We need to prove that this is a partial order, and that all statements in Σ are
made true by this order.

To see that it is a partial order, we check the axioms. First if Σ� a ≺ b and
Σ� b ≺ c then Σ� a ≺ c by the transitivity rule of deduction. So a < b and
b < c imply a < c. For the irreflexivity axiom, consider a ∈ X . It cannot be
that Σ�a ≺ a, for this would imply Σ�⊥ by the irreflexivity rule of deduction,
contradicting the consistency of Σ. Therefore Σ � �a ≺ a so by our definition it
is not true that a < a.

To show that every statement in Σ is true for this order, suppose a statement
of the form a ≺ b is in Σ. Then Σ� a ≺ b is immediate by the rule on given
statements. If a �≺ b is in Σ then we need to show that Σ � �a ≺ b. (This requires
a little care: it is not the same thing as saying Σ� a �≺ b.) But suppose not,
i.e. suppose Σ�a ≺ b. Then we already have a �≺ b ∈ Σ so from Σ�a �≺ b and
the contradiction rule we have Σ�⊥, which is impossible by the consistency
of Σ.

We already introduced a semantic notion of deduction, Σ � σ . This semantic
deduction is deduction from ‘total mathematical knowledge’. If we knew ev-
erything there is to know about all possible orderings < on X we could decide
questions such as whether Σ�σ .

The Completeness Theorem, in its alternative form, says that anything that
might have been deduced from ‘total mathematical knowledge’ by examining
all of the posets on X can in fact be deduced by a finite formal derivation. In
other words our rules of derivation are complete in the sense that they capture
all possible (semantic) deductions.

Theorem 4.11 (Contrapositive of the Completeness Theorem) Suppose X
is a set, Σ is a set of statements about a partial order on X, and σ is a further

4.1 Proving statements about a poset 45

statement such that Σ�σ . Then there is a formal proof or derivation from the
rules given that Σ implies σ , i.e. Σ�σ .

Proof If not, Σ � �σ , so by the Reductio Ad Absurdum Rule, Σ∪{σ ′} is consis-
tent, where σ ′ is the opposite, or negation, of σ . This is because if Σ∪{σ ′}�⊥
then Σ�σ by Reductio Ad Absurdum. It follows that by the first form of the
Completeness Theorem there would be a partial order < on X making Σ true
and σ false, contradicting the assumption Σ�σ .

The reader should note in the proof of the theorem just given the example of
an informal nested proof by contradiction, i.e. one argument by contradiction
inside another.

Notice also that the Soundness Theorem as originally stated is the exact
converse of this. It says that Σ�σ implies Σ�σ .

We have now proved our Completeness and Soundness Theorems for this
system. But so far in this chapter, despite the new notation and definitions and
care required in separating the objects of discussion (formal derivations) from
our proofs about them, the mathematics has been comparatively straightfor-
ward and no particularly interesting mathematical results have been proved.
This changes with the next theorem, which relies on the following definition
and lemma.

Definition 4.12 Say a statement is positive if it is of the form a ≺ b and
negative if it is of the form a �≺ b.

Lemma 4.13 Suppose X is a non-empty set, and Σ is a consistent set of positive
statements about a partial order on the elements of X. Suppose a, b are in
X and are distinct. Then either Σ∪ {a ≺ b} is consistent or Σ∪ {b ≺ a} is
consistent.

Proof Let us suppose that Σ∪{b ≺ a} is not consistent, so by the Reductio
Ad Absurdum Rule Σ� b �≺ a. Then by the Completeness Theorem and the
consistency of Σ there is a partial order < on X making Σ true, and by the
Soundness Theorem the order < must also make b �≺ a.

We now define a new order � on X as follows:

x � y if and only if either x < y or both x � a and b � y.

We need to show that this is a poset that makes all of Σ true and also makes
a ≺ b true.

To check transitivity, suppose that x � y � z. There are several cases.

46 Deductions in posets

Firstly, if x < y < z we have x < z by transitivity of < so x � z. Secondly,
if x < y and y � a and b � z then x � a and b � z by transitivity so x � z.
Thirdly, if x � a and b � y and y � a and b � z then b � a which is false by
assumption, so this case does not occur. Finally, if x � a and b � y and y < z
then x � a and b � z so x � z. Therefore � has the transitivity property.

Now suppose x � x. This would imply one of: x < x, contradicting irreflex-
ivity of <; or x � a and b � x, implying b � a, another contradiction. Therefore
� has the irreflexivity property.

Note too that a � a and b � b so a � b.
Finally note that every statement in Σ is of the form c ≺ d and true in the

poset X with <. So by construction of � we also have c � d. In other words,
� also makes Σ true.

So this shows that there is a partial order � on X that makes Σ true and
also makes a ≺ b true. Therefore Σ ��a �≺ b and so by the contrapositive of the
Soundness Theorem Σ � �a �≺ b hence Σ∪{a ≺ b} is consistent by Reductio Ad
Absurdum.

Theorem 4.14 (Any partial order may be linearised) Let < be a partial
order on a non-empty set X. Then there is a linear order � on X such that
x < y implies x � y.

Proof Let Σ0 be the set of all positive statements about the partial order < on
X . Let Y be the set of all consistent sets Σ ⊇ Σ0 of positive statements of the
form x ≺ y. We order Y using the usual set-inclusion order, ⊆. Then Y has
the Zorn property since for any chain C ⊆ Y of such Σ the union of this chain⋃

C = {σ : σ ∈ some Σ ∈ Y} contains Σ0 and is consistent. For the latter, note
that if

⋃
C�⊥ then this says there is a proof of ⊥ from

⋃
C. This proof is a

finite object hence uses only finitely many elements from
⋃

C. All of these will
be in some Σ ∈C since C is a chain.

Therefore, by Zorn’s Lemma, there is a maximal element Σ+ of Y , and by
the Completeness Theorem there is some order � on X making Σ+ true. But
for each a, b ∈ X either a ≺ b or b ≺ a is in Σ+, since by the lemma one of
Σ+∪{a ≺ b} or Σ+∪{b ≺ a} is consistent. If Σ+∪{a ≺ b} is consistent then
it cannot be a proper extension of the maximal set Σ+, so a ≺ b∈Σ+. Similarly
for the other case. Therefore the order � making Σ+ true is a linear order. It
also makes all statements in Σ0 true, since Σ0 ⊆ Σ+ and it makes everything in
Σ+ true. Thus x < y implies x ≺ y ∈ Σ0 which implies x � y, as required.

We finish this section with another consequence of Lemma 4.13, which is more

4.2 Examples and exercises 47

‘logical’ in nature. A general theme in many parts of logic is as follows: be-
cause formal proofs are rather special and difficult to come by, we should feel
that having a proof of a statement is often mathematically rather stronger than
just knowing that the statement is true. This is similar to the fact that knowing
a particular infinite path in a tree is often more useful than simply knowing
that the tree is infinite. This observation is particularly relevant when the state-
ment is provable from some ‘weakened’ form of the system, since one then
has to work even harder to get the formal proof. If this intuition is correct,
there should be some nice mathematical consequences when we know a for-
mal proof exists, rather than just knowing the statement is true, and sometimes
the proof itself can be converted to a proof of something better.

Our last result in this section is a rather pretty illustration of exactly this sit-
uation. It says that if a negative statement can be proved from a set of positive
statements then there is a stronger positive statement we could have proved
instead. Of course this only works for the particular system of this chapter,
and the reason it works is Lemma 4.13. The proof uses both Soundness and
Completeness Theorems.

Theorem 4.15 If Σ is a set of positive statements about a partial order < on a
set X and a, b ∈ X are distinct, then Σ�b �≺ a implies that Σ�a ≺ b.

Proof We show the contrapositive, that Σ � �a ≺ b implies Σ � �b �≺ a.
Suppose Σ � � a ≺ b. Then Σ∪{a �≺ b} ��⊥ by the Reductio Ad Absurdum

Rule. So by the Completeness Theorem there is a partial order on X making
Σ and a �≺ b true. By the proof of Lemma 4.13, this shows that there is a
partial order � on X making Σ true and also making b ≺ a true. Hence by the
Soundness Theorem Σ∪{b ≺ a} ��⊥ and Σ � �b �≺ a by the contradiction rule,
as if Σ�b �≺ a then Σ∪{b ≺ a}�⊥.

Of course, no such result can hold without some special condition on Σ such
as it being a set of positive statements. Indeed {b �≺ a}� b �≺ a always holds,
but {b �≺ a} ��a ≺ b.

4.2 Examples and exercises

We have introduced a lot of notation and terminology in this chapter, and some
of it is quite tricky to master at first. For example, there is a big difference
between Σ � �a ≺ b and Σ�a �≺ b. Some of the arguments employed are a little
subtle too, with uses of contrapositive statements and also uses of informal

48 Deductions in posets

proofs by contradiction within a larger argument. Some of the exercises here
investigate these areas further.

The main point of the chapter is to illustrate the key methods of logic, of
formal systems and semantics, applied to a familiar situation. Once again,
the fact that proofs are finite objects is used in several places, for example to
show that a poset of a consistent set of sentences has the Zorn property (in the
proof of the theorem that any partial order may be linearised). The technique
of switching between the point-of-view of formal proofs, or �, and what these
formal proofs mean, or �, using the Completeness and Soundness Theorems
gives useful and interesting mathematical information.

Exercise 4.16 Show that ∅�{a �≺ a}.

Exercise 4.17 Show that:

(i) {a ≺ b, b �≺ c} ��a �≺ c
(ii) {a �≺ b, b ≺ c} ��a �≺ c

(iii) {a �≺ b, b �≺ c} ��a �≺ c

(Hint: use soundness.)

Exercise 4.18 Explain the difference between the two statements Σ � � a ≺ b
and Σ�a �≺ b. Does either one of these imply the other? Justify your answer.

Exercise 4.19 Suppose Σ is a consistent set of statements about elements of a
set X , and a, b ∈ X . Prove that either Σ∪{a ≺ b} is consistent or Σ∪{a �≺ b}
is consistent.

Exercise 4.20 Suppose Σ is a set of negative statements (i.e. of statements of
the form a �≺ b for a, b ∈ X) and suppose σ is positive. Show that Σ � �σ .

The proof we gave of the Completeness Theorem (Theorem 4.10) was rather
specialised to partial orders and does not generalise nicely to other systems.
The following exercise gives an alternative.

Exercise 4.21 Suppose Σ is a consistent set of statements about elements of
a set X . Show that there is Σ+ ⊇ Σ which is maximal in X = {Γ ⊇ Σ : Γ � �⊥},
where Γ ranges over all sets of statements of the form a ≺ b or a �≺ b about
elements of X . Define < on X by a < b if and only if Σ+�a ≺ b. Show that <

is a partial order on X such that Σ+ is precisely the set of statements true for <.

To illustrate this, the following exercise discusses a modification of our sys-
tem to allow for deductions about linear orders.

4.3 Linearly ordering algebraic structures* 49

Exercise 4.22 Add a new rule to the system that says, if a, b are distinct
elements of X such that the statement a �≺ b has been deduced, then b ≺ a may
also be deduced. Also, redefine Σ�σ to mean every linear order making Σ true
must make σ true. State and prove Completeness and Soundness Theorems for
this system. (Hint: for the proof of a Completeness Theorem, follow the idea
of the previous exercise.)

Similar systems can describe preorders and equivalence relations, as the next
two exercises show.

Exercise 4.23 Let X be a set with at least two elements. Consider the following
formal system, where statements are allowed to be of the form a � b where
a, b ∈ X .

The rules of deduction are: (1) the ‘given statements rule’ above; (2) for an
a ∈ X the statement a � a can be deduced; and (3) if a � b and b � c have been
deduced where a, b, c ∈ X then we may deduce a � c.

Prove the following Soundness Theorem that if Σ� a � b then a � b holds
in any preorder on X that makes Σ true. Prove also that ‘Σ� a � b’ defines a
preorder on X that makes Σ true.

Exercise 4.24 Develop a formal system for proofs about an equivalence re-
lation ∼ on a set X . Prove Soundness and Completeness Theorems for your
system.

4.3 Linearly ordering algebraic structures*

In general, the notion of formal proof and the Completeness Theorem can be
regarded as a clever way of organising a poset with the Zorn property and
the consequences of having maximal elements. So in principle, the logical
techniques described in this book can be avoided. That said, in many real-life
situations the correct notion of consistency required is so complicated that it
seems humanly impossible to avoid some of the logical manoeuvres described
in later chapters.

Exercise 4.25 Prove the theorem that any partial order can be linearised by
using Zorn’s Lemma directly.

As an astute reader will have observed, some of the results in this chapter
can be proved without the use of the Axiom of Choice, including (unusually)
the Completeness Theorem. On the other hand, the theorem that any partial
order can be linearised requires some Choice, but it turns out that it is not

50 Deductions in posets

equivalent to the full Axiom of Choice. In the rest of this section we shall look
at other examples where these systems of proof can help organise and prove
some results in algebra related to ordered structures; all of these will require
Zorn’s Lemma or the Axiom of Choice in some way.

We start with abelian groups. Recall that an abelian group is a group G with
binary operation + and identity 0 for which the operation is commutative:
x+ y = y+ x for all x, y ∈ G. We write nx for x+ x+ · · ·+ x where x appears n
times.

Definition 4.26 An ordered abelian group is an abelian group G with a linear
order < on G such that

x < y implies x+ z < y+ z

for all x, y, z ∈ G.
An abelian group G is orderable if there is some linear order < on G making

G into an ordered abelian group.

For example, the group (Z, +) is orderable, and in fact the usual order
satisfies the axiom above. On the other hand, no finite cyclic group is or-
derable since if x is a generator and 0 < x then the axiom above implies
0 < x < x + x < x + x + x < · · · but nx = x + · · ·+ x = 0 where n is the or-
der of x. This contradicts transitivity of <. A similar argument applies when
x < 0.

Definition 4.27 An element x of an abelian group G is torsion if x �= 0 and
there is n > 0 in N such that nx = 0. A group G is torsion-free if there are no
torsion elements of G other than the identity element, 0.

Exercise 4.28 Continue the argument for finite cyclic groups above, showing
that an abelian group with a torsion element x is not orderable.

We want to investigate which abelian groups are orderable. The first step is
to extend the system of Exercise 4.22 and prove Completeness and Soundness
Theorems.

Let our set X of elements be the elements of G, an abelian group. Add a new
rule to the system for linear orders in Exercise 4.22 that says that if a, b, c ∈ X
and a ≺ b has been deduced then a′ ≺ b′ may be deduced, where a′ = a + c
and b′ = b+ c.

Exercise 4.29 Prove that Σ � � ⊥ if and only if G is orderable with a linear
order < making all statements in Σ true; in particular ∅ � �⊥ if and only if G is

4.3 Linearly ordering algebraic structures* 51

orderable. (For completeness, use a Zorn’s Lemma argument similar to that in
Exercise 4.21.)

The next stage is to simplify this proof system so that we can analyse it
algebraically. Using the group operation we can rewrite the statement a ≺ b
as 0 ≺ c where c = b−a ∈ G. Because our orders will be linear, a �≺ b is ‘the
same as’ b ≺ a for a �= b, and we will have no need for negative statements.
So the new simplified system will have statements ⊥ and 0 ≺ a for a ∈ G only.
The new proof rules will be:

• the Given Statements Rule;
• the rule, from 0 ≺ 0 deduce ⊥;
• the rule, from 0 ≺ a and 0 ≺ b deduce 0 ≺ c, where c = a+b;
• the Reductio Ad Absurdum Rule in the form, if from assumption 0 ≺ a

(where a �= 0) you can prove ⊥, then you may deduce 0 ≺ b without
any assumptions, where b = −a is the inverse of a.

Note that the new Reductio Ad Absurdum Rule combines the old Reductio Ad
Absurdum Rule with the rule for linearity of the order. The rule about a+b is
a special case of the rule about the order respecting addition in the group.

We could prove new Completeness and Soundness Theorems for the new
simplified system directly. However, in this case there is a simpler alternative:
to define a translation of one system into the other.

Definition 4.30 We define a translation t of the system of Exercise 4.29 into
the new system by letting the translation t(⊥) of ⊥ be ⊥, t(a ≺ b) be 0 ≺ b−a,
and for a �= b, we let t(a �≺ b) be 0 ≺ a−b. (For a = b the statement a �≺ b is
always provable and may be safely ignored.)

Exercise 4.31 Prove by induction on proofs that a ≺ b is provable in the first
system from Σ implies that t(a ≺ b) is provable in the simplified system from
{t(σ) : σ ∈ Σ}. Also, arguing directly this time, prove a converse to this state-
ment.

Hence deduce Completeness and Soundness Theorems for the new system,
including the statement that Σ � � ⊥ if and only if the group G is orderable in
such a way that every statement in Σ is true for the new order on G.

We are now in a position to prove our converse to Exercise 4.28 and prove
that every torsion-free abelian group is orderable. The main technical result
(giving the induction on length of proofs that is required) is the following.

52 Deductions in posets

Proposition 4.32 Suppose G is torsion-free and abelian, x1, . . ., xk ∈ G are all
non-zero, and

{0 ≺ x1, 0 ≺ x2, . . ., 0 ≺ xk}�0 ≺ y

for some y ∈ G. Then there are ni ∈ N, not all zero, and m ∈ N such that

my = ∑k
i=1nixi.

Proof By induction on the length of proofs. We consider a proof of

{0 ≺ x1, 0 ≺ x2, . . ., 0 ≺ xk}�0 ≺ y

and assume that the statement is true for all x1, . . ., xl , y ∈ G and all shorter
proofs.

The base case is when the ‘given statements’ rule is used to deduce 0 ≺ y
and so y = x j for some j. Then y = ∑k

i=1nixi where n j = 1 and all other ni = 0.
For a proof in which the last step is not obtained using the ‘given state-

ments’ rule, by examining the rules, we see that our proof can take one of
only two forms. Either the last step is the rule ‘from 0 ≺ u and 0 ≺ v deduce
0 ≺ u + v’, or the last step is an instance of Reductio Ad Absurdum. Consid-
ering the first of these we have y = u+ v where u, v ∈ G and shorter proofs of
{0 ≺ x1, 0 ≺ x2, . . ., 0 ≺ xk} � 0 ≺ u and {0 ≺ x1, 0 ≺ x2, . . ., 0 ≺ xk} � 0 ≺ v
and so by induction there are ni

′ ∈ N, not all zero, ni
′′ ∈ N, not all zero,

and p, q ∈ N such that pu = ∑k
i=1ni

′xi, and qv = ∑k
i=1ni

′′xi. Now let m be
the lowest common multiple of p, q, rp = sq = m. If p = 0 let m = q and
r = s = 1, and if q = 0 let m = p and r = s = 1. In each case, note that
my = rpu+ sqv = = ∑k

i=1(rni
′ + sni

′′)xi and as r, s > 0 if either ni
′ or ni

′′ is
non-zero, then so is rni

′ + sni
′′, as required.

Now suppose the last step of the proof is an instance of Reductio Ad Absur-
dum, so that y �= 0 and the proof looks like

Formal proof

. . . (1)

0 ≺−y (2) Assumption
. . . (3)
0 ≺ 0 (4)
⊥ (5) Contradiction

0 ≺ y (6) Reductio Ad Absurdum

Then the conclusion 0≺ 0 in line 4 follows from the given statements 0≺ x1,

4.3 Linearly ordering algebraic structures* 53

0 ≺ x2, . . . , 0 ≺ xk and the additional assumption 0 ≺ −y, and thus by our
induction hypothesis there are m, ni ∈ N (not all zero) such that

0 = m(−y)+∑k
i=1nixi.

Now y �= 0 (otherwise the assumption to the Reductio Ad Absurdum Rule is
not allowed) so if all of the ni are zero we would have my = 0 contradicting the
fact that G is torsion-free. Thus at least one of the ni is non-zero and

my = ∑k
i=1nixi

as required.

Corollary 4.33 Let G be torsion-free and abelian. Then G is orderable.

Proof If not then ⊥ is provable from no given statements. Without any state-
ments previously given the first step must be a subproof with some assumption
0 ≺ y (y �= 0), and the conclusion to this subproof is the contradiction 0 ≺ 0.
Thus by the proposition 0 = ny for some n ∈ N, n not zero. Thus G is not
torsion-free.

We now turn, briefly, to non-abelian groups, i.e. groups where the commutativ-
ity axioms might fail. As is conventional, we revert to multiplicative notation.
Since the group may no longer be abelian we must specify the side that the
action in the axiom ‘a < b implies ac < bc’ takes place.

Definition 4.34 A right-ordered group is a group G with a linear order < on
G such that a < b implies ac < bc for all a, b, c ∈ G. A right-orderable group
is a group G which may be made into a right-ordered group by the choice of
an appropriate order.

It is not so easy to give a purely algebraic criterion that describes when a
group G can be ordered in such a way that it becomes a right-ordered group.
However, the analogue of Exercise 4.29 holds.

Exercise 4.35 Let X be the set of elements of a group G. Add a new rule to the
system for linear orders in Exercise 4.22 that says that if a, b, c ∈ X and a ≺ b
has been deduced then a′ ≺ b′ may be deduced, where a′ = ac and b′ = bc.
Prove that Σ � � ⊥ if and only if there is a linear order on X making G into
a right-ordered group in which all statements in Σ are true, and in particular
∅ � �⊥ if and only if G is right-orderable.

54 Deductions in posets

The following exercise gives a family of examples that are right-orderable.
In attempting it, it may be helpful to know that any set such as Ω has a well-
order, i.e. a linear order in which every non-empty subset has a least element.
(This fact about well-orders can be proved from Zorn’s Lemma and is in fact
equivalent to the Axiom of Choice.)

Exercise 4.36 Let G be a group of permutations of a linearly ordered set
Ω, i.e. each g ∈ G is a bijection g: Ω→Ω, with the group operation being
composition of maps. The order on Ω will be denoted �. Suppose each g ∈ G
respects � in the sense that x � y implies g(x)� g(y) for each x, y∈Ω. Show
that G is right-orderable.

The ‘simplified system’ for orderable abelian groups that we looked at above
concerns specifications of which elements are positive, i.e. for which a we have
0 < a. A related result on orderability of fields goes via specifying the positive
elements in a field.

Definition 4.37 A field F is an ordered field if it has a linear order < such that
x < y implies x + z = y + z for all x, y, z ∈ F and x < y implies xz = yz for all
positive x, y, z ∈ F . The field F is orderable or formally real if there is such an
order that can be defined on F .

Definition 4.38 Let F be a field. A pre-positive cone of F is a set P ⊆ F which
is closed under addition and multiplication, contains 1 but does not contain 0,
and contains all x2 for x �= 0 in F . A positive cone of F is a maximal pre-
positive cone P ⊆ F .

Exercise 4.39 Use Zorn’s Lemma to show that a pre-positive cone of a field F
is always contained in a positive cone.

Exercise 4.40 Let P be a positive cone of F . Define < by x < y if and only
if y− x ∈ P. Show that this defines a linear order on F that makes F into a
ordered field.

Exercise 4.41 Deduce that F is orderable if and only if F has a pre-positive
cone, and that this is the case if and only if no finite sum of non-zero squares
from F equals −1.

Exercise 4.42 Reinterpret these results as a formal system, proving Soundness
and Completeness Theorems for your system.

5

Boolean algebras

5.1 Boolean algebras

Partially ordered and linearly ordered sets may be interesting but they are not
really ‘logic’ in the usual sense of the word: they do not represent logical state-
ments nor do they model logical operations such as ‘not’, ‘and’, or ‘or’. We
are now going to investigate special kinds of posets called boolean algebras,
the elements of which can be used to represent logical propositions.

We start by adding extra operations such as ‘and’, ‘or’, and ‘not’ to a poset,
turning it into a boolean algebra. (But it turns out that it is much more con-
venient to look at non-strict posets with an order relation �, though you may
take a strict partial order and change it to a non-strict order as explained be-
fore.) The axioms for a boolean algebra are given in three groups, making up
the axioms for a lattice, a distributive lattice and a boolean algebra proper. We
give each group separately.

Definition 5.1 A lattice is a poset X with non-strict order � such that every
pair of elements x, y of X has a greatest lower bound denoted inf(x, y) or x∧ y
satisfying

x∧ y � x and x∧ y � y

and also

z � x and z � y imply z � x∧ y

for all z ∈ X ; furthermore, every pair of elements x, y of X has a least upper
bound denoted sup(x, y) or x∨ y satisfying

x∨ y � x and x∨ y � y

and also

z � x and z � y imply z � x∨ y

55

56 Boolean algebras

for all z ∈ X .

Exercise 5.2 Let X be a poset. Suppose a, b ∈ X are both greatest lower
bounds of x, y ∈ X , i.e. suppose that a � x, a � y, b � x and b � y (so both
a, b are lower bounds of x, y) and that whenever z satisfies z � x and z � y then
z � a and z � b (so both a, b are greatest lower bounds of x, y). Show that a = b.
Thus there can be at most one greatest lower bound x∧y of x, y ∈ X . Similarly,
show that there can be at most one least upper bound x∨ y of x, y ∈ X .

Exercise 5.3 Show that any linearly ordered set is a lattice.

Exercise 5.4 Show that any finite poset is a lattice.

Exercise 5.5 Find an infinite poset which is not a lattice.

Definition 5.6 A distributive lattice is a lattice X such that the distributivity
axioms hold for ∧ and ∨, i.e.

x∧ (y∨ z) = (x∧ y)∨ (x∧ z)

and

x∨ (y∧ z) = (x∨ y)∧ (x∨ z)

for all x, y ∈ X .

Example 5.7 If X is an infinite set, the set F of all finite subsets of X forms a
distributive lattice under ⊆.

Example 5.8 Let A = {0, 1, 2, 3, 4} be the poset where 0 < 1 < 2 < 4, 0 <

3 < 4 and no other relations between these elements hold. Then A is a non-
distributive lattice. (Exercise: compute 1∧ (2∨3) and (1∧2)∨ (1∧3) in A.)

Example 5.9 Let B = {0, 1, 2, 3, 4} be the poset where 0 < 1 < 4, 0 < 2 < 4,
0 < 3 < 4 and no other relations hold. Then B is also a non-distributive lattice.
(Exercise: compute 1∧ (2∨3) and (1∧2)∨ (1∧3) in B.)

Remark 5.10 The last two examples are typical of non-distributive lattices: in
fact, every non-distributive lattice contains a copy of either A of Example 5.8
or B of Example 5.9. An ambitious reader might try to prove this as a more
difficult exercise.

Definition 5.11 A boolean algebra is a distributive lattice X containing two

5.1 Boolean algebras 57

special elements denoted ⊥, � (also sometimes denoted 0, 1, or F , T , respec-
tively) and having a function X →X called complementation or negation writ-
ten ′ (or ¬ or c) such that:

(i) ⊥ is the minimum element of X and � is the maximum element of X ,
i.e. ⊥ � x and x � � for all x ∈ X ;

(ii) for all x ∈ X the complement x′ of x satisfies x∧x′ = ⊥ and x∨x′ = �.

Example 5.12 The poset 2 = {�, ⊥} with ⊥ < � is a boolean algebra when
we define �′ =⊥, and ⊥′ =�. You can check that ⊥∧⊥=⊥∧�=�∧⊥=
⊥∨⊥ = ⊥ and �∧� = ⊥∨� = �∨⊥ = �∨� = � all hold, as expected.

Example 5.13 If X is a non-empty set, the poset P(X) of all subsets of X
with the usual ⊆ is a boolean algebra where ⊥ = ∅, � = X , A′ = X \ A (set
complementation) and A∧B = A∩B, A∨B = A∪B.

Example 5.14 The poset with a single element (simultaneously called both �
and ⊥) is, according to the axioms given above, a boolean algebra, called the
improper or degenerate algebra. This algebra is not particularly interesting or
useful, but does come up occasionally, e.g. when we are studying contradictory
systems.

The following proposition gives a useful alternative list of properties of ∧,
∨ and �, ⊥ in a boolean algebra.

Proposition 5.15 The following hold for all elements a, b, c in a boolean
algebra X

(i) a∧a = a∨a = a
(ii) a∧b = b∧a and a∨b = b∨a

(iii) a∧ (b∧ c) = (a∧b)∧ c and a∨ (b∨ c) = (a∨b)∨ c
(iv) a∧ (a∨b) = a∨ (a∧b) = a
(v) a∧ (b∨ c) = (a∧b)∨ (a∧ c) and a∨ (b∧ c) = (a∨b)∧ (a∨ c)

(vi) ⊥∧a = ⊥, ⊥∨a = a, �∧a = a and �∨a = �
(vii) a∧a′ = ⊥ and a∨a′ = �.

Additionally, we have alternative characterisations of the order relation in a
boolean algebra. For all a, b the following are equivalent: a � b; a∧ b = a;
a∨b = b; b′ ∧a = ⊥; and a′ ∨b = �.

Proof The first three parts are easy and are left as an exercise.
For part (iv), note that a∨b � a so a is the greatest lower bound of a∨b, a,

i.e. a∧ (a∨b) = a. Similarly a, a∧b � a so a∨ (a∧b) = a.

58 Boolean algebras

The distributivity laws were already given as axioms of boolean algebras so
there is nothing to prove in the next point.

Since ⊥ is the least element, it must be the greatest lower bound of itself and
any other a ∈ X . Hence ⊥∧a = ⊥. The other three equations in this group are
similar.

The statements a∧ a′ = ⊥ and a∨ a′ = � were also given as axioms for
boolean algebras.

If a � b then a is a lower bound for b and hence the greatest lower bound for
a, b together. Conversely if a∧ b = a then a is a lower bound for b so a � b.
The next case is similar. If a′ ∨b = � then doing ‘a∧’ to both sides and using
distributivity we have the left hand side is equal to

a∧ (a′ ∨b) = (a∧a′)∨ (a∧b) = ⊥∨ (a∧b) = a∧b

and this equals the right hand side, which is a∧�= a, so a∧b = a. Conversely
doing ‘a′∨’ to both sides of a∧b = a and using distributivity gives a′ ∨b = �.
The other case is similar.

The last part of this proposition shows that the order relation in a boolean alge-
bra can be defined in terms of ∧ or ∨. This gives us another way of specifying a
boolean algebra as an algebraic structure somewhat like a ring, with operations
∧, ∨ , ′ and elements �, ⊥ and defining � from these.

Proposition 5.16 Let (X , ∧, ∨, ′, �, ⊥) be an algebraic structure satisfying
properties (i)–(vii) in Proposition 5.15 for all a, b, c ∈ X. Define � on X by
any of the clauses given in the last part of the proposition. Then this makes
X into a boolean algebra, with the sup and inf operations being ∨ and ∧, and
with maximum and minimum elements � and ⊥.

Proof It is necessary to check that � is a partial order satisfying the axioms in
Definition 5.11. Left as an exercise.

We can thus swap between our view of a boolean algebra as a poset or as an
algebraic object like a ring at will, just like we swap between our views of a
strict and non-strict poset.

Purists would read �, ⊥ as ‘top’ and ‘bottom’, respectively, and ∧, ∨ as
‘meet’ and ‘join’. However, the symbols �, ⊥ are often read as ‘true’ and
‘false’, and ∧, ∨ as ‘and’ and ‘or’. ‘Or’ is always inclusive or, i.e. meaning
one or the other or both. The complementation operation is ‘not’, especially
when it is written as ¬.

The mathematically rather common implication, ‘if a then b’, often causes

5.1 Boolean algebras 59

some consternation, since from the point of view of natural language we nor-
mally expect this to be true only when a and b have something to do with each
other. (So ‘if the sky has dark clouds then it will rain’ seems quite reason-
able, but ‘if there are small green men on Mars then it is raining’ seems as if
it should be false, because what have the strange creatures on Mars got to do
with our rain? But on the other hand, if it really is raining, surely the statement
is true whatever might be on Mars? And, if there are no small green men on
Mars, is the statement not vacuously true anyway?) There is no mathematical
symbol that captures exactly this ‘natural’ idea of ‘if a then b’ where a should
be relevant to b, but the � in the boolean algebra does quite a good job in all
other respects. Think of a � b as saying that b is at least as true as a. Then
a � b is quite a good mathematical definition for ‘if a then b’, even if it does
not capture all the nuances of natural language.

By the last part of Proposition 5.15, a � b is equivalent in a boolean algebra
to the statement that a′ ∨b = �, or in words ‘not-a or b’.

We investigate this order relation as ‘implies’ or ‘if. . . then. . . ’ in the next
few propositions. The first of these says that if a implies b then a and c implies
b and c, and with something similar for ‘or’.

Proposition 5.17 Let B be a boolean algebra with a, b, c ∈ B and a � b. Then
a∧ c � b∧ c and a∨ c � b∨ c.

Proof For a∧c � b∧c it suffices to observe that a∧c � a � b and a∧c � c so
a∧ c is a lower bound of both b, c hence is less than or equal to the least such
lower bound.

For a∨ c � b∨ c argue similarly using a � b � b∨ c and c � b∨ c.

The next proposition is the law of contraposition: the contrapositive of ‘a im-
plies b’ is ‘not-b implies not-a’. As shown here, an implication and its contra-
positive are equivalent.

Proposition 5.18 Let B be a boolean algebra and suppose a � b. Then b′ � a′.

Proof If a � b then

b′ = b′ ∧ (a′ ∨a) � b′ ∧ (a′ ∨b) = (b′ ∧a′)∨ (b∧b′) = b′ ∧a′

so b′ � a′.

Proposition 5.19 Let B be a boolean algebra and suppose b′ � a′. Then a � b.

60 Boolean algebras

Proof Exercise, to be done in a similar way. Or use the previous result and
Proposition 5.22 on Uniqueness of Complements below, where it is shown that
x′′ = x in any boolean algebra B.

The next proposition is often useful. It says that to determine whether a state-
ment a holds it suffices to consider two cases: one where b is true, and one
where it is false. Of course b can be any proposition at all. (It can even be a
itself, in which case the proposition would be a triviality.)

Proposition 5.20 Let B be a boolean algebra and suppose a, b ∈ B. Then
(a∧b)∨ (a∧b′) = a.

Proof By the distributivity laws,

(a∧b)∨ (a∧b′) = a∧ (b∨b′) = a∧� = a

as required.

There is a similar dual statement, with ‘and’ and ‘or’ swapped over.

Proposition 5.21 Let B be a boolean algebra and suppose a, b ∈ B. Then
(a∨b)∧ (a∨b′) = a.

Proof Exercise.

Finally, we have an important result concerning ‘not’.

Proposition 5.22 (Uniqueness of Complements) Let B be a boolean algebra,
with a, b ∈ B, and suppose that a∧ b = ⊥ and a∨ b = �. Then b = a′. In
particular x′′ = x for all x ∈ B.

Proof Assume that a∧b = ⊥ and a∨b = �. Then

a′ = a′ ∨⊥ = a′ ∨ (a∧b) = (a′ ∨a)∧ (a′ ∨b) = �∧ (a′ ∨b) = a′ ∨b

by distributivity, so a′ � b, and similarly

a′ = a′ ∧� = a′ ∧ (a∨b) = (a′ ∧a)∨ (a′ ∧b) = ⊥∨ (a′ ∧b) = a′ ∧b

so a′ � b. Hence a′ = b.
Now let a in the previous paragraph be x′, and put b = x. Then x′ ∧ b = ⊥

and x′ ∨b = �, hence b = x′′.

5.2 Examples and exercises 61

5.2 Examples and exercises

Exercise 5.23 Carry out the procedure that starts with a boolean algebra as
an algebraic structure (X , ∧, ∨, ′, �, ⊥) satisfying the statements in Proposi-
tion 5.15, defining an order relation by a � b if and only if a∧b = a and then
verifying that the poset obtained has the properties in Definition 5.11.

Exercise 5.24 Show that in any boolean algebra the expressions (a∧ b)′ and
(a′ ∨b′) are equal.

Exercise 5.25 Let B be a boolean algebra. Show that the complementation
operation ′: B→B is one-to-one and onto.

Exercise 5.26 The following statements are all intuitively correct. (To verify
that they are valid, just multiply the first equation by 2 or 0.)

(a) 1 = 1 implies 2 = 2; (b) 1 = 2 implies 2 = 4; (c) 1 = 2 implies 0 = 0.
On the other hand the following is not a correct implication:

(d) 1 = 1 implies 2 = 4.
Assuming that a mathematical implication a implies b only depends on the

truth of a and b, and writing → for ‘implies’, deduce that mathematical im-
plication should be fully determined by the following rules: (�→�) = �;
(�→⊥) = ⊥; (⊥→�) = �; (⊥→�) = �.

5.3 Boolean algebra and the algebra of Boole*

The name ‘boolean algebra’ celebrates the contributions of George Boole to
logic. In fact, Boole’s work is so important that the word ‘boolean’ has en-
tered the language and is conventionally spelled without a capital letter. Boole
was the first to employ algebraic techniques in logic and is rightly commemo-
rated for his contributions to logic, particularly in his books The Mathematical
Analysis of Logic (1847) and An Investigation of the Laws of Thought (1854).
However, in keeping with the traditions of the time, Boole never wrote down
a full set of axioms for his algebra, and it is not quite clear how one might
describe the algebra of Boole in modern terms.

Certainly the symbols ∧ and ∨ post-date Boole’s work by many years. Boole
instead used multiplication and addition operations, in what seems like a ring-
like structure. It is commonly believed (especially by those who have not read
Boole’s books) that Boole worked in what are now called boolean rings.

62 Boolean algebras

Definition 5.27 A boolean ring is a ring R which is commutative with 1 and
for which x2 = x for all x ∈ R.

Exercise 5.28 Given a boolean ring R, show that by defining a∧ b = ab and
a∨b = ab+a(1−b)+(a−1)b on R, we obtain a boolean algebra.

Exercise 5.29 Given a boolean algebra, we can define a boolean ring on the
same set by ab = a∧b and a + b = (a∨b′)∧ (a′ ∨b). If this is applied to the
boolean algebra resulting from the previous exercise we recover the original
addition operation in R.

Exercise 5.30 Show that x + x = 0 holds for all x in a boolean ring R. In
particular all boolean rings have characteristic 2, i.e. 1+1 = 0.

Exercise 5.31 Let R be a commutative ring with 1 and let I ⊆ R be the ideal
generated by all elements x(1−x) with x ∈ R. Show that R/I is a boolean ring,
in fact the largest quotient of R which is a boolean ring.

The operations taking a boolean algebra to a boolean ring and back again
described in the last few exercises are inverse to each other. However, Boole’s
algebra was not that of boolean rings, since (for example) there are a number
of places where he carefully includes a coefficient ‘2’ – indeed he sometimes
divides by 2 – and yet 1+1 = 0 holds in any boolean ring.

Instead, it seems that Boole’s algebra was of a ring R which is commutative
and has 1, in which there are no additive or multiplicative nilpotent elements
at all (meaning nx = x + x + · · ·+ x �= 0 for all n �= 0 and all x �= 0, and xn =
xx· · ·x �= 0 for all n and all x �= 0), but some elements x of R have the (for
the time, counter-intuitive) property of being idempotent elements, i.e. x2 = x.
Boole would call such x elective elements.

For an example of such a ring, consider a non-empty set X of individuals and
consider R to be the set of functions f : X →R with componentwise addition
and multiplication, (f + g)(x) = f (x) + g(x) and (f g)(x) = f (x)g(x). Then
the characteristic function of a subset A ⊆ R, defined by χA(x) = 1 if x ∈ A
and χA(x) = 0 otherwise, is idempotent and represents the set of individuals
A. This particular ring can thus be seen to contain a representation of the set
P(X) of all subsets of X and the idempotents in it are very closely related to
the boolean algebra P(X) with ⊆ , ∪ , ∩.

The mathematical part of Boole’s work in logic can be seen then to be an
investigation into the properties of elective, or idempotent, elements of such a
ring R, and of functions of such elective arguments. In more modern terms, the

5.3 Boolean algebra and the algebra of Boole* 63

set E ⊆ R of electives or idempotents is not a subring of R, but may be made
into a boolean ring by redefining the addition operation on it to be x⊕ y =
x + y− 2xy. The development of boolean algebra from Boole’s algebra came
some time later.

6

Propositional logic

6.1 A system for proof about propositions

We are going to develop a formal system for proofs about boolean algebras,
just as in a previous chapter we developed one for posets. It will also be rich
enough to simulate proofs in the systems given in Chapters 3 and 4, though
we will not be in a position to explain the precise connections until Chapter 7.
(For this, please see Examples 7.27 and 7.29.)

The system will contain objects representing elements of a boolean algebra
that say things such as a � b and a = b, but there is a subtle and rather elegant
point here: with our extra symbols for ∧, ∨ , ′, �, ⊥ we do not need to use
either of the symbols < or �, since a � b holds if and only if a′ ∨b = �. In-
stead, the statements in our system will be elements of the boolean algebra – or
rather terms representing elements in the boolean algebra – and if a statement
is provable or derivable we shall think of it as being true, or equal to �.

The next definition explains the terms which will represent elements of some
boolean algebra.

Definition 6.1 Let X be any set, which for this definition will be called a set
of propositional letters. The set of boolean terms BT(X) over X is defined as
a set of expressions, or strings of symbols, from a set of symbols including
(,), ∧ , ∨ , �, ⊥, ¬ and all elements of X , as follows.

• ⊥ and � are both boolean terms over X .
• Any element a of X is a boolean term over X .
• If t is a boolean term over X then so is ¬ t.
• If t and s are boolean terms over X then so are (t ∧ s) and (t ∨ s).
• No other object r is a boolean term unless it can be obtained by finitely

many applications of the previous four rules.

64

6.1 A system for proof about propositions 65

Example 6.2 If X = {a, b, c} then �, a, ((a∧¬b)∨ c), ((a∧¬b)∨ c), and
¬⊥ are all distinct boolean terms over X .

Note that two terms such as � and ¬⊥, or (a∧ a) and (a∨ a), count as
distinct terms since they are different as strings of symbols, even though they
will evaluate to the same object in any boolean algebra.

Definition 6.3 Let X be a set, and let BT(X) be the set of boolean terms over
X . A formal proof or derivation from assumptions Σ ⊆ BT(X) is a derivation
of finite length where each statement in it is an element of BT(X) and which
uses only the following proof rules.

• (Given Statements Rule) Any σ ∈ Σ may be deduced from Σ in one
step.

• (Top Rule) The statement � may be deduced from any Σ in one step.
• (∧-Introduction) If σ and τ have been derived from Σ then (σ ∧τ) may

be deduced from Σ in one further step.
• (∨-Introduction) If τ has been deduced from Σ and σ ∈ BT(X) then

either of (σ ∨ τ), (τ ∨σ) may be deduced from Σ in one further step.
• (∧-Elimination) If (σ ∧ τ) has been deduced from Σ then either σ or τ

may be deduced from Σ in one further step.
• (∨-Elimination) If (σ ∨ τ) and ¬σ have been deduced from Σ then τ

may be deduced from Σ in one further step.
• (¬-Elimination) If ¬¬σ has been deduced from Σ then σ may be de-

duced from Σ in one further step.
• (Contradiction Rule) If σ and ¬σ have been deduced from Σ then ⊥

may be deduced from Σ in one further step.
• (Reductio Ad Absurdum Rule) If ⊥ has been deduced from Σ∪{σ}

then ¬σ may be deduced from Σ in one further step.

The notation Σ�σ will be used as in previous chapters to mean that σ may
be deduced from Σ according to the rules above. Here, some set of proposi-
tional letters X is understood and Σ ⊆ BT(X), σ ∈ BT(X). So Σ�σ means
there is a formal proof, i.e. a finite structured list of statements and subproofs
of BT(X) obeying the above rules, showing that σ can be deduced from as-
sumptions from Σ. In particular we will say that Σ is inconsistent if Σ�⊥, and
consistent otherwise.

We shall give some examples of formal proofs here, and in so doing we
show how formal proofs are usually written, and spell out in more detail how
the above rules should be applied.

Example 6.4 Let X = {a, b} and Σ = {(¬a∨b)}. Then Σ�¬(a∧¬b).

66 Propositional logic

Formal proof

(a∧¬b) (1) Assumption
a (2) ∧-Elimination

¬a (3) Assumption
⊥ (4) Contradiction

¬¬a (5) RAA
¬b (6) ∧-Elimination
(¬a∨b) (7) Given, from Σ
b (8) ∨-Elimination
⊥ (9) Contradiction

¬(a∧¬b) (10) RAA

Example 6.5 Let X = {a, b}. Then ∅� (((a∧¬b)∨¬a)∨b).

Formal proof

¬(((a∧¬b)∨¬a)∨b) (1) Assumption

b (2) Assumption
(((a∧¬b)∨¬a)∨b) (3) ∨-Introduction
⊥ (4) Contradiction

¬b (5) RAA

¬a (6) Assumption
((a∧¬b)∨¬a) (7) ∨-Introduction
(((a∧¬b)∨¬a)∨b) (8) ∨-Introduction
⊥ (9) Contradiction

¬¬a (10) RAA
a (11) ¬-Elimination
(a∧¬b) (12) ∧-Introduction
((a∧¬b)∨¬a) (13) ∨-Introduction
(((a∧¬b)∨¬a)∨b) (14) ∨-Introduction
⊥ (15) Contradiction

¬¬(((a∧¬b)∨¬a)∨b) (16) RAA
(((a∧¬b)∨¬a)∨b) (17) ¬-Elimination

This system is considerably more complicated than systems previously pre-
sented in this book. It does, however, share many features with other systems.
In particular, the derived objects in a proof are simply strings of symbols with
no a priori meanings attached. (Though there is a clear idea that such ‘mean-
ing’ should be connected with boolean algebras – this will be taken up in the
next chapter.) The proof rules are more complicated and there are more of

6.1 A system for proof about propositions 67

them. However, they are not so difficult to learn, especially when you realise
they all come in pairs, introduction and elimination, for each main symbol.
The rules, if you read them carefully, should all be formalised versions of de-
duction rules that you are already familiar with and probably use in your own
mathematical arguments anyway.

The proof rules, as in all the systems of this book, are checkable, meaning
that it should be a mechanical process to verify whether a proposed proof is
indeed a proof obeying the precise rules given. Each rule (apart from the Top
Rule and the Given Statements Rule) have a number of ‘inputs’, usually one
or two other previously deduced statements, but in the case of Reductio Ad
Absurdum this ‘input’ is a ‘subproof’ of ⊥ from an assumption σ .

If we were being stricter about our system we might insist that the line num-
bers of these previous ‘inputs’, the assumptions required for each rule, are
indicated clearly in the narrative to the right of the deduction, and we will oc-
casionally do this for emphasis. In practice, there is rarely any problem identi-
fying these ‘inputs’, as the examples we will look at are short enough, though
further identification certainly does not do any harm. It is worth remembering
that every incorrect proof will have one or more lines that can be identified as
not obeying the rules.

It is important, however, to be clear about exactly which previous lines in a
proof are available as such ‘inputs’ for the next proof step, since proofs in this
propositional logic typically involve several nested Reductio Ad Absurdum
subproofs. This is indicated in the notation we use by the indentation level or
vertical lines, and it is well worth drawing these lines properly when devising
a proof. The rule is that an instance of a statement σ is available as an input
to a deduction step S if: (a) it is above S on the page; and (b) it is in the same
subproof or a direct parent-subproof. In terms of vertical lines, rule (b) means
that none of the vertical lines to the left of the input statement σ are allowed to
have completed before the step S being considered.

Note also that any statement τ whatsoever can be the assumption at the
beginning of a subproof block. However, that subproof must end (at the same
indentation level) with the statement ⊥ for Reductio Ad Absurdum to apply;
after this the subproof is closed, we are at a lower indentation level, and all
statements in the subproof just closed (including the assumption) are no longer
available as ‘inputs’ to further deductions.

Remark 6.6 The terminology sometimes used is that the assumption τ that
leads to ⊥ is discharged by the Reductio Ad Absurdum rule, and this is in-
tended to indicate that the assumption need not be part of any ‘global’ assump-
tions that must be stated on the left hand side of the turnstile symbol, �.

68 Propositional logic

We follow with some instructive examples of incorrect proofs.

Example 6.7 Consider the following erroneous proof the shows b is a conse-
quence of (a∨b). Of course, no such proof should be possible.

Formal proof

(a∨b) (1) Given

¬b (2) Assumption
¬a (3) Assumption
b (4) ∨-Elimination, lines 1 and 3
⊥ (5) Contradiction, lines 2 and 4

¬¬b (6) RAA
b (7) ¬-Elimination

Here, the error is that we do not keep track of the assumptions. The first
assumption ¬b starts a subproof and is done correctly, but the second assump-
tion ¬a should start an inner proof block, and this assumption is not discharged
properly. When this is corrected, the proof looks like,

Formal proof

(a∨b) (1) Given

¬b (2) Assumption

¬a (3) Assumption
b (4) ∨-Elimination, lines 1 and 3
⊥ (5) Contradiction, lines 2 and 4

¬¬a (6) RAA
. . . (7)

and, although we are not in a position to prove this here yet, there is no way to
discharge the assumption ¬b.

Example 6.8 The following incorrect formal derivation shows how it is nec-
essary to be extra careful with the positioning of brackets.

Formal proof

a∨b (1) Given

¬a (2) Assumption
¬a∨b (3) ∨-Introduction
⊥ (4) Contradiction, lines 1 and 3

¬¬a (5) RAA
a (6) ¬-Elimination

6.1 A system for proof about propositions 69

In this example, brackets were carelessly omitted around the assumption
(a∨b), and (¬a∨b) in line 3, resulting in an unwanted application of the con-
tradiction rule. (Line 3 is intended to mean (¬a)∨b, though brackets round a
negation like this are not necessary – or even correct – according to the defini-
tion of boolean terms.)

Strictly speaking, brackets should always be included, and this would be the
preferred option for a truly mechanical implementation of the proof rules, on
a computer perhaps. But this quickly gets tedious, so we normally omit them
according to some conventions. So even if you prefer to omit ‘unnecessary’
brackets, a little care and common sense should ensure that you do the Right
Thing. With practice and experience, the sorts of errors illustrated above go
against common sense and require a deliberate misinterpretation of the rules.

A more careful treatment of propositional logic than we are giving here
would include the Unique Readability Theorem that says each boolean term
can only be read in one way – unlike in our example where ¬a∨b was read as
(¬a)∨b and ¬(a∨b). The statement and proof of Unique Readability can be
found on the companion web-pages.

By and large, in this book I shall take a relaxed view to notation, preferring
to omit brackets where it is clear to do so and using standard mathematical
notation where possible. My preference is to say that the ¬ operation binds
more tightly than ∨ and ∧, so ¬a∨b is always read as (¬a)∨b and not ¬(a∨
b). On the other hand, unlike some authors, I prefer not to give a distinction
between ∨ and ∧, for example always distinguishing a∨ b∧ c using brackets
as (a∨ b)∧ c or a∨ (b∧ c). Terms such as a∨ b∨ c∨ d will be assumed to
associate to the left as (((a∨b)∨ c)∨d), and similarly for ∧.

Here is a correct proof, using the rules exactly as stated.

Example 6.9 {(a∧b)}�¬(¬a∨¬b)

Formal proof

(a∧b) (1) Given
a (2) ∧-Elimination
b (3) ∧-Elimination

(¬a∨¬b) (4) Assumption

¬a (5) Assumption
⊥ (6) Contradiction, lines 2 and 5

¬¬a (7) RAA
¬b (8) ∨-Elimination, lines 4 and 7
⊥ (9) Contradiction, lines 3 and 8

¬(¬a∨¬b) (10) RAA

70 Propositional logic

As with other systems in this book, the proof rules should be used in a
mechanical fashion without any attempt to interpret the symbols with ‘mean-
ings’. Thus, for example, a and (¬a∨¬b) do not together give ¬b directly by
∨-Elimination. The above example shows a way this problem can be circum-
vented.

Manoeuvres such as ‘from α deduce ¬¬α’ and ‘from α and (¬α ∨¬β)
deduce ¬β ’ are sufficiently common that they are worth learning as metarules
which can be safely used (when it is explained what you are doing) when the
proof rules are used in a less rigid fashion. See Exercise 6.20 and the discussion
following for more information on metarules.

Another place where we relax notation is in the notation on the left hand
side of a turnstile symbol. Instead of using set theory notation with {. . .}, ∪,
∅, etc., it is traditional to list formulas and sets of formulas, separating them
with commas, and regard the list as a single set of formulas, so the order of
formulas in the list and any repetitions in it is ignored. This applies to both
the � turnstile of this chapter and the � turnstile that will be introduced in the
next. Thus, with all the conventions in place, the previous example would be
written as a∧b�¬(¬a∨¬b). The empty set is written as an empty list, as in
�(a∨¬a).

To many students, writing informal mathematical proofs accurately is a suf-
ficiently daunting prospect. It might seem that writing formal proofs following
precise rules is much worse. In fact, I believe that the opposite is the case, and
the formal rules add structure and suggest specific and useful proof strategies
that not only make writing formal proofs easier, but can help in suggesting
ways to write informal arguments too.

When constructing a proof, the first step is to write down all the assumptions
or ‘known data’ at the top of a page and, leaving a large space, write the ‘goal’
or statement-to-be-proved at the bottom. Then a small number of memorable
‘proof strategies’ can be employed to generate most of the structure of the
proof and (for propositional logic, at least) these can in fact generate the whole
proof with little or no real thinking required at all.

Many of the strategies are common sense from the rules. For example, one
is that, having got the statement α ∧β it makes sense to deduce immediately
α and β by ∧-Elimination. This was done for example in lines 2 and 3 of the
previous example.

Another strategy is that, to prove a statement ¬α it makes sense to start a
new subproof with assumption α and try and to ⊥. Our required ¬α then
follows from Reductio Ad Absurdum. This strategy was used on line 4 of the
previous example.

A variation of this strategy is also useful, but perhaps in a slightly more

6.1 A system for proof about propositions 71

limited way: to prove a statement α it is always possible to start a new subproof
with assumption ¬α and try to prove ⊥. Our required α then follows from
Reductio Ad Absurdum and ¬-Elimination. You will find plenty of occasions
where this strategy has been used. It is often essential, and even when it is not
essential it can never do any harm, though it sometimes results in longer or
less elegant proofs, so should probably be left as a last resort. It is also worth
mentioning that any statement at all can be derived from a contradiction, as
will be shown in Example 6.10 below.

Of course, if applying a strategy such as one of these results in a new state-
ment being assumed or known ‘true’ in a part of a proof, then other strategies
should be applied to that new statement, and so on until (hopefully) the proof
is complete.

The next few examples give a short but complete list of strategies for the
propositional logic with connectives �, ⊥, ¬ , ∧ , ∨.

Example 6.10 From ⊥ or ¬� any statement can be deduced.

Formal proof

⊥ (1) Given

¬θ (2) Assumption
⊥ (3) Line 1

¬¬θ (4) RAA
θ (5) ¬-Elimination

It is part of the rules that statements can be copied from previously deduced
ones. In line 3 the statement ⊥ is available from line 1, so a contradiction is
immediate. If you prefer, think of line 3 as repetition or ‘re-deduction’ of ⊥
from whatever was used to get ⊥ in line 1.

A related formal proof shows that from ¬� we quickly get ⊥. This is as
follows.

Formal proof

¬� (1) Given
� (2) Top rule
⊥ (3) Contradiction, lines 1 and 2

Example 6.11 To prove the statement θ from (α ∧β) and other given state-
ments Σ, deduce both of α and β first by ∧-Elimination and prove θ from Σ,
α and β .

72 Propositional logic

Formal proof

(α ∧β) (1) Given
α (2) ∧-Elimination
β (3) ∧-Elimination
. . . (4)
θ (5)

Example 6.12 To prove a statement θ from ¬(α ∨β) and other given state-
ments Σ, deduce both of ¬α and ¬β first, as shown in the following argument,
and then prove θ from Σ, ¬α and ¬β .

Formal proof

¬(α ∨β) (1) Given

α (2) Assumption
(α ∨β) (3) ∨-Introduction
⊥ (4) Contradiction

¬α (5) RAA

The proof that ¬(α ∨β)�¬β is similar.

It is not so easy to see how to use a statement of the form (α ∨ β) as an
‘input’, since we are not told which of α and β is true. The solution in such
cases is to construct proofs from both α and β .

Example 6.13 To prove a statement θ from (α∨β) and other given statements
Σ, try to construct two proofs of θ , one from α and Σ, and the other from β
and Σ. The final argument can be put together like this.

Formal proof

(α ∨β) (1) Given

¬θ (2) Assumption

α (3) Assumption
. . . (4)
θ (5) From α, Σ�θ
⊥ (6) Contradiction

¬α (7) RAA
β (8) ∨-Elimination, lines 1 and 7
. . . (9)
θ (10) From β , Σ�θ
⊥ (11) Contradiction

¬¬θ (12) RAA
θ (13) ¬-Elimination

6.1 A system for proof about propositions 73

In the special case when θ is ⊥, the previous proof simplifies to the following
formal proof.

Formal proof

(α ∨β) (1) Given

α (2) Assumption
. . . (3)
⊥ (4) From α, Σ�⊥

¬α (5) RAA
β (6) ∨-Elimination, lines 1 and 7
. . . (7)
⊥ (8) From β , Σ�⊥

Using a given statement of the form ¬(α ∧ β) is similar to the case using
a statement (¬α ∨¬β), and you should construct two proofs and put them
together using an assumption and subproof.

Example 6.14 To prove a statement θ from ¬(α ∧β) and other statements Σ,
construct two proofs of θ , one from ¬α and Σ, and the other from ¬β and Σ.

Formal proof

¬(α ∧β) (1) Given

¬θ (2) Assumption

¬α (3) Assumption
. . . (4)
θ (5) From ¬α, Σ�θ
⊥ (6) Contradiction

¬¬α (7) RAA
α (8) ¬-Elimination

¬β (9) Assumption
. . . (10)
θ (11) From ¬β , Σ�θ
⊥ (12) Contradiction

¬¬β (13) RAA
β (14) ¬-Elimination
(α ∧β) (15) ∧-Introduction
⊥ (16) Contradiction, lines 1 and 15

¬¬θ (17) RAA
θ (18) ¬-Elimination

In the special case when θ is ⊥, this simplifies to the following formal proof.

74 Propositional logic

Formal proof

¬(α ∧β) (1) Given

¬α (2) Assumption
. . . (3)
⊥ (4) From ¬α, Σ�⊥

¬¬α (5) RAA
α (6) ¬-Elimination

¬β (7) Assumption
. . . (8)
⊥ (9) From ¬β , Σ�⊥

¬¬β (10) RAA
β (11) ¬-Elimination
(α ∧β) (12) ∧-Introduction
⊥ (13) Contradiction, lines 1 and 15

Example 6.15 To prove θ from ¬¬α , first deduce α from ¬-Elimination and
then try to prove θ from this.

This forms a complete set of strategies on the ‘assumptions’ side for propo-
sitional proofs using ⊥, ¬ , ∧ , ∨. The best strategies on the conclusion side
are more difficult to give. For example, to prove Σ� (α ∧ β) it is necessary
and sufficient to prove Σ�α and Σ�β individually (though sometimes a di-
rect proof of (α ∧β) may be shorter), but to prove Σ� (α ∨β) it may not be
possible to prove either of Σ�α or Σ�β . Instead it is usually better to attempt
to prove Σ, ¬α �β and modify the proof so obtained. However, the Reduc-
tio Ad Absurdum strategy, already mentioned above, of assuming the negation
of what you are trying to prove and then trying to prove ⊥ together with the
other strategies will always succeed, albeit not necessarily giving the shortest
or most elegant proofs.

Example 6.16 To prove θ from Σ, assume additionally ¬θ and then try to
prove ⊥ from this.

Formal proof

¬θ (1) Assumption
. . . (2)
⊥ (3) From Σ, ¬θ �⊥

¬¬θ (4) RAA
θ (5) ¬-Elimination

The following section gives further examples, including discussion of the

6.2 Examples and exercises 75

implication operator, and the final optional section of this chapter sketches
a proof that the above examples do indeed form a complete set of strategies
that are guaranteed to produce a proof of an assertion in propositional logic –
provided, of course, that such a proof exists at all.

6.2 Examples and exercises

Exercise 6.17 Give a formal proof of the law of excluded middle which says
that if φ is any statement or boolean term then (φ ∨¬φ) has a formal proof in
the system above.

Exercise 6.18 Find a formal proof of (¬a∨¬b) from ¬(a∧ b), and another
formal proof for the converse.

Exercise 6.19 Give formal derivations showing the following:

• ¬ p∨q�¬¬q∨¬ p
• �¬(¬ p∨⊥)∨¬ p
• ¬ p∨q, ¬ p∨ r�¬ p∨ (q∧ r)
• �¬ p∨ (p∨q)
• ¬ p∨q�¬(¬q∨ r)∨ (¬ p∨ r)

Exercise 6.20 Show that the following rule could be added to the system with-
out changing the set of statements that are provable: ‘If τ has been deduced
from Σ∪ {¬σ}, then (σ ∨ τ) may be deduced from Σ in one further step.’
(Hint: show how to transform a proof of τ from Σ∪{¬σ} to one of (σ ∨ τ)
from Σ.)

The last exercise shows how ‘metarules’ can be added to the system; such
rules can simplify the process of finding formal proofs considerably, as well as
shortening and making the resulting proofs more readable.

As an example of metarules, note that the ∨-elimination rule is quite tricky
as it is only available in one limited form, and like all the other rules it is a
syntactic rule and only applies when the symbols combine in exactly the way
stated in the rule. Fortunately, all the other forms that most people expect to be
present can be justified as metarules.

Exercise 6.21 Show that addition of the following metarules to the system
does not change the set of sentences provable.

76 Propositional logic

• ‘If σ and (¬σ ∨ τ) have been deduced from Σ then τ may be deduced
from Σ in one further step.’

• ‘If ¬τ and (σ ∨ τ) have been deduced from Σ then σ may be deduced
from Σ in one further step.’

• ‘If τ and (σ ∨¬τ) have been deduced from Σ then σ may be deduced
from Σ in one further step.’

Exercise 6.22 Add a new boolean connective → for ‘implication’ together
with two additional rules representing the way mathematicians tend to use this
word.

• (→-Introduction) If τ can be deduced from Σ∪{σ} then (σ → τ) can
be deduced from Σ in one further step.

• (→-Elimination, also called modus ponens) If (σ → τ) and σ can be
deduced from Σ then τ can be deduced from Σ in one further step.

Show that (σ →τ) and (¬σ ∨τ) are equivalent by proving one statement from
the other in the new system.

Some differences between the ‘natural language’ implication and mathemat-
ical implication have already been discussed. Another difference, at least for
some speakers, is that in natural language ‘a implies b’ is typically interpreted
as implying that a could hold or is at least possible in some hypothetical situa-
tion. One consequence is that, in natural language ‘a implies b’ and ‘a implies
not-b’ seem contradictory, for in a hypothetical world where a holds it cannot
be the case that both b and not-b hold. This was the source of controversy
between two nineteenth century Oxford logicians, Dodgson (aka Lewis Car-
roll) and Cook Wilson. Dodgson invented a story, known as the Barber Shop
Paradox, to illustrate the difficulties that the natural language notion of impli-
cation has when combined with Reductio Ad Absurdum, and it seems he was
surprised when Cook Wilson argued back [3]. The essence of the ‘paradox’
was that assuming ¬a→ b and ¬a→¬b are contradictory it is possible to
prove c from the statements a→b, ¬a→¬b, and a∨b∨ c. (Assume ¬c and
observe that a∨b∨c then gives ¬a→b.) Of course this can be cleared up very
quickly with the formal propositional logic in this chapter (something that was
not available in Oxford in Dodgson and Cook Wilson’s day).

Exercise 6.23 Show that:

(a) (a→b)∧ (a→¬b) and ¬a are equivalent in propositional logic;
(b) a→b, ¬a→¬b, a∨b∨ c�¬c→a;
(c) a→b, ¬a→¬b, a∨b∨ c � � c.

6.3 Decidability of propositional logic* 77

(Part (c) is possibly too hard at this stage, but will become easy with the results
of the next chapter.)

We have seen many kinds of implication in this book, including the informal
use of ‘implies’ in our metatheorems and metaproofs, �, �, and now →. They
are all different (albeit, related) and it is important to be able to distinguish
between them all. The next exercises point out some connections between �
and →.

Exercise 6.24 Prove the Deduction Theorem that says that Σ∪{σ}� τ is true
if and only if Σ�σ →τ is true, where � is for the extended system with the ad-
ditional rules for → added. (The Deduction Theorem is quite straightforward
for the system we have here given the rules for →, but for other formal systems
becomes an important result.)

Exercise 6.25 Show that (a) ¬θ �¬ψ implies ψ �θ , and (b) in the proposi-
tional logic with → added we have

�((¬θ →¬ψ)→ (ψ →θ)).

In what ways are statements (a) and (b) different?

6.3 Decidability of propositional logic*

Given a finite set of boolean terms Σ and a further boolean term σ we may
ask whether Σ� σ . More generally, the data Σ, σ being finite could be the
input to a computer program, and we could ask whether there is an algorithm,
programmable on a computer, that correctly tells us whether Σ � σ , and, if
possible, generates a formal proof too.

For propositional logic, this is indeed possible. One method uses valuations,
as discussed in the next chapter, but this method simply yields a yes/no answer,
not a formal proof. Another method uses the proof strategies discussed infor-
mally in the text above.

The idea of the algorithm is to reduce the question ‘does Σ�σ?’ to ‘simpler’
questions, and working backwards each stage of the reduction gives a recipe
of how to transform proofs of the ‘simpler’ questions to one of the original.
More precisely, the following theorem (which is a formal statement of the idea
of proof strategies discussed above) allows us to reduce Σ� σ to a number
of questions about provability of statements with no ∧, ∨, or double negation
symbols.

78 Propositional logic

Theorem 6.26 Let X be a set of propositional letters, Σ a finite set of boolean
terms in X, and α, β , σ other boolean terms in X. Then:

(i) Σ�σ if and only if Σ, ¬σ �⊥;
(ii) Σ, ¬¬α �⊥ if and only if Σ, α �⊥;

(iii) Σ, α ∧β �⊥ if and only if Σ, α, β �⊥;
(iv) Σ, ¬(α ∨β)�⊥ if and only if Σ, ¬α, ¬β �⊥;
(v) Σ, α ∨β �⊥ if and only if Σ, α �⊥ and Σ, β �⊥;

(vi) Σ, ¬(α ∧β)�⊥ if and only if Σ, ¬α �⊥ and Σ, ¬β �⊥.

Proof The right-to-left directions were covered in examples earlier in this
chapter. The other directions are done in a similar way.

(i) If Σ�σ then Σ, ¬σ �⊥ as

Formal proof

¬σ (1) Given
. . . (2)
σ (3) From Σ�σ
⊥ (4) Contradiction, lines 1 and 3

(ii) If Σ, ¬¬α �⊥ then Σ, α �⊥ as

Formal proof

α (1) Given

¬α (2) Assumption
⊥ (3) Contradiction, lines 1 and 2

¬¬α (4) RAA
. . . (5)
⊥ (6) From Σ, ¬¬α �⊥

The other cases are similarly easy, and we leave them as exercises.

By iterating the previous theorem, we see that any statement of the form Σ�σ
is equivalent to a number of statements of the form Π�⊥, where each α ∈ Π
is either �, ⊥, ¬�, ¬⊥, or a or ¬a for some propositional letter a. What is
more, the proof of the theorem shows how we can transform formal proofs of
all the statements Π�⊥ back into a proof of the original Σ�σ .

Statements of the form �, ⊥, or a are called atomic. Those of the form
¬�, ¬⊥, or ¬a are called negated atomic. This means that we can reduce
our problem of whether Σ�σ to the case where σ = ⊥ and Σ consists of only
atomic or negated atomic statements. Now two cases when such a set Σ is
obviously contradictory are (a) when Σ contains ⊥ or ¬�, and (b) when Σ

6.3 Decidability of propositional logic* 79

contains both a and ¬a for some letter a. In fact, this is the only way such a
set Σ can prove ⊥, as the following shows.

Theorem 6.27 Let Σ consist of atomic and negated atomic statements only.
Then Σ�⊥ if and only if Σ contains ⊥ or ¬�, or both a and ¬a for some
letter a.

I am not going to prove this here. The difficult direction is to show that if
Σ does not contain ⊥ nor ¬�, nor both a and ¬a for some a, then Σ � �⊥, and
the worry is that somehow the rules for ∨ or ∧ might be used in a way that we
have not yet envisaged. One method (that will be discussed in more detail in
the next chapter) is to define a semantics making every statement a occurring
in Σ ‘true’ and every other letter b ‘false’ and use this as a basis for induction
on the length of proofs. Another method, also by induction on the length of
proofs, is to show that if such Σ�⊥ then there is a proof that does not use any
of the rules for ∨ or ∧.

Either way, our discussion yields the following theorem.

Theorem 6.28 There is an algorithm which, on input Σ and σ (a finite set
of statements and a single statement in the propositional logic) correctly de-
termines whether Σ�σ , and in case the answer is ‘yes’ also returns a formal
proof of σ from Σ.

7

Valuations

7.1 Semantics for propositional logic

Following the general method for other formal systems in this book, we must
connect the system for propositional logic of the last chapter with the boolean
algebras of the chapter preceding it, by using boolean algebras to provide
‘meanings’ or semantics for boolean terms and the symbolic manipulations
in the system for proof. As for other logics in this book, we will develop our
semantics far enough to present a Completeness Theorem and a Soundness
Theorem. The basis of our semantics is the following very simple idea of a
valuation.

Definition 7.1 Let X be any set, and B a boolean algebra. A valuation on X is
a function f : X →B.

This notion of a valuation is very straightforward, but is enough to give
a valuation v: X →B interesting extra structure. A valuation induces a map
BT(X)→B defined by evaluating boolean terms over X in the boolean algebra
B, using the value v(x) in place of the symbol x from X and the operations in
B for all other terms. Formally, this means making the following definition by
induction on the number of symbols in a term:

• v(¬σ) = (v(σ))′

• v(σ ∧ τ) = (v(σ))∧ (v(τ))
• v(σ ∨ τ) = (v(σ))∨ (v(τ))
• v(�) = �
• v(⊥) = ⊥

where the right hand side of each of these is evaluated in B using its boolean
algebra structure. Remember that the arguments inside the v(. . .) are simply
formal terms, i.e. strings of symbols in the appropriate alphabet, so the symbols

80

7.1 Semantics for propositional logic 81

on the right and left hand sides of the above equations are interpreted quite
differently, in one case as ‘pure symbols’ in boolean terms, in the other as
operations in B.

Since BT(X) ⊇ X , this valuation function BT(X)→B extends v, and it will
not cause any confusion to denote it with the same letter, also writing it as
v: BT(X)→B.

Many valuations use the simplest possible boolean algebra 2 = {�, ⊥} for
the target boolean algebra B. To specify such a valuation it suffices to give a
value (�, meaning true, or ⊥, meaning false) to each element of X . Indeed,
one of the results we shall prove about propositional logic later on is that this
two-element boolean algebra suffices to give an adequately rich semantics for
the proof system. But at the outset, this is not obvious.

Example 7.2 If X = {a, b, c} then we have the following.

(i) All valuations v: X →2 make the boolean terms (((a∧¬b)∨¬a)∨b),
(a∨¬a), and ¬⊥ true (�).

(ii) The boolean terms ¬�, (c∧¬c) and (a∧ (b∧ (¬a∨¬b))) are terms
for which every valuation v: X →2 makes them false (⊥).

(iii) Terms such as ((a∧¬b)∨c) and ((¬c∨¬b)∧(c∨¬a)) are sometimes
true, sometimes false, depending on the choice of valuation.

To see this, one needs to go carefully through all of the possible combina-
tions of values from �, ⊥ that can be given to the letters a, b, c. The best way
to set this out is in a table (called a truth table). Each row of the truth table
corresponds to a possible combination of values for the proposition letters, and
the columns of the truth table correspond to expressions or subexpressions that
have to be evaluated in the boolean algebra 2 = {�, ⊥}.

For the first,

a b ¬b (a∧¬b) ¬a ((a∧¬b)∨¬a) (((a∧¬b)∨¬a)∨b)

� � ⊥ ⊥ ⊥ ⊥ �
� ⊥ � � ⊥ � �
⊥ � ⊥ ⊥ � � �
⊥ ⊥ � ⊥ � � �

This justifies the assertion that v(((a∧¬b)∨¬a)∨b) = � for all such valua-
tions.

82 Valuations

Now consider:

a b ¬a ¬b (¬a∨¬b) (b∧ (¬a∨¬b)) (a∧ (b∧ (¬a∨¬b)))

� � ⊥ ⊥ ⊥ ⊥ ⊥
� ⊥ ⊥ � � ⊥ ⊥
⊥ � � ⊥ � � ⊥
⊥ ⊥ � � � ⊥ ⊥

So v(a∧ (b∧ (¬a∨¬b))) is ⊥ for all valuations.
Finally,

a b c ¬b (a∧¬b) ((a∧¬b)∨ c)

� � � ⊥ ⊥ �
� � ⊥ ⊥ ⊥ ⊥
� ⊥ � � � �
� ⊥ ⊥ � � �
⊥ � � ⊥ ⊥ �
⊥ � ⊥ ⊥ ⊥ ⊥
⊥ ⊥ � � ⊥ �
⊥ ⊥ ⊥ � ⊥ ⊥

Thus ((a∧¬b)∨ c) has value � for some valuations and ⊥ for others. We
leave the reader to check the remaining examples.

Note that in cases such as ((¬c∨¬b)∧ (c∨¬a)) with three proposition
letters, there are 8 = 23 combinations, as there are 2 truth values and 3 letters,
so the truth table has 8 rows, not counting the header row. In general a truth
table with n proposition letters will have 2n rows.

Definition 7.3 A formula σ ∈ BT(X) such that each valuation v: BT(X)→
{�, ⊥} makes v(σ) = � is called a tautology. A formula σ ∈ BT(X) such
that there is some valuation v: BT(X)→{�, ⊥} such that v(σ) = � is called
satisfiable.

Definition 7.4 Let v: BT(X)→B be a valuation and let Σ ⊆ BT(X) be a set of
boolean terms. Then v(Σ) denotes the set of values that v takes in B on inputs
from Σ, i.e. v(Σ) = {v(σ) : σ ∈ Σ}.

Definition 7.5 Let B be a boolean algebra and A ⊆ B be a finite subset of B.
Then, by repeated application of ∧ and ∨, the set A has both a greatest lower
bound and a least upper bound. These depend only on A and not the order in
which ∧ or ∨ was applied, and will be denoted

∧
A and

∨
A respectively, using

a larger symbol for the operator (analogous to the large union or intersection

7.1 Semantics for propositional logic 83

signs
⋃

,
⋂

or the large summation and product signs ∑ , ∏). To cover the case
when A is empty, we conventionally define

∧
∅ = � and

∨
∅ = ⊥.

There are boolean algebras in which
∧

A and
∨

A are defined for all sets A,
not just the finite ones. The power set algebra P(X) of a set X is an example.
These are interesting algebras, but not every one is of this type. To ensure that
our results apply to all boolean algebras, we will take care to apply

∧
and

∨
to

finite sets only.
Here is the formal definition of semantics, �. It says that Σ�σ holds if σ is

at least as true as the greatest lower bound (or ‘and’) of some finite subset of Σ.
(We cannot take the whole of Σ, in case that Σ itself is infinite.) To measure ‘at
least as true’ we use boolean algebras and valuations.

Definition 7.6 Given a set X , Σ ⊆ BT(X) and σ ∈ BT(X) we write Σ � σ for
the statement that, for all boolean algebras B and all valuations v: BT(X)→B,
there is a finite subset Σ0 ⊆ Σ such that

∧
v(Σ0) � v(σ).

Definition 7.7 We write Σ �2 σ for the specialisation of Σ � σ to the boolean
algebra 2 = {�, ⊥}. That is, Σ �2 σ means for all valuations v: BT(X)→ 2,
there is a finite subset Σ0 ⊆ Σ such that

∧
v(Σ0) � v(σ).

Once again, truth tables can help calculate whether Σ�2 σ holds or not.

Example 7.8 Given proposition letters p, q we have

p, ¬(p∧ r)�2 ¬((p∨q)∧ r).

The truth table is

p q r p ¬(p∧ r) ¬((p∨q)∧ r)

� � � � ⊥ ⊥
� � ⊥ � � �
� ⊥ � � ⊥ ⊥
� ⊥ ⊥ � � �
⊥ � � ⊥ � ⊥
⊥ � ⊥ ⊥ � �
⊥ ⊥ � ⊥ � �
⊥ ⊥ ⊥ ⊥ � �

Observe that in each of the two rows in which both p and ¬(p∧ r) are � (the
second and fourth), the conclusion ¬((p∨q)∧ r) is also �. This suffices. The
fact that the conclusion is also true in additional rows is irrelevant.

84 Valuations

Example 7.9 Again, with proposition letters p, q we have

¬(q∧ r), (p∨ r) ��2 p∧ (¬q∨ r).

The truth table is

p q r ¬(q∧ r) (p∨ r) p∧ (¬q∨ r)

� � � ⊥ � �
� � ⊥ � � ⊥
� ⊥ � � � �
� ⊥ ⊥ � � �
⊥ � � ⊥ � ⊥
⊥ � ⊥ � ⊥ ⊥
⊥ ⊥ � � � ⊥
⊥ ⊥ ⊥ � ⊥ ⊥

Here, we see that the valuation v(p) = ⊥, v(q) = ⊥, v(r) = � makes ¬(q∧ r)
and p∨ r both equal to � but makes the conclusion p∧ (¬q∨ r) equal to ⊥, so
¬(q∧ r), (p∨ r)�2 p∧ (¬q∨ r) is false.

Theorem 7.10 (Soundness Theorem) Let X be a set and τ ∈ BT(X), and
suppose that Σ� τ . Then Σ� τ .

Proof Let B be a boolean algebra and v: BT(X)→B a valuation. Let Σ0 be the
set of assumptions used in Σ to prove τ . We shall prove

∧
v(Σ0) � v(τ). To

simplify notation we will assume without loss of generality that Σ is finite and
Σ0 = Σ.

So we must prove that if there is a formal derivation of τ from Σ then the
value of the conclusion of such a formal derivation, v(τ), is always ‘at least as
true as’ the value of the assumptions, Σ. In particular if v(σ) =� for all σ ∈ Σ
then � =

∧
v(Σ) � v(τ), so v(τ) = �.

The proof is by induction on the length of a derivation. Our induction hy-
pothesis H(n) is the statement that if p is a derivation in the system with at
most n steps and p is a proof of τ from a finite set of assumptions Σ, then∧

v(Σ) � v(τ) for all valuations v on BT(X).
Assume we have such a derivation p of length n of τ from a finite set Σ, that

H(n− 1) holds, and that v is a valuation. As before, we look at the very last
deduction in p.

The cases when the last deduction used is either the Top Rule or the Given
Statements Rule is easy, since in the first of these cases τ is � and v(�) =��∧

v(Σ), and in the second of these cases τ is some σ ∈Σ and hence v(τ) = v(σ)
for some σ ∈ Σ so v(τ) � ∧

v(Σ).

7.1 Semantics for propositional logic 85

If the last step in p is ∧-Introduction then τ is (α ∧ β) where α, β have
previously been derived from Σ. Thus v(α), v(β) � ∧

v(Σ) by the induction
hypothesis and so

∧
v(Σ) is a lower bound for both v(α), v(β), hence v(α ∧

β) = v(α)∧ v(β) � ∧
v(Σ).

If the last step in p is ∧-Elimination then τ is α or β where (α ∧β) has been
previously derived from Σ. So by the induction hypothesis v(α ∧β) � ∧

v(Σ).
And as v(α ∧β) = v(α)∧v(β) � v(α), v(β) we have v(α), v(β) � ∧

v(Σ) by
transitivity.

If the last step in p is ∨-Elimination then (σ ∨ τ) and ¬σ have already
been deduced from Σ so by the induction hypothesis v(σ ∨τ) = v(σ)∨v(τ) �∧

v(Σ) and v(¬σ) = v(σ)′ � ∧
v(Σ). So from v(σ)∨ v(τ) � ∧

v(Σ) we have

v(σ)′ ∧ (v(σ)∨ v(τ)) � v(σ)′ ∧
∧

v(Σ).

And from v(σ)′ � ∧
v(Σ) we have

v(σ)′ ∧
∧

v(Σ) =
∧

v(Σ).

Also

v(σ)′ ∧ (v(σ)∨ v(τ)) = v(σ ′)∧ v(τ)

by distributivity, so v(τ) � v(σ ′)∧ v(τ) � ∧
v(Σ), as required.

If the last step in p is ¬-Elimination then ¬¬τ has already been derived so
v(¬¬τ) = v(τ)′′ = v(τ) � ∧

v(Σ), as required.
If the last step is the Contradiction Rule, both σ and ¬σ have already been

derived with v(σ), v(¬σ) � ∧
v(Σ). So

∧
v(Σ) is a lower bound for v(σ) and

v(¬σ) = v(σ)′ so ⊥ = v(σ)∧ v(σ)′ � ∧
v(Σ), as required.

If the last step is the ∨-Introduction Rule, assume that τ is (α∨β) or (β ∨α)
where α has been deduced from Σ. Then by our induction hypothesis v(α) �∧

v(Σ), so

v(α ∨β), v(β ∨α) � v(α) �
∧

v(Σ)

as required.
Finally, the Reductio Ad Absurdum Rule: if ⊥ has been deduced from Σ∪

{α} then by the induction hypothesis ⊥ = v(⊥) � ∧
v(Σ)∧ v(α) so v(¬α) =

v(α)′ ∨ v(⊥) � v(α)′ ∨ (
∧

v(Σ)∧ v(α)). But

v(α)′ ∨ (
∧

v(Σ)∧ v(α)) = v(α)′ ∨
∧

v(Σ) �
∧

v(Σ)

by distributivity, so v(¬α) = v(α)′ � ∧
v(Σ) as required.

The Completeness Theorem for propositional logic takes the form ‘Σ � φ im-
plies Σ� φ ’ and says that any statement φ that follows from Σ in the sense

86 Valuations

of boolean algebras, i.e. any φ whose valuation is at least as true as that of
Σ however these valuations are chosen, actually has a formal derivation from
assumptions Σ in the formal system. This is hardly an obvious assertion since
the rules for the formal system are limited and coming up with formal proofs
can be rather difficult, even for specific cases, let alone in general. It turns out
that the Completeness Theorem is a strong and useful result for mathematics.
In the next chapter we shall also look at what it has to say for boolean algebras
in particular.

From a more philosophical point of view, the Completeness Theorem shows
that any correct deduction about propositions or boolean terms can always
be rewritten as a formal deduction in a specific formal system. By a ‘correct
deduction’ here, we mean one that is ‘semantically correct’, i.e. one that can be
shown to be correct in all possible cases by considering valuations into boolean
algebras. There is a considerable saving here as the Completeness Theorem
shows that any deduction given by any correct method can be replaced by
one of a specific form using one particular proof system. In other words, the
formal system is complete in the sense that it can make all necessary logical
deductions about the statements that can be expressed in it. As a bonus, the
rules of our formal system were chosen specifically to mimic real mathematical
practice and we know them to be correct, because of the Soundness Theorem.
Furthermore, these rules can be checked mechanically too.

We are now going to prove the Completeness Theorem. First, we need a
lemma. Recall that a set Σ ⊆ BT(X) is consistent if Σ � �⊥.

Lemma 7.11 Suppose X is a set of propositional letters, Σ ⊆ BT(X) is con-
sistent, and φ ∈ BT(X). Then either Σ∪ {φ} is consistent or Σ∪ {¬φ} is
consistent.

Proof If Σ∪{φ}�⊥ and Σ∪{¬φ}�⊥ then by the first of these and Reductio
Ad Absurdum Σ�¬φ . By appending a proof of ⊥ from Σ∪{¬φ} (given by
the second of our assumptions) on to the end of a proof for Σ�¬φ we obtain
a proof of ⊥ from Σ, hence Σ is inconsistent.

Theorem 7.12 (Completeness Theorem, first form) Let X be a set, and
suppose that Σ0 ⊆ BT(X) is consistent. Then there is a valuation v: BT(X)→
{�, ⊥} such that v(σ) = � for all σ ∈ Σ0.

Proof Somehow we have to define an appropriate valuation, and this may
involve making choices for the value of the letters in X . This already suggests
that if X is not finite then we will need to use Zorn’s Lemma.

7.1 Semantics for propositional logic 87

It is not obvious how to use Zorn’s Lemma directly, as decisions on the
value v(x) to give to a propositional letter x ∈ X can have rather subtle conse-
quences. So instead we use our system of formal derivations to ‘control’ what
is going on.

We consider the set Z = {Σ ⊆ BT(X) : Σ ⊇ Σ0 and Σ � �⊥} of all consistent
extensions of Σ0. This is a poset, where the order relation is ⊆. We claim that
Z has the Zorn property and so has a maximal element.

To see this, let C ⊆ Z be a chain. So each element of C is a set Σ such that
Σ ⊇ Σ0 and Σ � �⊥. Now consider ΣC =

⋃
C. Clearly ΣC is an upper bound for

C, we just need to show that it is in Z. First, ΣC extends Σ0 as each element of
C does. Now suppose ΣC�⊥. Then there is a single derivation p from ΣC of ⊥.
This derivation is finite so only requires finitely many assumptions from ΣC.
Each of these assumptions comes from some Σ ∈ C, and as there are finitely
many assumptions, only finitely many Σ ∈C are required, and of these there is
a ⊆-largest one, Π say, since C is a chain. Therefore the derivation p can be
regarded as a derivation Π�⊥, but this is impossible as Π ∈ Z so by definition
is consistent. Hence ΣC is consistent.

By the previous paragraph and Zorn’s Lemma there is a maximal element
Σmax in Z. Note that by Lemma 7.11 this has the property that for any φ ∈
BT(X) either φ ∈ Σmax or ¬φ ∈ Σmax, for otherwise from the lemma we could
deduce that one of Σmax∪{φ} or Σmax∪{¬φ} is a proper consistent extension
of Σmax, contradicting maximality. Furthermore we cannot have both of φ , ¬φ
in Σmax since that would mean that Σmax would be inconsistent by the Contra-
diction Rule. Note also that by the same argument � ∈ Σmax and ¬⊥ ∈ Σmax

since both {¬�} and {⊥} are inconsistent.
We may now define our valuation by v(x) = � if x ∈ Σmax and v(x) = ⊥ if

¬x ∈ Σmax. By the previous paragraph this does indeed define a valuation and
we just need to show that v(σ) = � for each σ ∈ Σ0. We shall in fact show
v(σ) = � for each σ ∈ Σmax, which suffices as Σ0 ⊆ Σmax.

The proof that v(σ) = � for each σ ∈ Σmax is by induction on the number
of symbols in σ ∈ BT(X). Our induction hypothesis H(n) is the statement that
if σ contains at most n symbols then

v(σ) = � if and only if σ ∈ Σmax.

This statement is true for n = 1 since the only elements of σ ∈ BT(X) with one
symbol are �, ⊥ or elements of X and these have been dealt with already by
the definition of v.

If σ has n+1 symbols and is ¬τ for some τ then we have by the induction
hypothesis v(τ) =� if and only if τ ∈ Σmax. If ¬τ ∈ Σmax then τ �∈ Σmax since
otherwise Σmax would be inconsistent and v(τ) =⊥ so v(¬τ) = v(τ)′ =�. On

88 Valuations

the other hand if ¬τ �∈ Σmax then τ ∈ Σmax by maximality of Σmax and v(τ) =�
so v(¬τ) = v(τ)′ = ⊥. This completes the induction step for ¬τ .

If σ has n + 1 symbols and is (α ∧ β) then by the induction hypothesis
v(α) = � if and only if α ∈ Σmax and v(β) = � if and only if β ∈ Σmax. Sup-
pose that (α ∧ β) ∈ Σmax, then α, β ∈ Σmax by the ∧-Elimination Rule so
v(α) = v(β) = � and hence v(α ∧ β) = v(α)∧ v(β) = �. Alternatively, if
(α ∧β) �∈ Σmax then ¬(α ∧β) ∈ Σmax by maximality. This means that it is not
the case that both α, β ∈ Σmax for otherwise the following derivation would
show Σmax �⊥ and hence one of v(α), v(β) is ⊥ so v(α ∧β) = ⊥.

Formal proof

¬(α ∧β) (1) Given
α (2) Given
β (3) Given
(α ∧β) (4) ∧-Introduction
⊥ (5) Contradiction

If σ has n + 1 symbols and is (α ∨ β) then by the induction hypothesis
v(α) = � if and only if α ∈ Σmax and v(β) = � if and only if β ∈ Σmax. Sup-
pose that (α∨β)∈Σmax, then at least one of α , β must be in Σmax for otherwise
¬α, ¬β ∈ Σmax and the following would show Σmax �⊥.

Formal proof

(α ∨β) (1) Given
¬α (2) Given
¬β (3) Given
β (4) ∨-Elimination
⊥ (5) Contradiction

So (α∨β)∈Σmax implies α ∈Σmax or β ∈Σmax so by our induction hypothesis
v(α) = � or v(β) = � and hence v(α ∨β) = �. Alternatively, if (α ∨β) �∈
Σmax, then ¬(α ∨β) ∈ Σmax by maximality and we will show that this means
that both of ¬α ∈ Σmax and ¬β ∈ Σmax. If not by maximality again at least
one of α ∈ Σmax or β ∈ Σmax. Assume the first (the other case is similar). Then
the following shows Σmax �⊥.

Formal proof

¬(α ∨β) (1) Given
α (2) Given
(α ∨β) (3) ∨-Introduction
⊥ (4) Contradiction

Therefore v(α) = v(β) = ⊥ so v(α ∨β) = ⊥ as required.

7.1 Semantics for propositional logic 89

This completes the induction proof and therefore v is a valuation making all
of Σmax (and hence Σ0) true, as required.

Theorem 7.13 (Completeness Theorem, second form) Let X be a set, and
suppose that Σ ⊆ BT(X) and τ ∈ BT(X) with Σ� τ , or just Σ�2 τ . Then Σ� τ ,
i.e. there is a formal derivation of τ from Σ.

Proof Assume Σ � �τ . Then Σ∪{¬τ} ��⊥ since if otherwise we would have Σ�
¬¬τ by Reductio Ad Absurdum and hence Σ� τ by ¬-Elimination. But then
the first form of the Completeness Theorem gives us a valuation v: BT(X)→
{�, ⊥} with v(σ) = � for all σ ∈ Σ and v(¬τ) = v(τ)′ = � hence v(τ) = ⊥.
So

∧
v(Σ) = � > v(τ) and hence Σ �� τ .

Many of the more interesting consequences of completeness and soundness are
connected with the finite nature of proofs. We can express this connection in
the following important result.

Theorem 7.14 (Compactness Theorem) Let X be an infinite set and let
Σ ⊆ BT(X). Suppose that for every finite subset Σ0 ⊆ Σ there is a valuation
v0: BT(X)→{�, ⊥} such that v0(σ) =� for all σ ∈Σ0. Then there is a single
valuation v: BT(X)→{�, ⊥} such that v(σ) = � for all σ ∈ Σ.

Proof By hypothesis, and the Soundness Theorem, every finite subset of Σ
is consistent. It follows that the whole of Σ is consistent since if Σ�⊥ then
there is a finite proof of ⊥ from Σ, which necessarily uses only finitely many
assumptions from Σ. This would imply that some finite subset of Σ is incon-
sistent, contrary to hypothesis. So Σ � � ⊥ and by the Completeness Theorem
there is a valuation as indicated.

Finally, to sum up this section, we have looked at boolean algebras in general,
and the boolean algebra 2 = {�, ⊥} in particular, and proved a version of the
Soundness Theorem for general boolean algebras and a version of the Com-
pleteness Theorem for the particular boolean algebra {�, ⊥}. The results we
proved show that, for any set of boolean terms Σ and any other statement σ

Σ�2 σ implies Σ�σ

(the Completeness Theorem), and

Σ�σ implies Σ�σ

(the Soundness Theorem). It is a triviality from the definition that

Σ�σ implies Σ�2 σ

90 Valuations

since 2 = {�, ⊥} is an example boolean algebra that can be used in the defini-
tion of Σ�σ . Thus we have proved the following.

Corollary 7.15 For any set of boolean terms Σ and any other statement σ ,

Σ�σ if and only if Σ�2 σ .

This is hardly obvious, but the equivalence of all these statements is of great
interest as it allows us to decide statements of the form Σ�σ by looking at
valuations to the boolean algebra 2, and this is a great help as this algebra is
particularly easy to compute in. In particular, from Example 7.8 we can now
deduce that p, ¬(p∧r)�(p∨q)∧r without having to construct a formal proof
directly, and from Example 7.9 we can see that ¬(q∧r), (p∨r) � � p∧(¬q∨r).
This last fact would have been difficult to deduce directly from the formal
system alone without the help of the Soundness Theorem.

7.2 Examples and exercises

We have used boolean algebras to represent the more traditional material on
‘propositional logic’. The Soundness and the Completeness Theorems give a
connection between the two sides of the story: semantics or meanings, given
by boolean algebras in general or by the particular boolean algebra 2 = {�, ⊥}
on the one hand, and the propositions or boolean terms themselves considered
as strings of symbols, and formal proofs involving them on the other hand.
The side involving boolean terms and formal proofs is useful since a proof
is mechanically checkable and therefore incontrovertibly a proof of what it
claims to be. The semantics side is often easier to use when it comes to proving
that something is not derivable.

Exercise 7.16 Show that the following hold:

(i) p∧ (¬ p∨q)�q
(ii) �¬(p∧ (q∨ r))∨ ((p∧q)∨ (p∧ r))

(iii) ¬ p∨q, ¬r∨ s�¬(p∨ r)∨ (q∨ s)
(iv) (p∧q)∧ r �q∧ (r∧ p)
(v) �(¬((¬ p∨q)∧ p)∨q)

Exercise 7.17 Determine whether

(i) ¬(¬q∨ r)� (p∧ r)∨ (q∧¬ p)∨ (¬r∧q∧ p)
(ii) ¬(¬q∨¬ p)� (p∧q∧ r)∨ (q∧¬r∧¬ p)∨ (r∧q)

7.2 Examples and exercises 91

Exercise 7.18 Our ‘or’ or ∨ should be interpreted as ‘inclusive or’, i.e. a∨ b
is ‘a or b or both’. Introduce a new symbol, + for exclusive or, where a + b
means ‘a or b but not both at the same time’. Add the axiom

a+b = (a∧b′)∨ (a′ ∧b)

to those for boolean algebras, and add the following formal rules of deduc-
tion to the proof system for propositional logic: ‘from (a +b) and ¬a deduce
b’; ‘from (a + b) and a deduce ¬b’; ‘from (a + b) and ¬b deduce a’; ‘from
(a + b) and b deduce ¬a’; ‘from a and ¬b deduce (a + b)’; ‘from ¬a and b
deduce (a + b)’. State and prove Completeness and Soundness Theorems for
the resulting system.

Why do you think I suggest the symbol ‘+’ for this operation?

Definition 7.19 Two propositional terms φ , ψ involving propositional letters
from a set X are said to be logically equivalent if whenever v: X →{�, ⊥} is
a valuation then v(φ) = v(ψ). For example, the terms (p∨ p) and (p∧ p) are
different terms but are logically equivalent.

Exercise 7.20 Suppose that φ , ψ are logically equivalent. Show that φ �ψ ,
ψ �φ , φ �ψ , and ψ �φ .

Consider a truth table for a formula φ . For example, if φ has three proposi-
tion letters a, b, c the truth table will take the form

a b c φ

� � � v1

� � ⊥ v2

.

⊥ ⊥ ⊥ v8

Exercise 7.21 By considering the rows of the table for which vi =� show that
φ is logically equivalent to an ‘or’ or disjunction

τ1 ∨ τ1 ∨ . . .∨ τk

where each τ j is an ‘and’ or conjunction τ j, 1 ∧ τ j, 2 ∧ τ j, 3 and τ j, 1 is a or ¬a,
τ j, 2 is b or ¬b, and τ j, 3 is b or ¬c.

More generally, show that any propositional formula φ is logically equiva-
lent to one, ψ , in Disjunctive Normal Form (DNF), meaning ψ is a disjunction

τ1 ∨ τ1 ∨ . . .∨ τk

92 Valuations

where each τ j is a conjunction τ j, 1 ∧ τ j, 2 ∧ . . .∧ τ j, l and each τ j, i is a propo-
sitional letter or the negation of a propositional letter.

Exercise 7.22 By considering the rows of the truth table for which vi = ⊥, or
otherwise, show that φ is also logically equivalent to a formula ψ in Conjunc-
tive Normal Form (CNF)

τ1 ∧ τ1 ∧ . . .∧ τk

where each τ j is a disjunction τ j, 1 ∨ τ j, 2 ∨ . . .∨ τ j, l and each τ j, i is a proposi-
tional letter or the negation of a propositional letter.

Exercise 7.23 Suppose Σ is a set of terms in BT(X) and there is a boolean
algebra B such that for each finite subset Σ0 ⊆ Σ there is a valuation v: X →B
with ⊥ <

∧
v(Σ0). Show that there is another valuation w: X →{⊥, �} such

that w(σ) = � for each σ ∈ Σ. (Hint: apply the Soundness Theorem to show
Σ is consistent, and then use completeness.)

The next exercise presents a notion of ‘positive’ boolean terms. (Compare
with Definition 4.12.)

Exercise 7.24 Add the operation → for ‘implies’ to the set of logical sym-
bols ∧, ∨ , ¬ , �, ⊥ for propositional logic. A term involving these symbols
together with propositional letters from a set X is said to be positive if neither
of the symbols ⊥ or ¬ appear in it. Prove (by induction on terms) that if φ is
a positive term and v is the valuation sending each propositional letter x to �,
then v(φ) = �. Deduce that ¬ p is not logically equivalent to a positive term.

Exercise 7.25 Prove a converse to the previous exercise by showing that if a
propositional term φ has the property that the valuation v sending each propo-
sitional letter x to � gives v(φ) =�, then φ is logically equivalent to a positive
term. (Hint: use induction on the number of distinct propositional letters in φ .
In particular show that φ(p1, p2, . . ., pn) is logically equivalent to a statement
of the form

(p j1 ∨ p j2 ∨ . . .∨ p jk)∧
∧

i
(pi →φ(p1, . . ., pi−1, �, pi+1, . . ., pn)).)

Exercise 7.26 Suppose that Σ� φ where Σ is a set of positive propositional
terms Show that φ is also logically equivalent to a positive term. (Hint: con-
sider the valuation v sending each propositional letter to �. What does the
Soundness Theorem say about Σ�φ and v? Now apply the characterisation of
positive terms in the previous exercise.)

7.2 Examples and exercises 93

Finally, we shall show that with infinitely many propositional letters, our
propositional logic can simulate the systems of Chapters 3 and 4.

Example 7.27 Let X be the set 2∗ of strings of 0s and 1s of finite length, con-
sidered as a set of propositional letters. To avoid any possibility of confusion
we shall write a string σ in 2∗ as qσ when we think of it as a propositional
letter. Suppose Σ ⊆ 2∗ is a set of given strings or axioms for the system of
Chapter 3. We define a set ΓΣ of terms in BT(X) that represent Σ and the proof
system of Chapter 3.

The set ΓΣ is the set of: qσ for each σ ∈ Σ; the statement ¬qτ0 ∨¬qτ1 ∨qτ
for each τ ∈ 2∗; and the statement ¬qρ ∨ (

qρ0 ∧qρ1
)

for each ρ ∈ 2∗. The
idea is that these propositional formulas represent the given statements and
Shortening and Lengthening Rules of the previous system. Indeed, it is the
case that Σ�τ in the system of Chapter 3 if and only if ΓΣ�qτ in propositional
logic.

One direction is straightforward: by induction on the length of proofs in the
system of Chapter 3, if Σ� τ then ΓΣ �qτ . We leave this as an exercise.

For the other direction, suppose Σ � � τ . Then by the Completeness Theorem
for that system, Theorem 3.12, there is an infinite path p in 2∗ such that τ ∈ p
but p ∩ Σ = ∅. Define a valuation v: X →{�, ⊥} by v(qρ) = ⊥ if ρ ∈ p
and v(qρ) = � if ρ �∈ p. Then v(qρ) = � for all ρ ∈ Σ since Σ ∩ p = ∅;
v(¬qτ0 ∨¬qτ1 ∨ qτ) = � since if v(qτ) = ⊥ then τ is in the path p and so
at least one of τ0, τ1 is in the path and hence v(¬qτ0) = � or v(¬qτ1) = �;
and v(¬qρ ∨

(
qρ0 ∧qρ1

)
) = � since if v(qρ0 ∧qρ1) = ⊥ then one of ρ0 or ρ1

is in the path p hence ρ itself is in p and so v(¬qρ) = �. Thus v makes all
statements in ΓΣ true and v(qτ) = ⊥ since τ ∈ p, so this shows that ΓΣ � �qτ by
the Soundness Theorem for propositional logic.

Example 7.28 As a converse to the last example, and for ambitious readers
only, we shall try to show that the system of Chapter 3 can be used as a basis
for propositional logic.

Once again, we take infinitely many propositional letters pi, with i ranging
over natural numbers, but we let X = {pi : i ∈ N} and look at BT(X), the set
of propositional statements involving the pi. It turns out that BT(X) is also
countable, so the set of all terms in BT(X) can be enumerated as σi where i
ranges over N.

We consider a boolean term θ from BT(X) and we try to determine whether
θ is possible or impossible. (This is rather more general than the discussion at
the end of Section 3.1, since we are specifying a collection of boolean terms,
and not a collection of sets of values. However, an arbitrary finite set of values,

94 Valuations

for example p0 = 0, p1 = 1, p2 = 1, p3 = 0, . . ., pk−1 = 0 can be specified as
a single boolean term as for example ¬ p0 ∧ p1 ∧ p2 ∧ . . .∧¬ pk−1.)

We also need to consider an additional set Ξ of situations that we know to
be impossible, based on the logic of ¬, ∧ and ∨. These are as follows.

• The sets {⊥} and {¬�} are in Ξ, as no situation in which ⊥ or ¬�
holds is possible.

• For every φ ∈ BT(X), the set {φ , ¬φ} is in Ξ, as no situation in which
both φ and ¬φ hold is possible.

• For every φ , ψ ∈ BT(X), the set {(φ ∨ψ), ¬φ , ¬ψ} is impossible and
is in Ξ.

• For every φ , ψ ∈ BT(X), both {¬(φ ∨ψ), φ} and {¬(φ ∨ψ), ψ} are
impossible and are in Ξ.

• For every φ , ψ ∈BT(X), both {(φ ∧ψ), ¬φ} and {¬(φ ∧ψ), ¬ψ} are
impossible and are in Ξ.

• For every φ , ψ ∈ BT(X), the set {¬(φ ∧ψ), φ , ψ} is impossible and is
in Ξ.

(These rules are sometimes known as the tableau rules for propositional logic,
and a proof system derived from them is a tableau system.)

Now, we identify each of our finite sets S ⊆ BT(X) = {σi : i ∈ N} with a set
S∗ of strings s0s1. . .sk−1 of minimal length k corresponding to one more than
the largest index of σi ∈ S, where

S∗ =
{

s0s1. . .sk−1 ∈ {0, 1}k :∀i < k (σi ∈ S→ si = 1)
}

so that, if S does not contain σi for some i < k, then both possible values of si

are allowed. We will do this for each S ∈ Ξ and also apply this to the singleton
set {¬θ}.

This then gives a large set of strings Πθ = {¬θ}∗ ∪⋃{S∗ : S ∈ Ξ}. The
main property of this is that Πθ �⊥ in the system of Chapter 3 if and only
if θ �⊥ in propositional logic. One direction is proved by induction on the
length of derivations in the system of Chapter 3. The other direction is proved
by saying that if Πθ � � ⊥ then there is a path p through the tree 2∗ avoiding
Πθ , and this path defines a valuation v: BT(X)→{�, ⊥} with v(σi) = � if
some string s0s1. . .si is in p with si = 1. It is not trivial in this case to see
that this is a valuation, i.e. satisfies v(⊥) = ⊥, v(�) = �, v(¬φ) = ¬v(φ),
v(φ ∧ψ) = v(φ)∧ v(ψ), and v(φ ∨ψ) = v(φ)∨ v(ψ), because v is defined on
all formulas of BT(X) and not just on X , but this follows from the fact that
the path p avoids all S∗ with S ∈ Ξ. This valuation clearly makes ¬θ false, so
makes θ true. Thus θ � �⊥.

7.3 The complexity of satisfiability* 95

Full details are left as an exercise, as is the extension of this to the charac-
terisation of the provability R�τ of a statement τ from a set of statements R in
propositional logic.

Example 7.29 Let X be a non-empty set and Σ a set of statements of the form
a ≺ b or a �≺ b for elements a, b ∈ X . We will define a translation t(σ) of
statements σ in the system of Chapter 4 and a set Ξ of statements such that for
t(Σ) = {t(σ) : σ ∈ Σ} we have: Σ�σ holds in the sense of Chapter 4 if and
only if Ξ∪ t(Σ)� t(σ).

Let Y be the set of proposition letters pa, b for all a, b ∈ X , and translate
statements of the system of Chapter 4 by: t(⊥) =⊥; t(a≺ b) = pa, b; and t(a �≺
b) = ¬ pa, b. Now define Ξ to be the set of statements: ¬ pa, b ∨¬ pb, c ∨ pa, c

for all a, b, c ∈ X ; and pa, a for each a ∈ X . We now want to prove that Σ�σ if
and only if Ξ∪ t(Σ)� t(σ). One direction, that Σ�σ implies Ξ∪ t(Σ)� t(σ),
is a straightforward induction on the length of derivations in the system of
Chapter 4 and is left as an exercise.

For the other direction, suppose Σ � �σ . Then by the Completeness Theorem
of Chapter 4, Theorem 4.10, there is a partial order < on X making Σ true and
σ false. Define a valuation by v(pa, b) = � if a < b holds in this order, and ⊥
otherwise. So v(t(τ)) = � for all τ ∈ Σ and v(t(σ)) = ⊥. Also v(ρ) = � for
all ρ ∈ Ξ, by the transitivity and irreflexivity axioms for a partial order. Thus v
makes Ξ∪ t(Σ) true and t(σ) false and so Ξ∪ t(Σ) � � t(σ), as required.

7.3 The complexity of satisfiability*

We have seen that, given a set of propositional letters X , a finite set of proposi-
tional formulas Σ in X and a further formula σ , there are algorithms to decide
whether Σ�σ . As pointed out in Section 6.3, one algorithm goes by directly
searching for a proof according to some strategy that is guaranteed to give
an answer. From the results in this chapter, Σ � σ is equivalent to Σ �2 σ ,
so another quite different algorithm goes by checking all possible valuations
v: X →{�, ⊥} and checking that each valuation v that makes each statement
in Σ true also makes σ true. Thus we have two quite different algorithms for
deciding whether Σ�σ and there are others too.

Just knowing that there is an algorithm to solve our problem is not the end
of the story. We might also like to ensure that our algorithm runs efficiently
and is effective in the sense that it runs in reasonable time for typical inputs.
But here there is a problem.

If X has n propositional letters, then there are 2n different valuations on the
letters in X . Even if n is a very reasonable (and typical) 100, that would mean

96 Valuations

that there are 2100 individual valuations to check, and this is an unreasonably
large number to expect any sort of computer to run through in a human lifetime.
And of course n = 1000 would be much much worse.

The other algorithm does not fare any better. Suppose we consider a special
case (but a rather typical one) where we ask whether τ �⊥, where τ is τ1 ∧
τ2 ∧ . . .∧ τk and each τi is a disjunction of three atomic or negated atomic
statements (τi1 ∨ τi2 ∨ τi3). Then our proof strategies ask us to decide whether
τ1, τ2, . . ., τk �⊥ and this in turn requires us to check each τ1 j1 , τ2 j2 , . . ., τk jk �
⊥ for each possible combination of jm ∈ {1, 2, 3}. There are then 3k such
proofs to check, and this is unreasonably large for any computer, even for
reasonable values of k of the order of 100.

Of course these arguments prove nothing on their own about how hard it is
to decide whether Σ�σ or whether τ �⊥, since these are just two possible
algorithms; there may be other algorithms for the same problem and one of
those may be much better than the two we have available at present. To current
knowledge, this could indeed be the case, but most experts in the field seem to
think it unlikely.

To study this problem more thoroughly will take us into the subject of com-
putability, and in particular complexity theory, which tries to study the inher-
ent complexity of a problem such as Σ�σ in terms of the performance of the
best-possible algorithm to solve it. I will not give the official definitions of
‘algorithm’, or an algorithm’s ‘performance’ here as it would take us too far
off track, but I will say enough to give a flavour of the subject and the main
open problem.

In complexity theory, a problem is a set of inputs, usually encoded as a string
of symbols from a finite set of symbols, to a question, which should have a
definite yes/no answer. A problem can also be thought of as that set of input
data for which the answer to the question is yes. Thus ‘does Σ�σ?’ is a typical
problem, where the inputs are the data Σ, σ . This problem is usually simplified
to special cases that nevertheless contain all of the difficulties. These are given
in the following definition.

Definition 7.30 The problem SAT is the set of satisfiable propositional for-
mulas, i.e. formulas σ in some set of letters X for which there is a valuation
v: BT(X)→{�, ⊥} with v(σ) = �.

The problem TAUT is the set of tautologies, i.e. formulas σ in some set of
letters X for which every valuation v: BT(X)→{�, ⊥} has v(σ) = �.

These problems are related. σ is in TAUT if and only if ¬σ is not in SAT,
and Σ�σ if and only if (¬∧

Σ)∨σ is in TAUT, which is the case if and only

7.3 The complexity of satisfiability* 97

if (
∧

Σ)∧ (¬σ) is not in SAT. The algorithms described earlier can easily be
adapted to solve SAT and TAUT, with similar difficulties about the time that
they take.

In complexity theory, the time taken by an algorithm is regarded as a func-
tion of the number of symbols in the input. This length of the input is denoted n
and for the problems we are considering here, SAT and TAUT, n is the number
of ∨, ∧ , ¬ , (,), �, ⊥ and propositional letters in the input. It is a non-obvious
but interesting fact that as far as theoretical running time is concerned it does
not much matter what kind of (theoretical or actual) computer an algorithm
runs on. Within a constant multiplying factor, or very occasionally a squaring
or a square-root, all normal deterministic computers run the same algorithms
in the same time. A very fast algorithm might have running time which is
O(n), a slightly slower might have running time O(n2). There are also O(n3),
O(n4), . . . , algorithms, and these may also be useful in practice. Generally
speaking, it is conventional to say that an algorithm is useful or effective if its
running time is the order of a polynomial in n. Of course this is not the end
of the story, and one might want to know the order of the polynomial, size of
the coefficients, etc., but an algorithm which does not have running time the
order of a polynomial in n seems pretty clearly one that will not be effective,
practical or useful in general.

Definition 7.31 The class P of problems soluble in polynomial time is the
class of problems for which there is a deterministic algorithm solving it in
polynomial time, i.e. having running time which is O(nk) for some constant k
depending on the problem, but not the input to the problem.

To estimate the performance of our algorithms for SAT and TAUT, we need
to relate the length of input n to the number of propositional letters. In the
very worst case, a formula may be something like ((((a ∧ b)∨ c)∧ d). . .)
with around n/4 distinct propositional letters. Of course the SAT and TAUT
problems for such formulas may be easy to solve, but rather difficult examples
can easily be constructed with around

√
n propositional letters. Thus (since we

are only interested in running times of the order of a polynomial in n anyway,
and square-roots or constant factors are immaterial) we might as well make
the simplification that n is the same as the number of propositional letters.
Then we see straight away that the running time of our algorithms is closer to
2n than a polynomial in n, since for example there are 2n many valuations to
consider for a single formula. Thus our algorithms are definitely not running
in polynomial time.

This does not answer our basic question, however.

98 Valuations

Question 7.32 Are SAT and TAUT in the class P of polynomial-time soluble
problems?

This question is a version of the famous and unsolved ‘P = NP?’ problem,
which is arguably one of the most interesting and important (and possibly one
of the most difficult) open problems in mathematics at the current time. To
explain the connection we need to say what NP and co-NP are, and what they
have to do with SAT and TAUT.

To give an algorithm for SAT, we can run through all valuations v: X →
{�, ⊥} and see whether any of them make our formula true. Given a valuation,
it is easy and fast to check it against a formula. But if the valuation happens
to make the formula true, we do not need to check any more valuations, we
can just answer ‘yes’. (Of course, if the formula is not in SAT we still need
to check all the valuations.) Now suppose our machine was given the freedom
to make guesses all on its own, and also somehow given an ability always to
choose the lucky option when one is available. Then SAT would be computable
in polynomial time: our machine is set off on input σ , and (assuming σ is in
SAT) very luckily chooses the right valuation straight away, verifies it correct,
and answers ‘yes’. On the other hand (assuming σ is not in SAT) our machine
tries its best to be lucky in choosing a valuation, but when verifying it discovers
this valuation is incorrect, and so must answer ‘no’.

Such machines are called non-deterministic. It is important to realise that
verifying the lucky guess is an essential part of a non-deterministic machine,
since to the machine, it is the ‘yes’ answer that matters, and not our intentions
when programming the machine. It is like a mouse running through a maze
looking for a lump of cheese. The mouse only wants to take the correct turns
to reach the cheese, and does not understand who built the maze or what the
maze is for; in the same way the non-deterministic machine’s luck leads it to a
‘yes’ if its program allows it to do so. This is why we still need to program in
a verification step to ensure that it only reaches ‘yes’ when we want it to.

Definition 7.33 The class NP is the class of problems soluble in polynomial
time on a non-deterministic computer.

We have seen that SAT is in NP. The ‘P = NP?’ question asks whether every
NP problem is soluble in polynomial time on a deterministic machine.

Question 7.34 Does P = NP?

This sounds as if it would be much harder to prove that P = NP instead
of just showing SAT is in P, but in fact a result due to Stephen Cook states

7.3 The complexity of satisfiability* 99

that SAT ∈ P implies that P = NP; in other words, SAT is in some sense the
hardest member of NP (or rather, equal-hardest with some other problems in
NP). Cook’s Theorem is proved by describing non-deterministic computers in
the propositional logic, not so very far removed from the methods used in Ex-
amples 7.27 and 7.29, and because SAT therefore encodes the computations
of non-deterministic polynomial-time computers, the terminology used is that
SAT is NP-complete. Hundreds of other NP-complete problems have been
discovered, including ones of great importance in optimisation, number theory
and cryptography, so knowing whether they are in P or not is of key impor-
tance. Unfortunately, this problem seems too difficult at the present.

There is a subtle asymmetry between ‘yes’ and ‘no’ in a non-deterministic
computer. If we change these round, we get a different model of a computer,
and the class of co-NP problems.

A co-nondeterministic computer is like a non-deterministic one, except this
time it is the ‘no’ answer that is regarded as lucky, and the computer will make
guesses that leads to a ‘no’ wherever possible. The problem TAUT is easy to
solve on a co-nondeterministic computer. Once again, we guess a valuation,
but this time hoping for a valuation that will show the input is not a tautology.
If we are lucky, our valuation will make the formula false and our verification
will show this to be the case. In this case we can answer ‘no’. If we are not
lucky we have no choice but to answer ‘yes’.

Definition 7.35 The class co-NP is the class of problems soluble in polynomial
time on a co-nondeterministic computer.

It is fairly easy to see that P = NP if and only if P = co-NP, and that (by
Cook’s Theorem) these are equivalent to the statement ‘TAUT ∈ P’. Two fur-
ther interesting problems are,

Question 7.36 Does NP = co-NP?

Question 7.37 Does NP∩ co-NP = P?

It is not difficult to show that if P = NP then NP = co-NP and NP∩co-NP =
P, but no converses to these implications are expected. Thus the two questions
above are expected to have negative answers but appear to be harder to solve
than ‘P = NP?’ itself. In fact about the only easy thing in this subject seems
to be to invent unsolved problems! It is not expected that TAUT ∈ NP or
SAT ∈ co-NP, though these are open questions equivalent to NP = co-NP. The
class NP∩ co-NP contains interesting problems such as problems to do with
factorisation that are not known to be in P.

8

Filters and ideals

8.1 Algebraic theory of boolean algebras

In this chapter we start to explore the theory of boolean algebras as an algebraic
theory in its own right, in a way analogous to ring theory, say. We will see
many applications of the Completeness and Soundness Theorems proved in
the last chapter.

We start with an important definition concerning boolean algebras.

Definition 8.1 Let B, C be boolean algebras. A homomorphism from B to C is
a map h: B→C such that, for all a, b ∈ B,

• h(a∨b) = h(a)∨h(b)
• h(a∧b) = h(a)∧h(b)
• h(�) = �
• h(⊥) = ⊥
• h(a′) = h(a)′

Here, ∨ and ∧, etc., are calculated inside B on the left hand side, and inside C
on the right. In fact, the last condition (on complementation) is not necessary
and follows from the other four, since if those four hold then we have � =
h(�) = h(a′ ∨ a) = h(a′)∨ h(a) and ⊥ = h(⊥) = h(a′ ∧ a) = h(a′)∧ h(a) so
h(a′) = h(a)′ by Proposition 5.22 on the Uniqueness of Complements.

We will see several examples of homomorphisms later, but first we study
one particular homomorphism of boolean algebras that applies to all such B.

Definition 8.2 Let B be a boolean algebra. Define a boolean algebra Bop =
(B, ∧op, ∨op, ′, �op, ⊥op) with the same underlying set and the same comple-
mentation operation as B, by defining the other operations as follows

• x∧opy = x∨ y

100

8.1 Algebraic theory of boolean algebras 101

• x∨opy = x∧ y
• �op = ⊥
• ⊥op = �

Bop is a boolean algebra in its own right, called the opposite of B. The map
x �→ x′ is a homomorphism B→Bop which is also one-to-one and onto. In
other words it is an isomorphism of boolean algebras. This ‘opposite’ map
turns boolean algebras ‘upside down’ swapping � and ⊥ and reversing the
order relation. It also swaps ∧ and ∨, showing that we should expect these
operations to have similar properties. More importantly, it shows that for every
notion in a boolean algebra there is a dual notion, in which the order is reversed
and �, ⊥ and ∧, ∨ are swapped over, and proofs of propositions for one kind
carry over directly to the dual. Again, we will see plenty of examples in this
chapter.

As well as being used to model propositional logic, boolean algebras are
closely related to rings. (See the exercises below for more details.) In ring
theory, the important subsets of a ring are the ideals. These are the subrings
which can be used to ‘quotient out’ the ring to get a new (and often nicer)
ring. One way of understanding ideals of rings is that they are the kernels of
homomorphisms. The same applies for boolean algebras.

Definition 8.3 Let h: B→C be a homomorphism of boolean algebras. Then
the kernel of h is the subset kerh = {a ∈ B : h(a) = ⊥}.

Proposition 8.4 Let h: B→C be a homomorphism of boolean algebras and
I = kerh. Then I satisfies: (a) if a ∈ I and b ∈ I then a∨b ∈ I; (b) if a ∈ I and
b ∈ B with b � a then b ∈ I. In particular, it follows from (b) that I contains ⊥
and is closed under ∧.

Proof If a ∈ I and b ∈ I then h(a) = h(b) = ⊥ so h(a∨b) = h(a)∨h(b) = ⊥,
so a ∨ b ∈ I. Also, if a ∈ I and b ∈ B with b � a then h(b) = h(b ∧ a) =
h(b)∧h(a) � ⊥ so h(b) = ⊥ and b ∈ I.

Definition 8.5 Let B be a boolean algebra, or more generally, a lattice. An
ideal of B is a non-empty subset I ⊆ B such that for all x, y ∈ B: (a) x � y ∈ I
implies x ∈ I; and (b) x, y ∈ I implies x∨y ∈ I. The ideal I is proper if it is not
equal to the whole of B.

As you may have guessed, there is a similar dual notion obtained by replac-
ing ∧, ∨ , �, ⊥ by their duals ∨, ∧ , ⊥, �. The dual notion to that of an ideal
is called a filter.

102 Filters and ideals

Definition 8.6 A filter of B is a non-empty subset F ⊆ B such that for all
x, y ∈ B: (a) x � y ∈ F implies x ∈ F ; and (b) x, y ∈ F implies x∧ y ∈ F . It is
proper if it is not equal to the whole of B.

As mentioned, filters and ideals are dual concepts. If I is an ideal then
F = {a′ : a ∈ I} is the corresponding filter, and vice versa.

The way to picture these is to think of an ideal as representing a set of
elements to be thought of as ‘negligible’, ‘small’ or ‘false’. If x � y and y is
‘false’ then x should also be false as it is ‘more false’ than y. Also if x, y ∈ I are
both ‘false’ then so is x∨y or ‘x or y’. Similarly a filter is a set of elements that
can be thought of as ‘large’ or ‘true’. If x � y, i.e. x is ‘more true’ than a true
statement y, then x should be ‘true’, and if both x, y are ‘true’ then so should
‘x and y’ or x∧ y. In this picture, we should only be interested in proper ideals
and proper filters, because we want to retain at least some distinction between
‘true’ and ‘false’.

Another way of saying the same thing – a way that is algebraically somewhat
more sophisticated – is to say that we can factor a boolean algebra out by an
ideal to make everything in the ideal look like ⊥. Similarly we can factor out
by a filter to make everything in the filter look like �.

Factoring out an ideal or filter has repercussions on the whole of the boolean
algebra, though. If x, y ∈ B and I is an ideal consisting of objects to be thought
of as ‘false’ or ‘negligible’ then x and y should be regarded as equivalent mod-
ulo the ideal I if the terms representing how x and y differ, i.e. the terms x∧ y′

and x′ ∧ y, are both negligible. (In the case when B is a boolean algebra of
subsets of some set X you can think of this as saying the set differences x \ y
and y \ x are both negligible.)

Exercise 8.7 (For those who have read Section 5.3.) Switching when nec-
essary between B as a boolean algebra and B as a boolean ring, the differ-
ence between x and y is x − y, or (as B has characteristic 2), x + y. But
x + y = (x∧ y′)∨ (x′ ∧ y), and so x− y ∈ I if and only if (x∧ y′)∨ (x′ ∧ y) ∈ I,
which is the case if and only if both (x∧y′), (x′ ∧y)∈ I, since ideals are closed
under ∨.

Dually, x and y are equivalent modulo the filter F if x∧ y′ and x′ ∧ y are in
the corresponding ideal, i.e. (x∧y′)′ ∈ F and (x′ ∧y)′ ∈ F , which is equivalent
to saying that both x′ ∨ y ∈ F and x∨ y′ ∈ F . (You can think of this as saying
that the filter makes both implications x→ y and y→ x true.)

Definition 8.8 Let B be a boolean algebra and I ⊆ B an ideal. Then B/I is the

8.1 Algebraic theory of boolean algebras 103

set of equivalence classes for the equivalence relation

a ∼ b if and only if (a′ ∧b) ∈ I and (a∧b′) ∈ I.

Similarly, if F ⊆ B a filter. Then B/F is the set of equivalence classes for the
equivalence relation

a ∼ b if and only if (a∨b′) ∈ F and (a′ ∨b) ∈ F .

The quotients B/I and B/F are made into a boolean algebra by defining

• � = [�] = F
• ⊥ = [⊥] = I
• [a]∨ [b] = [a∨b]
• [a]∧ [b] = [a∧b]
• [a]′ = [a′]

for each a, b ∈ B, where [x] denotes the ∼-equivalence class of x.

Proposition 8.9 In each of these cases, ∼ is an equivalence relation, the
operations of ∨, ∧ and ′ on the quotient are well defined (i.e. do not depend on
the choice of the representative of the equivalence class used to define them)
and satisfy the axioms for a boolean algebra. The quotient algebra is proper
(i.e. not degenerate) if and only if the ideal (or filter) used is proper.

Proof This is a long detailed check against the axioms. We will do some
typical steps, including the more difficult ones, and leave the remaining parts
as an exercise for the more energetic students.

To see that ∼ is an equivalence, note that x ∼ x as ⊥= x∧x′ = x′ ∧x ∈ I. The
symmetry axiom is obvious. For transitivity, suppose x∧ y′, x′ ∧ y, y∧ z′, y′ ∧ z
are all in I. Then

x∧ z′ = (x∧ z′ ∧ y)∨ (x∧ z′ ∧ y′) = (x∧ z′)∧ ((y∧ z′)∨ (x∧ y′))

which is in I as (y∧ z′), (x∧ y′) ∈ I and I is closed downwards and under ∨.
Similarly for x′ ∧ z.

The operations on B/I are well defined. For example if x1 ∼ x2 and y1 ∼ y2

then x1 ∧ x2
′, x1

′ ∧ x2 and y1 ∧ y2
′, y1

′ ∧ y2 are all in I. Thus (x1 ∧ y1)∧ (x2 ∧
y2)

′ = x1 ∧y1 ∧ (x2
′ ∨y2

′) = (x1 ∧y1 ∧x2
′)∨ (x1 ∧y1 ∧y2

′) = (x1 ∧y1)∧ ((x1 ∧
x2

′)∨(y1∧y2
′)) which is in I by the closure properties of I. All other cases are

similar.
Checking the axioms for a boolean algebra is now easy. (I suggest the easiest

way is to check against the properties in Proposition 5.15; see also Proposition
5.16.) To check that the quotient is proper, it suffices to check that it is not the
case that �∼⊥. But if �∼⊥ then �=�∧⊥′ ∈ I, so I = B is not proper.

104 Filters and ideals

In the sequel, I will tend to concentrate on filters rather than ideals since (being
an optimist) I prefer to focus on true statements rather than false ones, but as
we have seen these ideas are interchangeable. (Is this boolean algebra half-true
or half-false?) Pessimists can easily translate what I have to say to ideals using
duality.

The next lemma presents a useful way of making a new filter from an old
one by adding a new element x to the filter and closing the resulting set under
� and ∧.

Lemma 8.10 Let B be a boolean algebra, x ∈ B, and F ⊆ B a filter of B. Then

G = {g : g � x∧ f , for some f ∈ F}
is a filter containing both x and all elements of F, and is in fact the least such
filter. The filter G is a proper filter except when x′ ∈ F.

Proof Checking that G is a filter is routine. If g ∈ G and h � g then it is clear
that h ∈ G from the definition. If g1 � x∧ f1 and g2 � x∧ f2 with f1, f2 ∈ F
then g1 ∧ g2 � (x∧ f1)∧ (x∧ f2) = x∧ (f1 ∧ f2) and f1 ∧ f2 ∈ F since F is a
filter.

For the final part, suppose that G is not proper. Then ⊥∈ G so ⊥� x∧ f for
some f ∈ F so f � x′. Hence x′ ∈ F as F is a filter.

Our set BT(X) of boolean terms over X is close to being a boolean algebra in
its own right. It has operations of ∧, ∨ and complementation given by t, s �→
(t ∧ s), t, s �→ (t ∨ s), t �→ ¬ t, for terms t, s ∈ BT(X). The problem is that
certain distinct terms should be ‘equal’. For example, for x, (x∧ x) and (x∨ x)
ought to be equal to each other as elements of the boolean algebra but are in
fact distinct terms. The solution is once again to use an equivalence relation.

Lemma 8.11 Let X be a set. Then we may define an equivalence relation ∼
on BT(X) by

t ∼ s if and only if t � s and s� t.

The set of equivalence classes [t] of BT(X) forms a boolean algebra when we
define

• [t] � [s] if and only if t � s
• [t]∧ [s] = [(t ∧ s)]
• [t]∨ [s] = [(t ∨ s)]
• [t]′ = [¬ t]
• � = [�]

8.1 Algebraic theory of boolean algebras 105

• ⊥ = [⊥]

Proof This is more axiom-checking for energetic students! That ∼ is an equiv-
alence is an easy consequence of the proof rules for propositional logic. Note
that the operations are also well defined, for if t1 ∼ t2 and s1 ∼ s2 then t1 � t2,
s1 � s2 and so, by ∧-Elimination and ∧-Introduction, t1 ∧ s1 � t2 ∧ s2. The other
direction, all the other cases, and the boolean algebra axioms are all proved in
the same way by construction of propositional logic proofs.

Definition 8.12 The boolean algebra defined in the previous lemma over the
set X is called the free boolean algebra over X and is denoted free(X).

The free boolean algebra contains as few identifications of boolean terms as
possible – that is why it is called ‘free’. Only terms that must be identified be-
cause of proofs in the propositional calculus are actually identified. In fact any
boolean algebra is a quotient of a free algebra by a filter – see Exercise 8.23.

In the next result, we use filters in the free boolean algebra to measure ‘at
least as true as’.

Theorem 8.13 (Another version of the Soundness Theorem) Let X be a
set and consider the valuation v: X → free(X) defined by v(x) = x. Then for
Σ ⊆ BT(X) and σ ∈ BT(X) we have: if Σ�σ then every filter G of free(X)
that contains v(Σ) also contains v(σ).

Proof Let G be a filter of free(X). Define a homomorphism w: free(X)→
free(X)/G by x �→ x/G, where x/G is the equivalence class of x in the quotient
algebra, and let u: BT(X)→ free(X)/G be the composition of v and w. Then
if G ⊇ v(Σ) we have u(τ) = �/G for all τ ∈ Σ so, by the previous version of
soundness, u(σ) = �/G hence v(σ) ∈ G, as required.

Theorem 8.14 Let X be a set, and let π: BT(X)→ free(X) be the map induced
by x �→ [x] and suppose G � free(X) is a proper filter. Then

π−1G = {σ ∈ BT(X) : π(σ) ∈ G}

is consistent, i.e. π−1G � �⊥.

Proof There is a valuation X → free(X)/G given by sending x ∈ X to the
equivalence class [x]/G of [x] ∈ free(X) in the quotient algebra free(X)/G,
and this map sends each σ ∈ π−1G to �. Since G is proper, �/G �= ⊥/G

106 Filters and ideals

in free(X)/G, so this valuation does not send ⊥ ∈ BT(X) to ⊥ in free(X)/G.
Therefore π−1G is consistent by soundness.

Definition 8.15 Let F be a filter in a boolean algebra B. We say that F is prime
if it is proper and whenever a, b ∈ B with a∨b ∈ F then either a or b is in F .

Dually, an ideal I is prime if it is proper and whenever a, b ∈ B with a∧b ∈ I
then either a or b is in I.

Proposition 8.16 Let B be a boolean algebra and F � B a proper filter. Then
the following are equivalent.

• F is maximal, i.e. there is no filter G with F � G � B.
• F is prime.
• F has the property that for all x ∈ B either x ∈ F or x′ ∈ F.
• B/F is isomorphic to the two-element boolean algebra {�, ⊥}.

Proof If F is maximal and a∨b∈F with neither a, b∈F then, by Lemma 8.10,
we may extend F to the filters Ga = {g : g � a∧ f for some f ∈ F} and Gb =
{g : g � b∧ f for some f ∈ F} and these contain a, b respectively; hence they
are improper by the maximality of F . Therefore ⊥ � a∧ f and ⊥ � b∧g for
some f , g ∈ F , so ⊥� (a∧ f)∨ (b∧g) = (a∨b)∧ (f ∨b)∧ (a∨g)∧ (f ∨g) ∈
F , hence F is also not proper, contradicting assumption. So F is maximal
implies that F is prime.

If F is prime then x∨ x′ = � ∈ F so one of x, x′ ∈ F , so F has the third
property listed in the proposition.

If F has the property that one of x, x′ ∈ F for each x, then the equivalence
class x/F of x is either F itself (if x ∈ F) or {x′ : x ∈ F} (if x′ ∈ F) as you may
check. Therefore there are only two such equivalence classes and B/F is the
two-element boolean algebra.

If B/F is isomorphic to {�, ⊥} then F = {x ∈ B : x/F = �/F} and so for
a filter G with F � G ⊆ B we have x ∈ G for some x/F = ⊥/F . It follows
from the definition of the equivalence class x/F that x∨ f =⊥ for some f ∈ F
i.e. G = B.

Maximal proper filters are usually called ultrafilters. The previous proposition
shows that this notion of ultrafilter coincides exactly with prime filter. The
following theorem stating that ultrafilters exist is an important consequence
of Zorn’s Lemma. It is normally known as the Prime Ideal Theorem, and we
shall stick with this convention, despite the fact that we shall state the result
in its equivalent form concerning filters. It is in fact just another form of the
Completeness Theorem for propositional logic.

8.2 Examples and exercises 107

Theorem 8.17 (Boolean Prime Ideal Theorem) Let B be a boolean algebra
and suppose F � B is a proper filter. Then there is an ultrafilter G ⊇ F of B.

Proof Let X = B considered as a set of letters, and consider the valuation
v: X = BT(B)→B given by v(x) = x. Then the set of statements Σ = v−1(F) is
consistent by the Soundness Theorem so by the previous version of complete-
ness there is a valuation w: BT(X)→{�, ⊥} making each σ ∈ Σ true. Then
w−1(�) is a maximal filter in B extending F .

8.2 Examples and exercises

Exercise 8.18 Let f : B→C be a homomorphism of boolean algebras and let
F ⊆C be a filter in C. Then f−1F = {x ∈ B : f (x) ∈ F} is a filter in B. If F is
a proper filter in C then f−1F is a proper filter in B.

Exercise 8.19 If I is a prime ideal in B then its complement B− I is a prime
filter. Similarly the complement B−F of a prime filter is a prime ideal.

Exercise 8.20 Let B be a finite boolean algebra. Show that B is isomorphic to
the boolean algebra P(X) of all subsets of some (finite) set X . (Hint: say an
element a ∈ B is an atom if ⊥ < a and there is no x ∈ B with ⊥ < x < a. Let X
be the set of atoms of X and define h(b) = {x ∈ X : x � b}.)

Exercise 8.21 Let X be a finite set. Show that the free algebra free(X) on
X is isomorphic to the algebra P(X) of all subsets of X with ⊆ , ∪ , ∩. More
generally, if X is a set, possibly infinite, show that free(X) is isomorphic to
the subalgebra of P(X) consisting of all of those subsets of X which either are
finite or else have finite complement.

Exercise 8.22 Let X be a set of proposition letters and B = free(X), the free
algebra on X . Suppose that x, y are distinct letters from X . Show that the
equivalence relation ∼ of Lemma 8.11 does not make x and y equivalent.

Exercise 8.23 Let B be a boolean algebra, and let X = B. Form the free algebra
A = free(X), and let v: A→B be the homomorphism induced by sending the
proposition letter b ∈ X = B to itself. (You will need to apply the previous
exercise to show this map is well defined.) Let F be the set of a ∈ A such that
v(a) = �. Show that F is a filter and A/F is isomorphic to B.

108 Filters and ideals

Exercise 8.24 (For those who have read Section 5.3 on the algebra of Boole.)
Let R be a boolean ring and B the boolean algebra corresponding to it. Show
that I ⊆ R is an ideal of R in the sense of ring theory (i.e. is non-empty, is
closed under + and satisfies xy ∈ I whenever one of x or y is in R) if and only
if I is an ideal of B in the sense of boolean algebras.

8.3 Tychonov’s Theorem*

The main theorem of this chapter was the Boolean Prime Ideal Theorem, the
fact that every proper filter in a boolean algebra can be extended to an ul-
trafilter, i.e. a maximal and hence prime proper filter. Ultrafilters have many
applications in mathematics, including to logic itself, and to infinitary combi-
natorics.

One nice application of ultrafilters is their use in proving Tychonov’s The-
orem, that an arbitrary product of compact topological spaces is compact. We
say an open cover Ui (i ∈ I) of a topological space X is a family of open sets
whose union is the whole of X , and the closure of a set A⊆ X is the set of x ∈ X
such that every non-empty open U containing x also contains some a ∈ A. The
closure of A is denoted A. We start with a characterisation of compact topo-
logical spaces.

Proposition 8.25 Let X be a topological space, and B = P(X) the boolean
algebra of subsets of X. Then the following are equivalent.

• Any open cover Ui (i∈ I) of X has a finite subcover Uin (n = 0, 1, . . ., k).
• For any proper filter F ⊆B the intersection

⋂{
A : A ∈ F

}
is non-empty.

Proof For one direction, suppose F ⊆ B is a filter. Then U =
{

Ac : A ∈ F
}

,
the set of complements of closures of A ∈ F , is a collection of open sets. If⋂{

A : A ∈ F
}

= ∅ then there is no x ∈ X in all the A (A ∈ F), so U is an open
cover of X . Therefore there are A1, . . ., An ∈ F such that A1

c ∪ . . .∪An
c = X

hence A1 ∩ . . .∩An = ∅ hence A1 ∩ . . .∩An = ∅, so F is not proper.
For the other direction, let Ui (i ∈ I) be an open cover of X with no finite

subcover. Then the Ui generate a proper filter,

F =
{

A : A ⊇Uc
i1 ∩ . . .∩Uc

in , some n, i1, . . ., in
}

,

and
⋂{

A : A ∈ F
}

=
⋂{Uc

i : i ∈ I} = ∅ as the Ui cover X .

Definition 8.26 A topological space X satisfying either of the conditions in
the last proposition is said to be compact.

8.3 Tychonov’s Theorem* 109

For metric spaces, rather than the more general topological spaces consid-
ered here, compactness turns out to be equivalent to the idea of sequential
compactness discussed earlier in Example 1.15.

Definition 8.27 Let Xi be a topological space for each i ∈ I. The product
space is the set X = ∏{Xi : i ∈ I} of all functions f : I→⋃{Xi : i ∈ I} such that
f (i) ∈ Xi for all i. This is given the topology in which the open sets of X are
the sets which are unions of basic open sets of the form ∏{Ui : i ∈ I}, where
Ui ranges over open subsets of Xi and Ui must equal Xi for all but finitely many
i ∈ I.

Definition 8.28 The product space X = ∏{Xi : i ∈ I} has projection func-
tions πi: X →Xi defined by πi(f) = f (i), i.e. evaluating the function f at the
coordinate i. Similarly a set A ⊆ X has a projection πi(A) = {πi(a) : a ∈ A} ⊆
Xi.

Exercise 8.29 The projection functions πi: X →Xi defined on the product X =
∏{Xi : i ∈ I} are all continuous. In fact, the topology of the product space
X = ∏{Xi : i ∈ I} can be characterised as the topology with the minimum of
open sets to make these projection functions continuous.

Theorem 8.30 (Tychonov’s Theorem) Let Xi be compact topological spaces
for all i ∈ I. Then the product space X = ∏{Xi : i ∈ I} is also compact.

Proof Let F ⊆ P(X) be a proper filter, and apply the Boolean Prime Ideal
Theorem to obtain an ultrafilter G ⊇ F . For each i ∈ I we obtain an ultrafilter
Gi of P(Xi) by projection on Xi defined by Gi = {πi(A) : A ∈ G} where πi(A) =
{πi(x) : x ∈ A}. It is easy to check that Gi is an ultrafilter as claimed. This is
because each Gi is non-empty as G is, and if B ⊇ πi(A) then B = πi(C) where
C = { f : πi(f) ∈ B} ⊇ A. Also if A, B ∈ G then

πi(A)∩πi(B) ⊇ {πi(f) : f ∈ A∩B} = πi(A∩B) ∈ Gi

and clearly ∅ �∈ Gi since ∅ �∈ G.
By the compactness of Xi, there is for each i some a ∈ Xi in the closure of

each πi(A) ∈ Gi. Using the Axiom of Choice we select one such ai ∈ Xi for
each i, and define a ∈ X to be the function a: i �→ ai. Then it remains to check
that a ∈ A for each A ∈ G. That is, we need to show that if U ⊆ X is an open
neighbourhood of a then U ∩A �= ∅. As open sets in X are unions of basic
open sets, it suffices to prove this in the case when U = ∏{Ui : i ∈ I} is such a
basic open set. Fix some such U and consider an index i. Then as ai ∈ πi(A)

110 Filters and ideals

and ai ∈Ui = πi(U) there is some bi ∈Ui ∩πi(A). It follows that the function
b: i �→ bi is in U ∩A, as required.

We remark that the above proof uses the Axiom of Choice in several different
places. Firstly there is an implicit application of the Axiom of Choice in the
use of the Boolean Prime Ideal Theorem (which needed Zorn’s Lemma); and
secondly there are two explicit uses at the end to select our a. There is also,
rather more subtly, an implicit use of the Axiom of Choice in assuming that
the product space X is non-empty in the first place. Tychonov’s Theorem is
actually equivalent to the Axiom of Choice, and Choice cannot be avoided. On
the other hand, the Boolean Prime Ideal Theorem is in fact weaker than the full
Axiom of Choice (though it does require at least some form of Choice for its
proof).

Exercise 8.31 Let the topological space X be compact and Hausdorff (i.e. for
each x �= y in X there are open sets U , V such that x ∈U , y∈V and U ∩V = ∅).
Suppose that F ⊆ P(X) is an ultrafilter. Show that

⋂{
A : A ∈ F

}
is a singleton

set.

Exercise 8.32 Let Xi be non-empty sets for each i ∈ I. Show that the product
X = ∏{Xi : i ∈ I} is non-empty. Conversely, show that the statement you have
just proved implies the Axiom of Choice.

8.4 The Stone Representation Theorem*

Exercise 8.20 showed that a finite boolean algebra is isomorphic to the boolean
algebra P(X) of all subsets of some (finite) set X . This is a representation the-
orem showing that finite boolean algebras are represented in a nice way. For
infinite boolean algebras there is a similar but more complicated representa-
tion theorem, called the Stone Representation Theorem. We will explain this
result here. In this section we work with a boolean algebra B, which is usually
infinite.

Definition 8.33 Given a boolean algebra B, the dual of B, dual of boolean
algebra, Bdual, is the set of ultrafilters F ⊆ B. We give Bdual a topology by
defining the set T of all open sets. Here, T is defined to be the minimum of
sets that makes all collections of filters of the form

Ua =
{

F ∈ Bdual : a ∈ F
}

,

i.e. all collections of filters F containing a specific a ∈ B, open. In other words,
the set of all Ua forms a base of open sets for the topology (it is closed under

8.4 The Stone Representation Theorem* 111

intersections because Ua ∩Ub = Ua∧b) and T is defined to be the set of all
U ⊆ Bdual which are a union of sets of the form Ua. We call Bdual with this
topology the dual space of B.

Definition 8.34 A topological space X is totally disconnected if for all x, y∈X
with x �= y there are open U , V ⊆ X with x ∈ U , y ∈ V and X = U ∪V is a
disjoint union of the two sets.

Proposition 8.35 The topological space Bdual is a compact totally discon-
nected topological space, in which the clopen subsets (i.e. sets which are both
closed and open) are exactly the sets of the form Ua for a ∈ B.

Proof This is an application of the Boolean Prime Ideal Theorem. We start by
proving compactness.

Let {Ui : i ∈ I} be an open cover of Bdual. We must show that there is a
finite subcover. Each Ui is a union of basic open sets, so there is a cover
{Ua : a ∈ A} for some A ⊆ B such that each Ua (a ∈ A) is a subset of some Ui.
It suffices therefore to show that there is a finite subcover of {Ua : a ∈ A}. We
shall assume, to get a contradiction, that there is no such subcover.

Consider the filter

F =
{

x ∈ B : x � a1
′ ∧ . . .∧ak

′, k ∈ N, a1, . . ., ak ∈ A
}

.

This is clearly a filter. It is also proper since if ⊥ ∈ F then a1
′ ∧ . . .∧ ak

′ =
⊥ for some k and some a1, . . ., ak ∈ A; we show that this would imply that
Ua1 ∪ . . .∪Uak = Bdual. If G ∈ Bdual, so G ⊆ B is a (proper) ultrafilter and
G �∈Uai for each i then ai �∈ G for each i (by the definition of Uai) so ai

′ ∈ G for
each i, as G is an ultrafilter. It would follow that ⊥= a1

′ ∧ . . .∧ak
′ ∈ G, which

is impossible.
Now, since F is a proper filter of B it extends to an ultrafilter F ⊆ G ∈ Bdual.

But by construction G �∈ Ua for each a ∈ A, as a′ ∈ F ⊆ G and therefore a �∈
G, otherwise G would contain a∧ a′ = ⊥. Thus {Ua : a ∈ A} is not in fact a
cover of Bdual, and this is our required contradiction completing the proof of
compactness.

The other properties now follow more easily. To see that Bdual is totally
disconnected, note first that Ua ∪Ua′ = Bdual is a disjoint two-set cover of Bdual

for each a ∈ B. This is because each ultrafilter G of B contains exactly one
of a, a′. Thus each Ua is clopen, and if F , G ∈ Bdual are distinct there is some
a ∈ F \ G or b ∈ G \ F ; in the first case we have F ∈Ua and G ∈Ua′ , and in the
second case F ∈Ub′ and G ∈Ub. This shows that Bdual is totally disconnected.

Now suppose U ⊆ Bdual is clopen. We want to show U = Ua for some a ∈ B.

112 Filters and ideals

As U is open there are Uai (i ∈ I) such that U =
⋃{

Uai : i ∈ I
}

, and as Uc is
open there are Ub j (j ∈ J) such that Uc =

⋃{
Ub j : j ∈ J

}
. Thus the Uai and Ub j

form an open cover of Bdual, and by compactness there is a finite subcover. In
particular U = Ua1 ∪ . . .∪Uak for some a1, . . ., ak ∈ B. It follows that U = Ua

where a = a1 ∨ . . .∨ ak, for given an ultrafilter G ∈ Bdual we have: if G ∈ Ua

then some ai ∈ G (for if ai �∈ G for all i then ai
′ ∈ G as G is an ultrafilter, so

⊥= (a1∨ . . .∨ak)∨(a1
′ ∧ . . .∧ak

′)∈ G which is impossible) hence G ∈Uai so
G ∈U ; and conversely, if G ∈U then ai ∈ G for some i so a = a1∨ . . .∨ak � ai

is also in G. Thus the clopen sets are precisely the basic open sets.

The interesting thing about clopen sets is that finite unions and intersections
of clopen sets are clopen, as are complements of clopen sets. In other words,
the collection of clopen subsets of a topological space forms a boolean algebra
with the usual ⊆ relation, and ∪, ∩. This now gives the promised representa-
tion theorem.

Theorem 8.36 (Stone Representation Theorem) Let B be a boolean algebra
and Bdual its dual space. Then the map

a �→ Ua

is an isomorphism from the boolean algebra B to the boolean algebra of clopen
subsets of Bdual.

Proof Most of the ideas have already been presented in the last proposition,
and we only need to tie some loose ends. In particular, the map a �→ Ua is
a homomorphism of boolean algebras from B to the algebra of clopen sets in
Bdual.

To see Ua∧b = Ua ∩Ub, take an ultrafilter G and observe a∧ b ∈ G implies
a ∈ G and b ∈ G as a, b � a ∧ b and conversely a ∈ G and b ∈ G implies
a∧b ∈ G as G is closed under ∧.

To see Ua∨b = Ua ∪Ub, observe a∨b ∈ G implies a ∈ G or b ∈ G as G is an
ultrafilter and the alternative would be a′ ∈ G and b′ ∈ G. Conversely a ∈ G or
b ∈ G implies a∨b ∈ G as a∨b � a, b.

That Ua′ = Ua
c has already been noted, as Ua ∪Ua′ = Bdual is a disjoint

union. Also U⊥ = ∅ and U� = Bdual as every ultrafilter G contains �, and
none contains ⊥. This shows a �→ Ua is a homomorphism of boolean algebras.

Finally, this homomorphism is onto, since every clopen set is Ua for some
a, and one-to-one since if a �= b then F = {x : x � a∧b′} is a proper filter
(proper because a∧b′ = ⊥ implies a = b) and so is contained in an ultrafilter
G ∈Ua \ Ub.

8.4 The Stone Representation Theorem* 113

If we now take one step back we may see that this correspondence between the
boolean algebra and its dual space is much deeper and more powerful.

Definition 8.37 Say a topological space X is a Stone space if it is compact and
totally disconnected.

Let BOOL denote the class of all boolean algebras and STONE the class
of all Stone spaces. Then the Stone Representation Theorem uses two impor-
tant maps, D: BOOL→STONE, taking B to S(B) = Bdual, and E: STONE→
BOOL, taking X to the boolean algebra B(X) = Xclopen of clopen subsets of
X . The Stone Theorem says that B(S(B)) is isomorphic to B. In fact a similar
result holds the other way round too, and the maps D and E are inverse to each
other.

Theorem 8.38 Let X be a Stone space, B = Xclopen the boolean algebra of
clopen subsets of X, and Y = Bdual the dual space of B. Then X and Y are
homeomorphic.

Proof We must define a map X →Y and show it is one-to-one, onto, continu-
ous, and with continuous inverse. Given x ∈ X we define

Dx = {U ⊆ X :U clopen, x ∈U} .

The set Dx is a set of clopen subsets of X , hence a subset of B and our map
will be x �→ Dx. For this map to be well defined as a map X →Y we need to
check that Dx is indeed an ultrafilter. But if U , V ⊆ X are any clopen sets and
x ∈ U and x ∈ V then x ∈ U ∩V and U ∩V is clopen. Similarly if x ∈ U ⊆ V
then x ∈ V . Thus Dx is a filter. It is proper as it does not contain ∅ and an
ultrafilter because if U is any clopen set then Uc is clopen and x is in exactly
one of U , Uc, hence exactly one of U , Uc is in Dx.

To check that x �→ Dx is one-to-one, suppose x �= y are elements of X . Then
by total disconnectedness there are disjoint clopen U , V ⊆ X such that x ∈U ,
y ∈V and X = U ∩V . So U ∈ Dx and V ∈ Dy and Dx �= Dy.

For the onto property, we use compactness. Let G ⊆ B = Xclopen be an
ultrafilter. Then by compactness and Proposition 8.25 there is some x in the
intersection

⋂{
U :U ∈ G

}
. As each U ∈ G is already closed, we may write

this more simply as x ∈ ⋂
G. Now let U ⊆ X be clopen. Then X = U ∪Uc is

a disjoint union of clopen sets and G contains exactly one of U , Uc as it is an
ultrafilter. Since x ∈ ⋂

G, G must contain whichever of U , Uc that contains x,
and hence G = Dx.

For continuity, suppose U ⊆ Y is basic open, of the form U = UV , where

114 Filters and ideals

V ∈ B, i.e. V ⊆ X is clopen. Then U = {Dx :V ∈ Dx} and the inverse image of
U under x �→ Dx is just V , which is open. Similarly, every open set of a totally
disconnected space is a union of clopen sets. If V ⊆ X is clopen then the image
of V under x �→ Dx is {Dx : x ∈V} which equals {Dx :V ∈ Dx}, a clopen set
in Y .

For our final refinement of these ideas, we can consider the classes BOOL and
STONE together with their familiar notion of ‘homomorphisms’. (In other
words, we consider BOOL and STONE as categories, though we shall not
in fact need or use any terminology from category theory in this book.) For
A, B ∈ BOOL, the notion of ‘homomorphism’ is that of ordinary homomor-
phisms A → B of boolean algebras. For X , Y ∈ STONE the corresponding
notion of ‘homomorphism’ is that of a continuous map X →Y . Then, not only
do boolean algebras and their Stone-space duals correspond, but so also do
homomorphisms between them – except that in the correspondence of homo-
morphisms the direction of the maps must be reversed. (It is this reversal of
the direction of maps that is characteristic of ‘duality’ and the reason for call-
ing Bdual the ‘dual’ of B in the first place.) Specifically, we have the following
theorem.

Theorem 8.39 (a) Let A, B ∈ BOOL be boolean algebras and let h: A→B
be a homomorphism of boolean algebras. Then there is a continuous map
S(h): S(B)→S(A) from the dual S(B) = Bdual of B to the dual S(A) = Adual of
A given by a ∈ S(h)(y) if and only if h(a) ∈ y. Furthermore, if h is one-to-one
then S(h) is onto, and if h is onto then S(h) is one-to-one.

(b) Let X , Y ∈ STONE be Stone spaces and θ : X →Y a continuous map.
Then there is a homomorphism B(θ): B(Y)→B(X) from the boolean algebra
B(Y) = Y clopen of clopen sets in Y to the boolean algebra B(X) = Xclopen of
clopen sets in X given by a ∈ θ(y) if and only if B(θ)(a) ∈ y. Furthermore, if
θ is one-to-one then B(θ) is onto, and if θ is onto then B(θ) is one-to-one.

Proof (a) Given an ultrafilter G ⊆ B define θ(G) = {a ∈ A : h(a) ∈ G}. This
is a proper filter because: ⊥ �∈ θ(G) since h(⊥) = ⊥ �∈ G; if a, b ∈ θ(G)
then h(a), h(b) ∈ G so h(a∧ b) = h(a)∧ h(b) ∈ G so a∧ b ∈ θ(G); and if
a � b∈ θ(G) then h(a) � h(b)∈G so h(a)∈G and a∈ θ(G). It is an ultrafilter
because, given a, either h(a)∈G or h(a′) = h(a)′ ∈G. θ = S(h) is the required
map S(B)→S(A).

To check θ is continuous consider a basic open Ua = {H ⊆ A : a ∈ H} ⊆
Adual. Then θ(G) ∈ Ua if and only if a ∈ θ(G), which holds if and only if
h(a) ∈ G, so θ−1Ua = Uh(a) is open.

8.4 The Stone Representation Theorem* 115

Given H ⊆ A let G = {h(a) : a ∈ H} so H ⊆ {a ∈ A : h(a) ∈ G}, and if h is
one-to-one then for each a∈H there is a unique b∈G such that b = h(a), hence
θ is onto. If h is onto and G1, G2 are such that θ(G1) = {a ∈ A : h(a) ∈ G1} =
{a ∈ A : h(a) ∈ G2}= θ(G2) then for each b ∈ G1 there is a ∈ A with b = h(a)
so a ∈ θ(G1) = θ(G2) hence b = h(a) ∈ G2. Thus by symmetry G1 = G2 and
θ is one-to-one.

(b) Given X , Y ∈ STONE and continuous θ : X →Y we let h(U) be the set
{x ∈ X : θ(x) ∈U} for a clopen U ⊆ Y . This is clopen in X by the continuity
of θ and a similar amount of straightforward axiom-checking shows that h is
a homomorphism of boolean algebras, is one-to-one if θ is onto, and is onto if
θ is one-to-one. Thus B(θ) = h is the required map.

9

First-order logic

9.1 First-order languages

Propositional logic is the logic of statements that can be true or false, or take
some value in a boolean algebra. The logic of most mathematical arguments
involves more than just this: it involves mathematical objects from one or other
domain, such as the set of natural numbers, real numbers, complex numbers,
etc. If we introduce such objects into our formal system for proof we get what
is known as first-order logic, or predicate logic.

As for any of our other logics, first-order logic would not be so interesting
if it was just a system for writing and mechanically checking formal proofs
for one particular domain of mathematical work. But fortunately it can be
interpreted in a rather general class of mathematical structures and the theory
of these structures is a sort of generalised algebraic theory that applies equally
well to groups, rings, fields, and many other familiar structures, so first-order
logic can be applied to a wide range of mathematical subject areas.

There are Completeness and Soundness Theorems for first-order logic too.
In a similar way to the Completeness and Soundness Theorems we have al-
ready seen, they can be read as stating the correctness and adequacy of our
logical system, or as much more interesting constructive statements that en-
able new structures to be created and analysed.

We will start here by discussing the idea of first-order language, and the
sorts of things that can (and cannot) be expressed in first-order logic. Later on,
we will give some rules for a proof system for this logic. The rules we give
will be precise versions of logical manoeuvres familiar from many informal
arguments or proofs, and will build on the proof system for the propositional
calculus given earlier.

Consider for the moment building a theory of the reals R. We will want
to talk about specific real numbers, so will need variables to represent reals.

116

9.1 First-order languages 117

We also require symbols for special real numbers such as 0 or 1. We will
want to say when two real numbers are equal, so we will need the symbol =
for equality. We also need to combine real numbers with familiar functions
such as x �→ −x and (x, y) �→ x+ y, etc., so we will need symbols to represent
these. We may need to compare two real numbers and determine which is the
greater. A symbol for the < relation is necessary here. Finally, we need two
special symbols ∀ and ∃ (called quantifiers) to represent the phrases ‘for all
. . . ’ and ‘there exists . . . ’ common in mathematical arguments. If we put all
of this together we have a first-order language for the real numbers. There
are similar first-order languages for groups, posets, boolean algebras, etc. The
next definition brings together all of these into one general framework.

Definition 9.1 A first-order language consists of the following symbols:

• ∧, ∨ , ¬ , �, ⊥ for propositional logic;
• an infinite set of variables, x, y, z, . . .;
• the symbols ‘=’, ‘∀’, ‘∃’;
• a (possibly empty) set of constant symbols, such as 0, 1;
• a (possibly empty) set of function symbols, such as +, ×, −;
• a (possible empty) set of relation symbols, such as <;
• the punctuation symbols ‘(’, ‘)’ and ‘, ’.

The logical symbols of a first-order language are ∧, ∨ , ¬ , �, ⊥, = , ∀, ∃;
all the first-order languages we consider have all of these as well as variables
and punctuation symbols. (Countably infinitely many variables is always suf-
ficient.) The remaining symbols are special to the particular language and are
called non-logical symbols. Thus we can specify a first-order language by giv-
ing the constant, relation and function symbols and taking the other symbols
for granted. For example we may discuss ‘the first-order language for the reals
with 0, 1, +, ×, −, <’.

Of course, a language is more than just a collection of symbols. We need
to say how these symbols are combined and what the resulting strings of sym-
bols (also called expressions or statements) mean. From the point of view of
experts (or pedants) my explanation of how this is done will be very informal,
relegating the more formal details to a discussion elsewhere. For beginners,
the discussion that I do give will be quite complicated enough, especially as
we are working in sufficient generality to apply the ideas to such a wide range
of mathematical topics. Fortunately, the syntactical constructions and their in-
tended meanings by and large follow normal mathematical usage anyway. My
advice to a beginner is to read and write these expressions in as natural a way
as possible, and the likelihood is that you will be right.

118 First-order logic

We start by defining terms, the expressions representing a mathematical ob-
ject, such as a number. One problem is that we want to use our non-logical
function symbols to form terms, but some, like −1 for reciprocal, take only one
argument (as in x−1), others such as + for addition take two, and others take
more. We insist that every non-logical function symbol f in a first-order lan-
guage takes a fixed number of arguments. This number will be denoted n f and
is called the arity of f . Strictly speaking, the arities of all non-logical function
symbols have to be specified when a first-order language is defined, though
in most cases the arities will be clear, as for addition when the arity of + is
conventionally two. A function symbol of arity one is said to be unary, one of
arity two is a binary function symbol, and one of arity three is ternary.

Definition 9.2 A term in a first-order language is an expression or string of
symbols that represents a mathematical object, such as a number.

• Each constant symbol, such as 0 or 1 is a term.
• Each variable from x, y, z, . . . is a term.
• If f is a function symbol and t1, . . ., tn are n terms where n = n f is the

arity of f then f (t1, . . ., tn) is also a term.

The terms of a first-order language are the finite expressions that can be built
by finitely many applications of the above rules only.

Often, we prefer to write terms in a more natural way as (a+b) rather than
+(a, b), say, and omit brackets when there is no danger of confusion.

It is not always clear exactly which number a term such as (x+1) represents.
After all we have not said which numbers are represented by the variables
x, y, z, On the other hand, terms that do not involve variables are more
definite. These terms are said to be closed.

Definition 9.3 A closed term is a term which does not involve any variable
symbols.

All of these rules are like the rules of a game on a set of symbols: they can
be given accurately without talking about meanings or semantics, but it helps
to have an idea of the meanings we will eventually choose as we go along.

Now that we have defined terms, we attempt to define the statements of a
first-order language. To do this we need the idea of the arity of each relation
symbol. Like that for functions, this is the number of arguments it receives.
For example < has arity two, as does the logical relation symbol = since we
use these symbols to compare two numbers, as in 1 < 2 or x = y. The relation
Odd, used in ‘Odd(x)’ to indicate that x is an odd number, has arity one or in

9.1 First-order languages 119

other words is unary. We also say that a relation symbol of arity two is binary,
a relation symbol of arity three is ternary, etc. Every relation symbol R of a
first-order language has a fixed arity, denoted nR and these arities all have to
be specified when the language is defined, though where possible we follow
common usage for standard relations like <, ∼, etc.

Definition 9.4 A statement or formula of a first-order language is a finite
expression or string of symbols built using the following rules only.

• If t, s are terms of the language then (t = s) is a formula.
• If R is a relation symbol of the language of arity n = nR, and t1, . . ., tn

are terms of the language then R(t1, . . ., tn) is a formula.
• If φ , ψ are both formulas then so are (φ ∨ψ), (φ ∧ψ), ¬φ , � and ⊥.
• If φ is a formula and x is a variable then ∀x φ and ∃x φ are formulas.

Statements of the form (t = s) or R(t1, . . ., tn) are called atomic formulas as
other statements are built from these.

As before, we may choose to write some formulas in a more natural way, as
(x < y) rather than <(x, y), say, and omit brackets where there is no danger of
confusion. We typically use lower case Greek letters to refer to formulas.

According to the definition above, a formula θ may, and usually will, con-
tain substrings which are other formulas. These are called subformulas of θ .

In a way exactly analogous to the case of terms, the meaning of formulas
may or may not depend on the meaning of particular variables, but the rules
are more complicated because of the quantifiers ∀x φ and ∃x φ . To understand
the rules for variables and for quantifiers you will need to keep in mind the
picture of how a formula is built from subformulas.

Definition 9.5 The scope of a quantifier ∀x . . . that occurs in a formula θ is the
subformula of θ consisting of the quantifier itself and the subformula immedi-
ately following this quantifier. So if θ is . . .∀x φ . . . where φ is a subformula of
θ then the scope of ∀x . . . is the subformula ∀x φ .

Similarly, the scope of the quantifier ∃x . . . in a formula θ is the subfor-
mula ∃x φ of θ consisting of the quantifier and the subformula immediately
following it.

The bracketing rules for formulas ensure that the scope of a quantifier is
uniquely determined: there is always exactly one subformula immediately fol-
lowing any quantifier. (If this is not the case for your formula then you must

120 First-order logic

have accidently omitted some brackets.) The idea is that the scope of the quan-
tifier is the part of the formula for which the variable’s meaning is modified by
the quantifier.

Definition 9.6 A formula σ is closed or is a sentence if every occurrence of
every variable x in it is in the scope of a matching quantifier ∀x . . . or ∃x An
occurrence of a variable x in a formula θ is free if it is not in the scope of any
matching quantifier ∀x . . . or ∃x . . .; if otherwise then we say this occurrence of
x is bound.

Example 9.7 Consider for example the first-order language for the reals where
the non-logical symbols are constants 0, 1, functions +, × , − of arities 2, 2
and 1 respectively, and relation symbol < of arity 2, as well as the logical
symbols including =. The term (1 + 1) is closed and always represents 2.
(Note that 2 is not in our language. This term shows we do not really need
it.) On the other hand, the terms (x + y) and (x× x) are not closed. The first
ranges over all real numbers, whereas the second ranges over all non-negative
real numbers.

Many familiar statements about real numbers can now be represented. For
example (0 < x)∨ (0 = x) is a formula expressing the statement that x is non-
negative. (This formula is not closed: it has the variable x occurring free in it.)
The statement that square numbers are always non-negative can be expressed
by

∀x ((0 < x× x)∨ (0 = x× x)).

This statement is closed: every occurence of x in it is bound.
The statement that the polynomial x2 + x+1 has a root is the statement

∃x ((((x× x)+ x)+1) = 0)

and we follow common notation to simplify this to ∃x(x× x+ x+1 = 0) when
it is clear that this should be regarded as an abbreviation for the first. Note that
we are only discussing what can or cannot be expressed: the statement just
given is actually false for the real numbers!

For a more complicated example, consider the statement that every polyno-
mial of degree 3 has a root. This is expressed as the sentence

∀a∀b∀c∀d ∃x (a× x× x× x+b× x× x+ c× x+d = 0)

which is strictly speaking an abbreviation for

∀a∀b∀c∀d ∃x (((((((a× x)× x)× x)+((b× x)× x))+(c× x))+d) = 0).

9.1 First-order languages 121

Given a first-order language, there are usually a number of structures in
which we can interpret sentences. For example, corresponding to the first-order
language with 0, 1, <, +, ×, − we have the algebraic structure of the reals as
an ordered field. The same language can be interpreted in other structures too,
such as the ordered field of the rationals, or the ring of integers, or something
completely different. So (as in our chapter on the logic of posets) we can have
many different structures interpreting the same sentences – possibly making
them true, possibly false. The common features of all such structures are that
they all contain a non-empty set of mathematical objects or numbers, called the
domain of the structure, they contain elements of the domain interpreting the
constant symbols, relations on the domain interpreting the relation symbols,
and functions on the domain corresponding to the function symbols. We will
return to these structures later after we have given a system of proof for first-
order logic.

To define our formal system of proof, we need to use variables and the idea
of scope, and there are a number of technical details that should be addressed,
but are best omitted or read quickly at first reading. (If the first-order language
is used in a natural or sensible way these issues need not crop up.) So we
shall introduce some informal notation for formulas with free variables next
that covers all the usual situations.

Given a formula θ with free variable x we can regard θ as expressing some
property that x might have. We shall write this formula more suggestively as
θ(x). This notation only makes sense however if x is the only free variable in
θ . If the property θ(x) also depends on the value y we will eventually make
some error, and we want to avoid this.

More generally, we can write a formula θ as θ(x1, . . ., xk) but only if the
free variables in θ are amongst x1, . . ., xk. Actually it will not matter much if
we list more variables than actually occur free, but it certainly will matter if we
miss any out. So, from now on when we write ‘the formula θ(x1, . . ., xk)’ we
are stating implicitly that ‘the free variables in θ are amongst x1, . . ., xk’.

Note that in a formula such as θ(x), the free variable x may occur more than
once in θ(x). Sometimes we might like to specify these separate occurrences,
but there is no good notation for this – we will discuss this point further when
needed.

If θ(x) is a formula involving some free instance or instances of a variable
x then θ(t) denotes the result of replacing all of these instances of x by the
term t. At the level of symbols in a string, the operation being carried out
here is a substitution of a string t for one or more specified occurrences of a
variable symbol x. Similarly, if θ(x1, . . ., xk) has free instances of variables
x1, . . ., xk then θ(t1, . . ., tk) denotes the result of replacing all these instances

122 First-order logic

with t1, . . ., tk respectively. This is a simultaneous substitution of terms for
variables. (The terms t1, . . ., tk might themselves involve variables, so per-
forming n substitutions one after the other may not have the same effect.)

With this idea in mind, we can introduce a formal proof system for first-
order logic that extends the proof system for propositional logic.

Definition 9.8 Let L be a first-order language, Σ a set of formulas of L and τ
another formula of L. We define Σ� τ , read ‘Σ proves τ’ or ‘there is a formal
proof of τ from Σ’, to mean that there is a finite derivation using the following
rules.

• (Given Statements Rule) For any σ ∈ Σ, Σ�σ .

• (Propositional Logic) Any of the rules in the proof system for proposi-
tional logic can be used.

• (Equality Rules) (Reflexivity) If t is any term then Σ� (t = t); (Sym-
metry) if t, s are terms and Σ� (t = s) then Σ� (s = t); (Transitivity) if
t, s, r are terms and Σ� (t = s) and Σ� (s = r) hold then Σ� (t = r).

• (Substitution Rule) Given terms t1, . . ., tk and s1, . . ., sk such that we
have Σ�θ(t1, . . ., tk) and also for each i = 1, . . ., k we have Σ�(ti = si),
then Σ�θ(s1, . . ., sk), provided this substitution is valid.

• (∃-Elimination) To show Σ ∪ {∃x σ(x)} � θ it suffices to show Σ ∪
{σ(a)} � θ , provided the substitution is valid and the variable a is a
new variable not already free in some formula in Σ nor in θ .

• (∃-Introduction) For any variable x, from Σ�θ(t) you may deduce Σ�
∃x θ(x), provided the substitution of the variable x for the term t in θ
is valid.

• (∀-Elimination) For any term t, from Σ�∀x θ(x) you may deduce Σ�
θ(t), provided the substitution of the term t for x in θ is valid.

• (∀-Introduction) If Σ�θ(x) where no assumption from Σ in the proof
involves the free variable x then Σ�∀x θ(x).

A formal proof of τ from Σ is a sequence of formulas ending with τ that
shows that Σ� τ . Each step in the proof should correspond to one of the proof
rules above. Subproofs may be used to indicate where certain assumptions and
variables are introduced. We shall write formal proofs as before with vertical
lines indicating subproofs.

We usually write the ∃-Elimination and ∀-Introduction Rules by making a
subproof. Then an instance of ∀-Introduction looks like the following.

9.1 First-order languages 123

Formal proof

Let x be arbitrary (1)

...

θ(x) (2)

∀x θ(x) (3) ∀-Introduction

An instance of ∃-Elimination looks like the following.

Formal proof

∃x σ(x) (1)

Let a satisfy σ(a) (2)

...

θ (3)

θ (4) ∃-Elimination

In the ∃-Elimination Rule one must introduce a variable, which must be a
new variable not previously introduced at that point, and a subproof, which
must be closed by making a conclusion that does not mention the new variable
just introduced.

The next example explains the mysterious phrase, ‘provided the substitution
of the variable x for t in θ is valid’.

Example 9.9 If θ(t) is ∃x (x = (t +1)) (a perfectly reasonable statement
which is usually true) then the substitution of x for t is ∃x (x = (x+1)). This
statement is usually false, and the substitution is not valid because in making it,
a variable x is introduced into the scope of an already existing quantifier ∃x

A substitution like this would also be invalid if the quantifier were ∀ rather
than ∃. Similarly, substituting the term (x + y) for t would give the formula
∃x (x = ((x+ y)+1)), and this substitution is invalid for the same reason. On
the other hand, substituting the term (y + z) for t would give the formula
∃x (x = ((y+ z)+1)), and this substitution is valid as there is no quantifier
for y or z.

Problems like that in Example 9.9 are not unique to logical formulas. Care
is needed in similar examples in other areas of mathematics. For example.
a function f (t) may be defined from another function g(x) by an integral,
f (t) =

∫ ∞
−∞ g(x)sin(tx)dx. It would be incorrect to substitute a term such

as (x + y) for t in the formula for f (t), since this would give the incorrect∫ ∞
−∞ g(x)sin(x(x+ y))dx. Instead the bound variable in the integral, x, should

124 First-order logic

be changed first to something different: f (x + y) =
∫ ∞
−∞ g(s)sin((x+ y)s)ds.

We will see later how such a change of variable can also be achieved in the
proof system we are studying.

The condition that the variable introduced in the ∃-Elimination Rule is a
‘new’ one and that no conclusions involving this variable are passed on when
the subproof is closed is also very important. In the following, this rule is
broken and the newly introduced variable ‘leaks out’ with disastrous effects.
(The assumptions are reasonable but the conclusion clearly is not.)

Example 9.10 Something goes badly wrong in the following incorrect proof.

Formal proof

Let x be arbitrary (1)
x = x (2) Equality
∃v (v = x) (3) ∃-Introduction

∀x∃v (v = x) (4) ∀-Introduction

Let w be arbitrary (5)
∃v (v = w+1) (6) ∀-Elimination

Let a satisfy (a = w+1) (7)

(a = w+1) (8) ∃-Elimination

∀w (a = w+1) (9) ∀-Introduction
∃v∀w (v = w+1) (10) ∃-Introduction

In examples like this where a proof is clearly wrong it should always be
possible to point out the exact line where one of the rules above has been
broken. Conversely, as with any other system of formal proof, any step in a
proof should be checkable to see that it obeys the rules exactly. In this case it is
line 8 that is erroneous as the variable a still appears free in this line, breaking
the rule of ∃-Elimination.

Remark 9.11 Many people like to have a symbol for ‘implies’. There are sev-
eral options for incorporating implies into the system, all of them equivalent.
One can add the symbol → to the language, modifying the definition of the
word ‘formula’ appropriately, and add the following proof rules.

• (→-Introduction) If τ can be deduced from Σ∪{σ} then (σ → τ) can
be deduced from Σ in one further step.

• (→-Elimination, also called modus ponens) If (σ → τ) and σ can be
deduced from Σ then τ can be deduced from Σ in one further step.

9.1 First-order languages 125

See Exercise 6.22. Alternatively (and Exercise 6.22 asks you to show that this
really is equivalent) you may pretend that there is actually no extra symbol for
‘implies’ at all, but that ‘α implies β ’ or ‘α →β ’ is actually just an abbrevia-
tion for (¬α ∨β), and use the ordinary rules for ∨.

If the set on the left hand side of Σ� σ is finite, we shall omit the curly
brackets and just list the elements of Σ, as in ‘φ , ψ �σ ’, etc. We will do the
same for the other turnstile symbol � when it is introduced. Also, we may
occasionally want to put a set Σ on the right hand side of a turnstile symbol, as
in φ �Σ. This will mean φ �σ for every σ ∈ Σ.

To learn how these new proof rules work, and in particular understand the
idea of quantifiers, we will first look at some example proofs showing equiva-
lences of statements involving quantifiers.

Example 9.12 Let θ(x) be a formula in which x is free. Then we have the
following: ¬∀x θ(x)�∃x¬θ(x).

Formal proof

¬∀x θ(x) (1) Given

¬∃x¬θ(x) (2) Assumption

Let x be arbitrary (3)

¬θ(x) (4) Assumption
∃x¬θ(x) (5) ∃-Introduction
⊥ (6)

¬¬θ(x) (7) RAA
θ(x) (8) ¬-Elimination

∀x θ(x) (9) ∀-Introduction
⊥ (10)

¬¬∃x¬θ(x) (11) RAA
∃x¬θ(x) (12) ¬-Elimination

Exercise 9.13 Prove that ¬∃x θ(x)�∀x¬θ(x). (Use ∃-Introduction and ∀-
Introduction.)

Example 9.14 Let θ(x) be a formula in which x is free. Then we have the
following: ∀x¬θ(x)�¬∃x θ(x).

126 First-order logic

Formal proof

∀x¬θ(x) (1) Given

∃x θ(x) (2) Assumption

Let a satisfy θ(a) (3)
¬θ(a) (4) ∀-Elimination
⊥ (5)

⊥ (6) ∃-Elimination

¬∃x θ(x) (7) RAA

Exercise 9.15 Prove that ∃x¬θ(x)�¬∀x θ(x). (Use ∃-Elimination and ∀-
Elimination.)

The last four examples and exercises show that ¬∀x ¬θ(x) and ∃x θ(x)
are equivalent, and similarly ¬∃x¬θ(x) and ∀x θ(x) are equivalent. In other
words, one of these quantifiers can be defined in terms of the other. Some au-
thors use just one quantifier in their formal language and regard the other as
an abbreviation. I feel it is more natural to use both sets of quantifier rules.
What is more, since there is an exact symmetry between the two quantifiers, it
is difficult to decide which should be dropped and which preserved.

The next example uses unary relation symbols ‘P’ and ‘R’ and the → sym-
bol. You can read ‘P(x)’ as ‘x is a Pope’ and ‘R(x)’ as ‘x is in this room’, so
the example says that if there are two people in this room and at most one Pope
then one person in this room is not a Pope.

Example 9.16 There is a proof of ∃x (R(x)∧¬P(x)) from the two statements
∃x∃y (R(x)∧R(y)∧¬(x = y)) and ∀x∀y (P(x)∧P(y)→ (x = y)).

First, we write down all the given statements and the negation of the state-
ment we are trying to prove and then apply the ∃-Elimination Rule as far as
possible.

Formal proof

∃x∃y (R(x)∧R(y)∧¬(x = y)) (1) Given
∀x∀y (P(x)∧P(y)→ (x = y)) (2) Given

¬∃x (R(x)∧¬P(x)) (3) Assumption

Let a satisfy ∃y (R(a)∧R(y)∧¬(a = y)) (4)

Let b satisfy R(a)∧R(b)∧¬(a = b) (5)

. . .

9.1 First-order languages 127

The rest of the proof involves propositional logic and the ∃-Introduction and
∀-Elimination Rules.

Formal proof (continued)

. . .

R(a) (6) ∧-Elimination
R(b) (7) ∧-Elimination
¬(a = b) (8) ∧-Elimination

¬P(a) (9) Assumption
R(a)∧¬P(a) (10) ∧-Introduction
∃x (R(x)∧¬P(x)) (11) ∃-Introduction
⊥ (12)

¬¬P(a) (13) RAA
P(a) (14)

¬P(b) (15) Assumption
R(b)∧¬P(b) (16) ∧-Introduction
∃x (R(x)∧¬P(x)) (17) ∃-Introduction
⊥ (18)

¬¬P(b) (19) RAA
P(b) (20)
P(a)∧P(b) (21) ∧-Introduction
∀y (P(a)∧P(y)→ (a = y)) (22) ∀-Elimination
P(a)∧P(b)→ (a = b) (23) ∀-Elimination
(a = b) (24) →-Elimination
⊥ (25)

⊥ (26) ∃-Elimination

⊥ (27) ∃-Elimination

¬¬∃x (R(x)∧¬P(x)) (28) RAA
∃x (R(x)∧¬P(x)) (29)

This example used the equality symbol, but did not need any of the special
rules for equality, such as the Substitution Rule. A variation of our ‘Pope’
example says that if there is at most one Pope, and at least one Pope that
is not in this room, then everyone in this room is not a Pope. This requires
the Substitution Rule. The overall strategy for the proof is clear: using ∀-
Introduction and →-Introduction we need to show that the given statements
together with P(x) imply ¬R(x).

Example 9.17 There is a proof of ∀x (R(x)→¬P(x)) from the two statements
∀x∀y (P(x)∧P(y)→ (x = y)) and ∃x (P(x)∧¬R(x)).

128 First-order logic

Formal proof

∀x∀y (P(x)∧P(y)→ (x = y)) (1) Given
∃x (P(x)∧¬R(x)) (2) Given

Let x be arbitrary (3)

R(x) (4) Assumption

Let a satisfy P(a)∧¬R(a) (5)
P(a) (6) ∧-Elimination
¬R(a) (7) ∧-Elimination

P(x) (8) Assumption
(P(x)∧P(a)) (9) ∧-Introduction
∀y (P(a)∧P(y)→ (a = y)) (10) ∀-Elimination
(P(a)∧P(x)→ (a = x)) (11) ∀-Elimination
(a = x) (12) →-Elimination
¬R(x) (13) Substitution, lines 7 and 12
⊥ (14)

¬P(x) (15) RAA

¬P(x) (16) ∃-Elimination

R(x)→¬P(x) (17) →-Introduction

∀x (R(x)→¬P(x)) (18) ∀-Introduction

Here is a similar example, using a function symbol this time.

Example 9.18 Let L be the first-order language with unary relation symbols
R, S, and a unary function symbol f . Then starting from statements ∃x R(x),
∀x (R(x)→S(f (x))) and ∀x¬(R(x)∧S(x)) we may deduce ∃x∃y¬(x = y).

Formal proof

∃x R(x) (1) Given
∀x (R(x)→S(f (x))) (2) Given
∀x¬(R(x)∧S(x)) (3) Given

¬∃x∃y¬(x = y) (4) Assumption

Let a satisfy R(a) (5)
R(a)→S(f (a)) (6) ∀-Elimination
S(f (a)) (7) →-Elimination

. . .

Now we use the Substitution Rule to show f (a) is not equal to a.

9.1 First-order languages 129

Formal proof (continued)

. . .

. . .

(f (a) = a) (8) Assumption
S(a) (9) Substitution
R(a)∧S(a) (10) ∧-Introduction
¬(R(a)∧S(a)) (11) ∀-Elimination
⊥ (12) Contradiction

¬(f (a) = a) (13) RAA
∃y¬(f (a) = y) (14) ∃-Introduction
∃x∃y¬(x = y) (15) ∃-Introduction
⊥ (16) Contradiction

⊥ (17) ∃-Elimination

¬¬∃x∃y¬(x = y) (18) RAA
∃x∃y¬(x = y) (19) ¬-Elimination

The Equality Rules (Reflexivity, Symmetry, Transitivity) are more familiar
as they are similar to rules you may already know about: rules concerning
equivalence relations. It may be thought that equality can be regarded as really
just another relation symbol, like the non-logical relation symbols, and we
need only include reflexivity, transitivity and symmetry of equality. Thus one
might propose that the Substitution Rule and Equality Rules in Definition 9.8
be replaced with the following statements of the first-order language

• ∀x (x = x)
• ∀x∀y (x = y→ y = x)
• ∀x∀y∀z ((x = y∧ y = z)→ x = z)

considered as axioms, or additional assumptions to be used wherever needed.
But the Equality and Substitution Rules do rather more than this and are quite
special and powerful. We also need to know that if x = y and R(x) holds then
R(y) holds, and also that there is always only one object equal to the element
x. (It would be impossible to say this using = if all we knew about = is that
it is an equivalence relation.) The Substitution Rule is actually saying that
equality is the ‘finest’ possible equivalence relation, and I like to think of this
as saying that = is a special logical symbol, not just a mathematical relation
like an equivalence. In any case, what could be more logical than the idea of
equality?

Example 9.19 The Transitivity and Symmetry Rules (two of the Equality
Rules in Definition 9.8) are just special cases of the Substitution Rule.

130 First-order logic

To see this, suppose t, s are terms and we have proved (t = s). Let θ(u, v)
be the formula (u = v). Then (t = t) is provable directly using the Reflexivity
Rule. Think of (t = t) as the statement θ(t, t) and using the Substitution Rule
substitute s for the first t in θ(t, t) using (t = s) and substitute t for the second
t in θ(t, t) using (t = t). This gives θ(s, t) or (s = t).

Similarly, suppose we have proved (t = s) and (s = r). Then substitute t for
the t in (t = s) using (t = t) and substitute r for the s in (t = s) using (s = r).
This gives (t = r).

The statement (x = x) is a useful one to know and convenient on many
occasions because it should be true for all objects x. In other words, it behaves
just like � except that it is a property of x. In the next short example it is used
to show that there should always be some object in any interpretation of the
formal system, and this example uses the Reflexivity Rule for equality in an
essential way. The formal proof is a very simple two-liner.

Example 9.20 �∃x (x = x).

Formal proof

(x = x) (1) Reflexivity
∃x (x = x) (2) ∃-Introduction

We now move on to another very important example using the quantifier
rules. This will be particularly important, especially for the proof of the Com-
pleteness Theorem later.

Example 9.21 For any formula θ(x) and any choice of distinct variables x, a
there is a proof of the sentence ∃a∀x (¬θ(x)∨θ(a)).

The difficulty here is that we would like to substitute x for a in the ∀-
Elimination Rule, but this substitution is forbidden because a is in the scope of
a ∀x . . . quantifier. In other words, the formal proof

Formal proof

¬∃a∀x (¬θ(x)∨θ(a)) (1)

. . .

∀a¬∀x (¬θ(x)∨θ(a)) (2)
¬∀x (¬θ(x)∨θ(x)) (3)

is disallowed for reasons similar to those in Example 9.9.
Instead, we may first change variable names and then make the required

substitution.

9.1 First-order languages 131

Formal proof

¬∃a∀x (¬θ(x)∨θ(a)) (1) Assumption

∃b∀y (¬θ(y)∨θ(b)) (2) Assumption

Let a satisfy ∀y (¬θ(y)∨θ(a)) (3)

Let x be arbitrary (4)
¬θ(x)∨θ(a) (5) ∀-Elimination

∀x (¬θ(x)∨θ(a)) (6) ∀-Introduction
∃a∀x (¬θ(x)∨θ(a)) (7) ∃-Introduction

∃a∀x (¬θ(x)∨θ(a)) (8) ∃-Elimination
⊥ (9)

¬∃b∀y (¬θ(y)∨θ(b)) (10) RAA

. . .

Note particularly the first half of the proof where we have ‘unzipped’ our for-
mula using the elimination proof rules and then ‘zipped’ it up again with the
introduction proof rules and different variables. (Other changes of variables
can be achieved in the same way.)

Formal proof (continued)

. . .

Let x be arbitrary (11)

θ(x) (12) Assumption

Let y be arbitrary (13)
¬θ(y)∨θ(x) (14) ∨-Introduction

∀y (¬θ(y)∨θ(x)) (15) ∀-Introduction
∃b∀y (¬θ(y)∨θ(b)) (16) ∃-Introduction
⊥ (17)

¬θ(x) (18) RAA
¬θ(x)∨θ(a) (19) ∨-Introduction

∀x (¬θ(x)∨θ(a)) (20) ∀-Introduction
∃a∀x (¬θ(x)∨θ(a)) (21) ∃-Introduction
⊥ (22)

¬¬∃a∀x (¬θ(x)∨θ(a)) (23) RAA
∃a∀x (¬θ(x)∨θ(a)) (24)

Note that in the above proof the final contradiction comes from the original
version of the assumption, so both it and the renamed version are required.

132 First-order logic

As is often the case with formal proofs, there is rarely a single proof for a
particular statement, and in this case a quite different alternative can be given.

Formal proof

¬∃a∀x (¬θ(x)∨θ(a)) (1) Assumption

Let a be arbitrary (2)

θ(a) (3) Assumption

Let x be arbitrary (4)
(¬θ(x)∨θ(a)) (5) ∨-Introduction

∀x (¬θ(x)∨θ(a)) (6) ∀-Introduction
∃a∀x (¬θ(x)∨θ(a)) (7) ∃-Introduction
⊥ (8)

¬θ(a) (9) RAA

∀a¬θ(a) (10) ∀-Introduction

Let x be arbitrary (11)
¬θ(x) (12) ∀-Elimination
(¬θ(x)∨θ(a)) (13) ∨-Introduction

∀x (¬θ(x)∨θ(a)) (14) ∀-Introduction
∃a∀x (¬θ(x)∨θ(a)) (15) ∃-Introduction
⊥ (16)

¬¬∃a∀x (¬θ(x)∨θ(a)) (17) RAA
∃a∀x (¬θ(x)∨θ(a)) (18) ¬-Elimination

Writing proofs is sometimes difficult and there are no prizes for the ‘best’
proof obtained by spotting the ‘right’ assumptions to make at the right time.
It is therefore helpful to know all the techniques so that you can obtain some
proof (any proof!) more quickly.

We are going to investigate Soundness and Completeness Theorems for this
proof system. To do this, we first need to attach some sort of meaning or
interpretation for a first-order language. Some of the basic ideas have been
mentioned already, but it is time to be more precise. The mathematical struc-
tures we will consider include groups, fields, posets and boolean algebras, and
generalise these in the sense that they have a domain of elements and various
functions and relations.

Definition 9.22 Let L be a first-order language. An L-structure or structure
for L is some mathematical structure (M, . . ., c, . . ., f , . . ., R, . . .) where M is
a non-empty set (called the domain), there is a distinguished named element
c ∈ M for each constant symbol c of L, there is a function f : Mn → M for

9.1 First-order languages 133

each function symbol f of arity n in L (so, in particular M is closed under this
function), and there is a relation R ⊆ Mm for each relation symbol R of L of
arity m.

As is common mathematical practice, we often talk about ‘the structure M’
rather than ‘the structure (M, . . ., c, . . ., f , . . ., R, . . .)’ when the operations on
M are understood. Note too that our normal notation confuses the distinction
between the symbol in L for a function f , constant c or relation R with the
actual operation in M that interprets this symbol. Again this is standard math-
ematical shorthand, but would not satisfy a pedantic logician. If absolutely
necessary, authors may use a different font or face, or use underlining or some
other typographical device, for the symbol, as opposed to its interpretation in
a structure.

Example 9.20 shows why we insist that our structures always have non-
empty domain. If we allowed empty domains the Soundness Theorem (Theo-
rem 9.25 below) would be false.

A sentence of L is one with no free variables, so must be either true or false
in any L-structure. To determine which, we need to interpret the quantifiers
∀x . . . and ∃x . . . as ranging over all possible values x of the domain of M. This
is possibly the most important feature of first-order logic: that all variables
range over the same set of individuals. This feature distinguishes first-order
logic from second-order logic (where it is possible to have variables ranging
over subsets of the domain) or higher-order logics with sets of sets, and so on.

Definition 9.23 Let L be a first-order language and M an L-structure. If σ is
a sentence of L, we write M �σ for ‘σ is true in M’. If Σ is a set of sentences
we write M �Σ to mean M �σ for all σ ∈ Σ.

If an L-formula φ has free variables, these variables must be given some
meaning or interpretation in an L-structure M before we can say what it means
for M � φ . In other words, these free variables should be replaced by con-
stant symbols or closed terms with specific meaning in M. However, if some
meaning is defined or understood for these variables, and we are arguing in an
informal sense rather than a picky and pedantic way, we can use this under-
stood meaning to make sense of M �φ for such formulas φ too.

Structures are used to define the notion Σ � τ , which is essential for the
statement of the Soundness and Completeness Theorems.

Definition 9.24 Let L be a first-order language, Σ a set of L-sentences and τ
a further L-sentence. Then we write Σ � τ to mean: for all L-structures M, if
M �Σ then M � τ .

134 First-order logic

As before, Σ � τ is vacuously true if there are no L-structures M making
M �Σ true. In this case, Σ� τ for any τ whatsoever.

Theorem 9.25 (Soundness) Let L be a first-order language, Σ a set of L-
sentences and τ a further L-sentence. Then Σ� τ implies Σ� τ .

Sketch-proof of Soundness Theorem Formally, the proof is by induction on the
(finite) length of the derivation. We simply need to inspect each proof rule to
check that it preserves the property ‘Σ� τ implies Σ� τ’ for all Σ, τ .

I am not going to prove the Soundness Theorem in any more detail here. A full
proof would involve a more formal definition of what it really means for an
L-sentence θ to be true in an L-structure M. This can be done (by induction on
the number of symbols in θ) but is unenlightening for the beginner and only
becomes really useful in much more advanced work. Instead, I shall appeal
to the reader’s common sense and mathematical experience that the rules just
given look like they should be correct and are in fact particular proof rules that
he/she is accustomed to using anyway.

The Soundness Theorem is really a piece of mathematical book-keeping,
checking that our proof rules are reasonable. It is chiefly used in its contra-
positive form, Σ �� τ implies Σ � � τ , which gives us a version of a very familiar
technique to show something is not provable, to wit: find counter-example M
in which Σ is true but τ is not. Then M shows that Σ �� τ , so Σ � � τ .

9.2 Examples and exercises

In exercises that use the → symbol, use the additional Rules of →-Introduction
and Elimination given in Remark 9.11.

Exercise 9.26 Express the following in the first-order language for the reals
with non-logical symbols 0, 1, +, ×, −, <.

(i) There is a square-root of 2.
(ii) Every non-zero number has a multiplicative inverse.

(iii) Some negative number has a square-root.

Exercise 9.27 Consider the following:

(i) ∀v (θ(v)→ψ(v))
(ii) ∀v θ(v)→∀v ψ(v)

(iii) ∃v θ(v)→∃v ψ(v)

9.2 Examples and exercises 135

Prove that (i) implies (ii). Prove as many other implications between these
three statements as you can.

Exercise 9.28 Let L be the first-order language with a unary function symbol f
and constants 0, 1. Prove that from the sentences

∀x (f (x) = 0∨ f (x) = 1)

and

∃x∃y∃z (¬x = y∧¬y = z∧¬z = x)

you may deduce

∃x∃y (¬x = y∧ f (x) = f (y)).

Exercise 9.29 Let L be the first-order language with a unary function sym-
bol f . Prove that from the sentences

∀x (f (f (x)) = x),

∀x∀y∀z∀w (x = y∨ x = z∨ x = w∨ y = z∨ y = w∨ z = w),

and

∃x∃y∃z (¬x = y∧¬y = z∧¬z = x)

you may deduce

∃u f (u) = u.

Exercise 9.30 A (simple) graph is usually defined as a non-empty set V of
vertices together with a set E of edges, which are considered as unordered
pairs of vertices. Define a graph as a first-order structure where the domain is
the set of vertices and the edges are represented by a binary relation symbol E,
and E(x, y) holds if and only if there is an edge from x to y.

Which first-order axiom(s) is(are) also required for your graphs to corre-
spond to the usual ones?

Exercise 9.31 Write down statements in the first-order language of graphs of
Exercise 9.30 stating the following.

(i) Between and two vertices there is a path of length at most 4.
(ii) There is a cycle of length 4 but no cycle of length 3.

136 First-order logic

(iii) The graph has a clique (complete subgraph) of 5 or more vertices.
(iv) The graph is not complete (i.e. not every pair of vertices is connected

by an edge.)

Exercise 9.32 Write down the following axioms in the first-order languages
indicated. State the arities of each function and relation symbol. If you use any
abbreviations, say what they are.

(i) The theory of groups (constant for e; binary function for ×; unary func-
tion for −1).

(ii) The theory of fields (constants 0, 1; binary functions +, ×).
(iii) The theory of an equivalence relation that has exactly five equivalence

classes (no constants or functions; binary relation symbol R for the
equivalence relation).

(iv) The theory of linear orders with no end-points (binary relation � for
the order relation).

(v) The theory of a poset with an identified chain as a subset (binary rela-
tion � for the order; unary relation C for the chain).

Exercise 9.33 (This exercise is a long list of equivalences you might like to
refer back to later. You do not necessarily have to do them all, just a handful
to check you understand what is going on. We say that the dual of ∀ is ∃, and
the dual of ∃ is ∀.)

Prove that the following are logically equivalent for all φ , ψ and all vari-
ables x as indicated. You can consider each equivalence syntactically in the
formal proof system, or semantically by considering structures directly. In
cases with provisos about variables not being free, give an example to show
why the condition added is necessary.

• ¬∃x φ , ∀x¬φ .
• ¬∀x φ , ∃x¬φ .
• ¬¬φ , φ .
• ∀x (φ ∧ψ), (∀x φ ∧ψ), provided x is not free in ψ .
• ∀x (φ ∧ψ), (φ ∧∀x ψ), provided x is not free in φ .
• ∃x (φ ∧ψ), (∃x φ ∧ψ), provided x is not free in ψ .
• ∃x (φ ∧ψ), (φ ∧∃x ψ), provided x is not free in φ .
• Qx(φ ∨ψ), (Qxφ ∨ψ), provided x is not free in ψ , Q = ∀ or ∃.
• Qx(φ ∨ψ), (φ ∨Qxψ), provided x is not free in φ , Q = ∀ or ∃.
• Qx(φ →ψ), (φ →Qxψ), provided x is not free in φ , Q = ∀ or ∃.
• Qx(φ →ψ), (Q∗xφ →ψ), provided x is not free in ψ , Q = ∀ or ∃, and

Q∗ is the dual of Q.

9.3 Second- and higher-order logic* 137

Exercise 9.34 Use the previous exercise and induction to show that every
formula ψ(x1, . . ., xk) in some first-order language L is equivalent to a formula
in prenex normal form, i.e. to a formula in the same language L of the form
Q1y1. . .Qlylθ(x1, . . ., xk, y1. . ., yl) where each Qi is ∀ or ∃ and the formula
θ(x1, . . ., xk, y1. . ., yl) contains no quantifiers.

Exercise 9.35 (a) Show that from ∀x∃y∀z ((¬R(x, y)∧S(y, z))∨R(x, z)) you
may prove ∀v∃w∀x ((¬R(v, w)∧S(w, x))∨R(v, x)).

(b) Explain in as general terms as you can how the proof rules for first-order
logic enable you to rename all bound variables in a sentence σ (providing there
are no name clashes or illegal substitutions, of course).

(c*) Attempt to state and prove a general theorem on renaming variables in
formulas. (The proof will be by induction on the complexity of formulas.)

Exercise 9.36 Give a modified set of proof rules for first-order logic that allow
for empty domains. Check that the Soundness Theorem holds for your logic
and that, on adding the single statement ∃x(x = x) as an axiom, all the provable
statements are exactly those of the normal first-order logic.

9.3 Second- and higher-order logic*

Calling our logic ‘first-order’ begs the question as to what ‘second-order’
logic is.

The essential feature of first-order logic is that the quantifiers ∀x . . . and
∃x . . . are only allowed to range over elements of a non-empty domain, the
domain of the structure M under consideration. This limits the things one can
say quite considerably. For example it is possible to say that a structure G is a
group in first-order logic, but it is not possible to say that G is a simple group.
The obvious attempts fail because the usual definition is that G is a group if and
only if it has no subset N ⊆ G containing the identity and closed under certain
operations (multiplication, inverse, and conjugation by arbitrary elements of
G) other than {1} or G itself. This seems to require a quantifier over subsets
of the structure, and first-order logic does not have this.

The reader should be very wary of any false sense of security in these argu-
ments. They are sometimes rather deep and often very difficult. I did not prove
anything in the last paragraph – only pointed out that the obvious attempt to
say in first-order logic that ‘G is simple’ fails. At this stage, it seems possible
that there are other less obvious approaches. In fact, it really cannot be done,
but we will not have the apparatus to prove this until the next chapter. (See

138 First-order logic

Exercise 10.17 for a hint.) In contrast, some cases can be done: we can de-
scribe all simple groups of order 168 (or any other finite order) by a first-order
sentence, for example.

Second-order logic allows for these subset-quantifiers. A particular lan-
guage for second-order logic is obtained from one for first-order logic by
adding a new set of variables X j

i for each i, j ∈ N. The idea is that X j
i ranges

over subsets of M j, where M is the structure under consideration. We also
add new atomic formulas (t1, . . ., t j) ∈ X j

i for every i, j and terms t1, . . ., t j.
We allow these new atomic formulas to take part in more complex formulas
and build up the notion of a second-order formula in a similar way to that for
first-order formulas. The structures for a second-order language are the same
as those for the corresponding first-order language.

In fact, although we have added second-order variables X j
i of all ‘types’ j,

thinking of X j
i as ranging over subsets of M j, we never need more than the

first three cases, j = 1, 2, 3. This is because there is always a bijection from an
infinite set M to its cartesian power M2.

Exercise 9.37 Assume the assertion just made, that for any infinite set M
there is a bijection f : M →M2. Write down a formula in second-order logic
that expresses the fact that X3

1 is the set {(x, y, z) : z = f (x, y)} for some such
function f . Use this to show that second-order variables of ‘type’ greater than
three are unnecessary.

This then gives the main ideas of second-order logic. We have a language, a
grammar explaining how formulas are built, and a notion of what it means for
a second-order sentence to be true in a structure M. (For the latter all we need
to know is that M �∃X j

i θ(X j
i) holds if and only if M �θ(A) for some A ⊆ M j

and M �∀X j
i θ(X j

i) holds if and only if M � θ(A) for all A ⊆ M j, and use the
other ideas from first-order logic.)

If this seems interesting, then good: it is interesting – in fact, far too in-
teresting! Some structures, such as those for the reals and the naturals, can
be characterised completely by the second-order sentences true in them, and
sentences achieving this were first written down by Dedekind and, in the case
of the naturals, independently by Peano. The real problem comes when one
tries to put right the most conspicuous omission in the account of second-order
logic: the lack of any system for proof. There is no such system, and in fact it is
a consequence of Gödel’s famous theorem on the incompleteness of arithmetic
that there cannot be such a second-order system for N that is any better than
simply writing down all the true sentences and using them as a set of axioms.
(This is not what we want: we want a way of discovering new true statements!)

9.3 Second- and higher-order logic* 139

There are possible ways round at least some of the problems here. One is to
change our idea of structure to allow two or more domains: one of numbers or
objects, and another of sets of objects, for example. Thus the structure for the
natural numbers becomes (N, P(N), P(N2), P(N3), . . ., 0, 1, . . .), where P(S)
is the power-set or set of all subsets of S. We can even write down some
suitable axioms, such as the axiom of extensionality saying two sets are equal
if and only if their elements (in the sense of the symbol ∈) are the same, and
also lists of axioms – called axiom schemes – expressing the existence of plenty
of sets, such as

∃X1
1 ∀x (x ∈ X1

1 ↔θ(x))

for all second-order formulas θ(x). (This particular axiom scheme is called
comprehension.)

As a tool for proving statements about the naturals, the approach just sug-
gested is quite powerful. But in fact, it is just first-order logic in disguise once
again. Consider structures of the form

(N∪P(N)∪P(N×N)∪ . . ., N, S1, S2, S3, . . ., ∈1, ∈2, ∈3, . . ., 0, 1, . . .)

where N, S1, S2, S3 are all unary relations: N(x) means ‘x is a number’ or
x ∈ N; S1(x) means ‘x is a set’ or x ⊆ N; S2(x) means ‘x is a set of pairs’ or
x ⊆ N×N; and S3(x) means ‘x is a set of triples’; etc. The k + 1-ary relation
(x1, . . ., xk) ∈k s means ‘the k-tuple (x1, . . ., xk) is a member of the set s.’.

A similar approach can be used for even stronger third-order logic where
variables ranging over sets of sets are introduced, or for higher-order logic.
An even more powerful approach is to adopt a first-order set theory such as
Zermelo–Fränkel as a base theory to prove statements about N. This behaves
rather like nth order logic for all n, including transfinite n, and amazingly is a
first-order theory in the language with a single binary relation symbol, ∈. Thus
we return, very squarely, back to the realm of first-order logic.

10

Completeness and compactness

10.1 Proof of completeness and compactness

This chapter is devoted to the main theorem for first-order logic, the Complete-
ness Theorem.

Theorem 10.1 (Completeness) Let L be a first-order language, Σ a set of
L-sentences and τ a further L-sentence. Then Σ� τ implies Σ� τ .

By contrast with the Soundness Theorem, the Completeness Theorem for
first-order logic is a powerful mathematical tool with very many interesting
consequences and applications. Its proof involves an application of Zorn’s
Lemma in an essential way, and will take us quite a bit longer. We start
by looking at a way of adding new constant symbols to the language, called
‘Henkinisation’, and named after the logician Leon Henkin who first used this
method.

Definition 10.2 Let L be a first-order language. We consider for each formula
φ(x) with a single free variable x a new constant symbol ε . (‘New’ here means
that these constants are distinct symbols not already in L. We only need a
supply of new symbols and we may assume that there are always enough new
symbols available.) Since there will be one such constant ε for each φ(x)
and we require these symbols to be all distinct we shall denote the symbol
corresponding to φ(x) by εφ(x). This is just a name for a new symbol which
is used to indicate this symbol’s use in the formulas below. There is no new
logical rule being introduced here.

The first Henkinisation of L is the first-order language H(L) consisting of L
together with all εφ(x).

The second Henkinisation of L is the first-order language H(H(L)) consist-

140

10.1 Proof of completeness and compactness 141

ing of H(L) together with all εφ(x) for formulas φ and variables x in the first
Henkinisation.

The complete Henkinisation of L is the first-order language LH consisting of
all symbols in L, H(L), H(H(L)),

The Henkin axiom corresponding to a Henkin constant εφ(x) is the first-order
statement ∀x (¬φ(x)∨φ(εφ(x))) of the appropriate Henkinised language.

The idea is that we add new constants εφ(x) with the property (expressed by
the Henkin axiom) that says if any element satisfies φ(x) then εφ(x) does.

Lemma 10.3 Let L be a first-order language, and suppose Σ is a set of first-
order L-sentences which is consistent, i.e. Σ � �⊥. Let H(L) be the first Henkin-
isation of L and H1 the set of Henkin axioms for the Henkin constants added.
Then Σ∪H1 is also consistent.

Proof We suppose otherwise, that Σ∪H1�⊥, and show this implies that Σ�⊥.
By assumption there is a finite proof of ⊥ from Σ∪H1, so for finitely many
formulas φi of L and finitely many variables xi of L we have

Σ∪{∀x1 (¬φ1(x1)∨φ1(εφ1(x1))), . . ., ∀xk (¬φk(xk)∨φk(εφk(xk)))
}�⊥.

The Henkin constants do not appear anywhere except where indicated, and
behave in the proof just like variables, so the ∃-Elimination rule applies. By k
applications of this rule we have

Σ∪{∃y1 ∀x1 (¬φ1(x1)∨φ1(y1)), . . ., ∃yk ∀xk (¬φk(xk)∨φk(yk))}�⊥.

But by Example 9.21, we have that

�∃yi ∀xi (¬φi(xi)∨φi(yi))

for each i so therefore Σ�⊥, as required.

Lemma 10.4 Let L be a first-order language, and suppose Σ is a set of first-
order L-sentences which is consistent, i.e. Σ � � ⊥. Let LH be the complete
Henkinisation of L and H the set of Henkin axioms for all new Henkin con-
stants. Then Σ∪H is also consistent.

Proof If not, Σ∪H �⊥, so there is a finite proof of ⊥ from Σ∪H and this
proof must use finitely many Henkin constants so can be expressed entirely in
the nth Henkinisation H(· · ·(H(L))· · ·) of L, for some n. But this is impossible
by n applications of the previous lemma.

142 Completeness and compactness

Lemma 10.5 Let L be a first-order language, and suppose Σ is a consistent
set of first-order L-sentences, and θ is a further L-sentence. Then at least one
of Σ∪{θ}, Σ∪{¬θ} is also consistent.

Proof If Σ∪{θ}�⊥ then by Reductio Ad Absurdum Σ�¬θ . But then we
cannot have Σ∪{¬θ}�⊥, for this would mean that Σ�⊥. So either Σ∪{θ} ��
⊥ or Σ∪{¬θ} ��⊥.

We are now in a position to prove the Completeness Theorem.
We shall suppose that Σ � � τ and find a structure M making Σ true but not τ .

It will follow that Σ �� τ , thus proving the contrapositive of the Completeness
Theorem.

By a now familiar application of the Reductio Ad Absurdum Rule, Σ � � τ
implies Σ∪ {¬τ} is consistent. If we can show that there is a structure M
making Σ∪{¬τ} true it would follow that M � Σ and M �� τ hence Σ �� τ , as
required.

Let LH be the complete Henkinisation of L, and H the set of Henkin axioms.
By the lemma on Henkinisation, Σ0 = Σ∪H ∪{¬τ} is consistent. We look
at the set X of all consistent sets of LH sentences Ξ ⊇ Σ0, and order X by ⊆.
This makes X into a poset with the Zorn property since any chain Y ⊆ X has
upper bound Ξ =

⋃
Y = {σ : σ ∈ Γ, for some Γ ∈ Y}. (The argument that this

is consistent has been given before and simply requires that proofs are finite
objects and Y is a chain.) Therefore there is a set Σ+ ∈ X which is consistent,
contains Σ0, and is maximal. By maximality and the previous lemma, Σ+ ∈ X
has the property that for all sentences θ of LH we have either θ ∈ Σ+ or ¬θ ∈
Σ+.

The set Σ+ contains all the information we need. Notice that if σ is any LH -
sentence and Σ+ �σ then σ ∈ Σ+. The process from now on requires defining
our L-structure M and checking various properties such as well-definedness,
and that the structure we define satisfies the sentences in Σ0. Each step in the
process uses the maximality of Σ+ and will also require applications of the
individual proof rules for our system.

First, we need to define M. The domain of M is defined to be the set T of all
closed terms of LH , factored out by the equivalence relation

t ∼ s if and only if t = s ∈ Σ+.

Clearly the first task is to show this is an equivalence relation. This uses the
equality rules of first-order logic. If t ∈ T then �t = t, so t = t ∈ Σ+ hence t ∼ t
and ∼ is reflexive. If t, s ∈ T and t ∼ s then t = s ∈ Σ+ so Σ+� s = t and hence

10.1 Proof of completeness and compactness 143

s ∼ t. Also if t, s, r ∈ T and t ∼ s and s ∼ r then t = s, s = r ∈ Σ+ so Σ+� t = r
hence t ∼ r. Thus ∼ is an equivalence.

Write [t] for the equivalence class of t ∈ T . We must next define the con-
stants, relations and functions on M. This is done as follows:

• for each constant symbol c, the corresponding element of M is [c];
• for each n-ary relation symbol R, we define the meaning of R on M by

R([t1], . . ., [tn]) if and only if R(t1, . . ., tn) ∈ Σ+;
• for each n-ary function symbol f , we define the meaning of f in M by

f ([t1], . . ., [tn]) = [f (t1, . . ., tn)].

Our next task is to show that the functions and relations here are well defined
and do not depend on the choice of representatives t1, . . ., tn of [t1], . . ., [tn].
There is nothing to do for the constant symbols. For a relation symbol R we
must prove that if R(t1, . . ., tn) ∈ Σ+ and si ∼ ti for each i then R(s1, . . ., sn) ∈
Σ+. But this follows from maximality: R(t1, . . ., tn) ∈ Σ+ and si = ti ∈ Σ+ for
each i implies that Σ+ �R(s1, . . ., sn) by the Substitution Rule. The treatment
of function symbols is similar; here we must prove that if si ∼ ti for each i
then f (t1, . . ., tn) ∼ f (s1, . . ., sn). Applying the Substitution Rule to the for-
mula θ(x1, . . ., xn) defined to be f (t1, . . ., tn) = f (x1, . . ., xn) we have Σ+ �
θ(t1, . . ., tn), by the Reflexivity Rule, hence Σ+ � f (t1, . . ., tn) = f (s1, . . ., sn)
by substitution.

Finally we have to show that M makes Σ0 true. In fact, as in the proof of
the Completeness Theorem for propositional logic, it is easier to show that
M makes Σ+ true, and we do this by an induction on the ‘size’ of a sentence
θ . For the purposes of this proof, we say a connective is one of the symbols
¬ , ∨ , ∧ , ∀, ∃. Then we show inductively that

• for all θ with at most n connectives we have: M � θ if and only if θ ∈
Σ+.

If θ has 0 connectives, it may be t = s for some t, s ∈ T . Observe that it
is quite possible for two different closed terms t, s ∈ T to represent the same
object in M. But by the definition of M, M � t = s holds if and only if t ∼ s
which, by the definition of ∼, holds if and only if t = s ∈ Σ+.

The other possibility when θ has 0 connectives is when θ is R(t1, . . ., tn),
for some relation symbol R and some terms ti. But then, by the definition of R
in M, M �R(t1, . . ., tn) if and only if R(t1, . . ., tn) ∈ Σ+.

We now suppose θ has one or more connectives and use our induction hy-
pothesis on formulas with fewer connectives.

144 Completeness and compactness

If θ is ¬φ then using the induction hypothesis the following are equivalent:
M �¬φ ; M ��φ ; φ �∈ Σ+; and ¬φ ∈ Σ+. The last step here is by the maximality
of Σ+.

If θ is φ ∧ψ then M � θ if and only if M � φ and M � ψ , which by the in-
duction hypothesis is true if and only if φ ∈ Σ+ and ψ ∈ Σ+. But then, by an
application of ∧-Introduction, φ ∈ Σ+ and ψ ∈ Σ+ imply φ ∧ψ ∈ Σ+; the con-
verse is similar using ∧-Elimination just as in the proof of the Completeness
Theorem for propositional logic.

If θ is φ ∨ψ we have M � θ if and only if M � φ or M � ψ , which, using
the induction hypothesis, is true if and only if φ ∈ Σ+ or ψ ∈ Σ+. But then
by a similar argument to that in the last paragraph using maximality and ∨-
Introduction, φ ∈ Σ+ or ψ ∈ Σ+ implies φ ∨ψ ∈ Σ+, and for the converse
φ ∨ ψ ∈ Σ+ implies φ ∈ Σ+ or ψ ∈ Σ+ since if φ �∈ Σ+ and ψ �∈ Σ+ then
¬φ ∈ Σ+ and ¬ψ ∈ Σ+ so Σ+, φ ∨ψ �⊥ by the ∨-Elimination Rule and the
Contradiction Rule.

Since the domain of M is the set of equivalence classes of closed terms from
T and each term represents its own equivalence class we have M �∀x φ(x) if
and only if M � φ(t) for each t ∈ T . Now if ∀x φ(x) ∈ Σ+ and φ(x) has at
most n connectives, then Σ+ �φ(t) for all t by ∀-Elimination, so M �∀x φ(x)
by the maximality of Σ+ and the induction hypothesis. For the converse, we
use the Henkin axiom for ¬φ(x). Suppose ∀x φ(x) �∈ Σ+, so ¬∀x φ(x) ∈ Σ+

by maximality, and recall that ∀x (¬¬φ(x)∨¬φ(ε¬φ(x))) is in Σ+. Then the
following is a valid proof from Σ+.

Formal proof

¬∀x φ(x) (1) Given, in Σ+

¬¬φ(ε¬φ(x)) (2) Assumption

Let x be arbitrary (3)

¬φ(x) (4) Assumption
¬¬φ(x)∨¬φ(ε¬φ(x)) (5) ∀-Elimination
¬¬φ(x) (6) ∨-Elimination
⊥ (7)

¬¬φ(x) (8) RAA
φ(x) (9)

∀x φ(x) (10) ∀-Introduction
⊥ (11)

¬¬¬φ(ε¬φ(x)) (12) RAA
¬φ(ε¬φ(x)) (13)

10.1 Proof of completeness and compactness 145

This shows that ε¬φ(x) is a t ∈ T such that φ(t) �∈ Σ+, so M �� φ(t) by the
induction hypothesis. Hence M ��∀x φ(x), as required.

The case of the ∃ quantifier is similar. For one direction, if M � ∃x φ(x)
where φ(x) has at most n connectives then M �φ(t) for some t ∈ T , so φ(t) ∈
Σ+ by the induction hypothesis, and hence ∃x φ(x) ∈ Σ+ by maximality of
Σ+ and ∃-Introduction. Conversely, if ∃x φ(x) ∈ Σ+ then since we also have
∀x (¬φ(x)∨φ(εφ(x))) ∈ Σ+ the following is a proof from Σ+.

Formal proof

∃x φ(x) (1) Given, in Σ+

Let a satisfy φ(a) (2)
¬φ(a)∨φ(εφ(x)) (3) ∀-Elimination

¬φ(a) (4) Assumption
⊥ (5)

¬¬φ(a) (6) RAA
φ(εφ(x)) (7) ∨-Elimination

φ(εφ(x)) (8) ∃-Elimination

So the term t = εφ(x) has φ(t) in Σ+ hence M � φ(t) by induction, and so
M �∃x φ(x), as required.

This completes the inductive proof that M � Σ+ and hence completes the
proof of the Completeness Theorem.

The Completeness and Soundness Theorems are interesting from a founda-
tional point of view (where they show that just about any mathematical proof
can be expressed in a formal system which is mechanically checkable), but are
also powerful mathematical tools in their own right. We will be investigating
them as mathematics in the next two chapters, but we can give here a sample
corollary, the Compactness Theorem. It is a powerful result allowing us to
construct new mathematical structures, and is proved by using the Soundness
and Completeness Theorems together to allow us to pass between the worlds
of proofs and mathematical structures.

Theorem 10.6 (Compactness) Let L be a first-order language and Σ a set
of L-sentences. Suppose that each finite subset Γ of Σ has a structure MΓ � Γ
making Γ true. Then there is a structure M making the whole of Σ true.

Proof By assumption and the Soundness Theorem, each finite Γ ⊆ Σ is consis-
tent, Γ � �⊥. This means Σ is consistent too, since a proof of ⊥ from Σ is finite
so can only use finitely many assumptions from Σ. So Σ � �⊥. It follows from

146 Completeness and compactness

the Completeness Theorem that there is a structure M making the whole of Σ
true.

10.2 Examples and exercises

For the next few paragraphs and exercises, we shall examine the ‘pure’ first-
order language L0 with = and all the other logical symbols, but no non-logical
symbols.

Exercise 10.7 Indicate how to write down sentences σn and τn of L0 with the
following meanings.

• σn: There are at least n elements in the domain.
• τn: There are exactly n elements in the domain.

(Hint: use plenty of variables. Look at Exercises 9.28 and 9.29 for ideas.)

Exercise 10.8 Write out a formal proof showing that σ3 �σ2.

Exercise 10.9 Explain why a structure M satisfies

S∞ = {σn : n ∈ N}
if and only if its domain is infinite.

The last exercise shows that the class of infinite M is axiomatisable in L0,
i.e. there is a set of sentences of L0 such that M is infinite if and only if it
satisfies all these sentences.

Example 10.10 The class of infinite M is not finitely axiomatisable in the
language L0, i.e. there is no single sentence σ∞ of L0 which is satisfied in a
structure M if and only if the domain of M is infinite.

Proof If σ∞ is such a sentence it must be that σ∞ �σk for all k. This is by
the Completeness Theorem, because clearly σ∞ � σk for all k. Similarly, by
completeness, there is a proof p of σ∞ from the set of sentences S∞, since once
again S∞ � σ∞. But proofs are finite objects, so there is a finite subset of S∞
such that

σ1, . . ., σn �σ∞ �σk

for all k. In particular this would imply that

σ1, . . ., σn �σn+1.

10.2 Examples and exercises 147

But this is impossible since there is an L0 structure with exactly n elements,
and this satisfies σ1, . . ., σn but not σn+1, so

σ1, . . ., σn ��σn+1

hence

σ1, . . ., σn � �σn+1

by the Soundness Theorem.

Exercise 10.11 Show that there is no set S f of L0-sentences such that a struc-
ture satisfies S f if and only if its domain is finite. (Hint: if such a set S f exists,
show that S f ∪{σ1, . . ., σn} is consistent for all n. Using compactness or oth-
erwise, derive a contradiction.)

Exercise 10.12 Find a single sentence θ in a (necessarily different) first-order
language L that only has infinite models.

Exercise 10.13 Show that the following properties of a graph (represented
in a first-order language as in Exercise 9.30) are not equivalent to any set of
first-order statements in this language.

(i) The graph is connected, i.e. between any two vertices there is a finite
path connecting them.

(ii) The graph is not a forest, i.e. it has a finite cycle.
(iii) There is no infinite clique in the graph.

Example 10.14 The first-order theory of groups can be described in the lan-
guage LG with one constant symbol e for the identity, one binary function
symbol × for the group multiplication and one unary function −1 for inverses.
The theory of groups is the set of LG sentences

• ∀x∀y∀z ((x× y)× z = x× (y× z))
• ∀x (x× e = x∧ e× x = x)
• ∀x (x× x−1 = e∧ x−1 × x = e)

so that a group is an LG structure satisfying these sentences. (Note that ‘clo-
sure under multiplication and inverses’ is automatic from our definition of LG-
structure.)

Example 10.15 A cyclic group is a group G generated by a single element x,
that is G = {xn : n ∈ Z} where x0 = e and x−n = (x−1)n for negative exponents.

148 Completeness and compactness

Then, in contrast with the last example, the set of cyclic groups is not axioma-
tisable, i.e. there is no set of first-order sentences true for precisely the cyclic
groups.

Proof Define a set of first-order sentences involving two new constant symbols
a, b and the other LG operations by

Γ =
{
¬an = bk : n, k ∈ Z, not both zero

}
.

Here, an abbreviates some term in the language involving a, × and possibly
also e (if n = 0) and −1 (if n < 0). Then if G is a group and a, b ∈ G�Γ then G
is not cyclic, for if G is generated by x ∈ G we have a = xr and b = xs for some
r, s ∈ Z and so as = xrs = br so r = s = 0 by Γ. But this would mean a = b = e
so an = bk for all n, k, contradicting Γ.

Now suppose Σ is a set of sentences containing the axioms for group theory
and such that each σ ∈ Σ is true in all cyclic groups. To show that Σ does not
axiomatise all cyclic groups it suffices to find a non-cyclic group satisfying Σ.
To this end, let N0 ∈ N and let

Γ0 =
{
¬an = bk : n, k ∈ Z, not both zero, |n|, |k| < N0

}
.

Now consider

C =
{
. . ., x−2, x−1, x0, x1, x2, . . .

}
,

the infinite cyclic group generated by x. Then C � Σ as C is cyclic. Let a = x
and b = xN0 . Then if an = bk with |n|, |k| < N0 we have kN0 −n = 0 which has
n = k = 0 as its only solution. Thus C �Γ0.

The previous paragraph shows that for each finite subset Γ0 ⊆ Γ there is a
group C with a, b ∈ C such that (C, a, b)� Γ0 ∪Σ. By the Compactness The-
orem it follows that there is a group G with elements a, b ∈ G and (G, a, b)�
Γ ∪ Σ. So this group satisfies Σ but is not cyclic as it also satisfies Γ, as
required.

The technique of going to an expanded language by adding constants and then
applying the Compactness Theorem is typical, and we will see other examples
like this.

Exercise 10.16 Which of the following classes of groups is axiomatisable in
the language LG of Example 10.14? Finitely axiomatisable in LG? Give proofs.

(i) The class of groups of size n (for some fixed n ∈ N).
(ii) The class of all groups of size at most n (for some fixed n ∈ N).

(iii) The class of all infinite groups.

10.3 The Compactness Theorem and topology* 149

(iv) The class of all finite groups.
(v) The class of all torsion groups.

(vi) The class of all n-torsion groups.
(vii) The class of all torsion-free groups.

(A group G is n-torsion if gn = e for all g ∈ G. It is torsion if for all g ∈ G
there is n ∈ N such that gn = e, and it is torsion-free if for all g ∈ G, if g �= e
then gn �= e for all n ∈ N.)

There are very many ways of doing the next exercise, and it is instructive to
try several and see what extra information each gives. Possibly the simplest is
to note that an abelian group is simple if and only if it is cyclic of prime order.
By compactness every set of sentences true in all simple abelian groups is also
true in some infinite group.

Exercise 10.17 Prove that the class of all simple groups is not axiomatisable.

10.3 The Compactness Theorem and topology*

The Compactness Theorem is not idly named. It is actually equivalent to the
assertion that a particular topological space is compact. This short optional
section defines the topological space and shows the connection, and is provided
here for readers with some background knowledge in general topology.

First, we fix a first-order language L. We are interested in L-structures and
the L-sentences that they satisfy.

Definition 10.18 Let M be an L-structure. The theory of M, written ThM, is
the set {σ : M �σ} of all L-sentences true in M.

We can see quickly that the set Σ = ThM has the property

• if σ is any L-sentence then exactly one of σ ∈ Σ or ¬σ ∈ Σ.

This is just a restatement of the fact that every σ is either true or false in a
structure for L, but not both.

In fact, by the Soundness Theorem, we can also see that ThM is consistent,
i.e. ThM � � ⊥, and the above property shows that it is maximally consistent,
i.e. that there is no proper extension which is a set of L-sentences and consis-
tent. Also, by the Completeness Theorem, any such maximally consistent set
of L-sentences is ThM for some L-structure M. Thus the idea of the theory
of M characterises such maximally consistent sets, though we will not require
these observations here.

150 Completeness and compactness

We are going to study the set of all sets Σ of L-sentences of the form ThM
where M is an L-structure. We define

X = {ThM : M is an L-structure} .

We will define a topology on X by specifying a suitable collection of open sets.
For each L-sentence σ we define

Uσ = {Σ ∈ X : σ ∈ Σ} .

Note that U⊥ = ∅ since no L-structure makes ⊥ true. Similarly, U� = X as
� ∈ ThM for all M. It is more interesting to note that, for each σ ,

X = Uσ ∪U¬σ

since any Σ = ThM must contain either σ or ¬σ , and furthermore as Σ cannot
contain both of these sentences the equation above writes X as a disjoint union
of Uσ and U¬σ . Also, for two L-sentences σ and τ we have

Uσ ∩Uτ = Uσ∧τ

for ThM ∈ Uσ ∩Uτ holds if and only if both σ and τ are true in M, which
holds if and only if σ ∧ τ is true in M. To define a topology on X we need to
specify the collection of subsets of X to be called ‘open’, which must include
∅ and X and must be closed under finite intersections and arbitrary unions.
We do this by saying that open sets are arbitrary unions of sets of the form Uσ .
Since Uσ ∩Uτ = Uσ∧τ these open sets are closed under finite intersection. The
complements of these open sets, i.e. sets of the form X \ U where U is open,
are said to be closed.

One interesting property of our topology is that it is totally disconnected,
which means that for any two distinct elements Σ and Γ of X , there are open
sets U , V such that X is the disjoint union of U and V , and Σ is in one and Γ in
the other. To see this is true, let σ be some first-order statement in one of Σ, Γ
but not the other. (There must be such a σ as these sets are distinct.) Then we
may take U = Uσ and V = U¬σ , and the required properties hold.

Recall from Definition 8.26 that a topological space X is compact if when-
ever {Vi : i ∈ I} is a collection of open subsets of X that covers X , there is a
finite subcollection of the Vi that also covers X . Then, from this definition and
the Compactness Theorem for first-order logic, our space X is compact.

Theorem 10.19 The topological space X is compact.

Proof Let {Vi : i ∈ I} be a collection of open subsets of X , and suppose that no

10.3 The Compactness Theorem and topology* 151

finite collection of the Vi covers X . We must show that there is Γ ∈ X which is
in none of the Vi.

We first reduce to the case when each Vi is of the form Uσ for some L-
sentence σ . Since Vi is open and therefore the union of sets of the form Uσ ,
every element in Vi is contained in some Uσ . We now consider the collection of
open sets {Uσ :Uσ ⊆Vi for some i ∈ I} and note that it covers the same subset
of X as {Vi : i ∈ I}, and also has the property that no finite subcollection of it
can cover the whole of X . It suffices therefore to find Γ ∈ X which is in none
of the Uσ .

To this end, let

Γ = {¬σ :Uσ ⊆Vi for some i ∈ I} .

We claim that there is an L-structure MΓ in which all sentences in Γ hold. If
not then, by the Compactness Theorem, there is a finite subset of Γ with no
structure making it true:

{¬σ1, ¬σ2, . . ., ¬σn}�⊥.

This means that no structure M satisfies all of ¬σ1, ¬σ2, . . ., ¬σn and hence
no Σ ∈ X can contain all of ¬σ1, ¬σ2, . . ., ¬σn. Thus

Uσ1 ∪Uσ2 ∪ . . .∪Uσn = X

since every structure makes one of σ1, . . ., σn true. But this contradicts the
assumption that no finite subcollection of the Uσ covers X . Hence there is a
structure MΓ in which Γ is true. Let Γ+ = ThMΓ ∈ X . It is now easy to see
that Γ+ is not an element of any of the Uσ used in the definition of Γ, since
¬σ ∈ Γ ⊆ Γ+. This shows that the original collection of open sets Uσ does not
cover X , as required.

The reader may be interested to note that this argument only used the Com-
pactness Theorem and the idea of an L-structure. Neither Soundness nor Com-
pleteness was needed at all. There is a converse argument too: the compactness
of the space X implies the Compactness Theorem as previously given, since if
Γ is a an infinite set of L-sentences with no structure satisfying all σ ∈ Γ then

{U¬σ : σ ∈ Γ}
is an open cover of X since every M satisfies some ¬σ . Therefore there is a
finite subcover

{U¬σi : i = 1, 2, . . ., n}
and hence there is no L-structure satisfying all sentences in {σ1, σ2, . . ., σn}.

152 Completeness and compactness

Exercise 10.20 Express the Compactness Theorem for propositional logic as
the compactness of a suitable topological space X . (For this, see also Proposi-
tion 8.35.)

10.4 The Omitting Types Theorem*

The Henkin method used in the proof of the Completeness Theorem is surpris-
ingly powerful, and by inspecting it carefully we can get plenty of extra useful
information, especially when the language is countable. Model theorists know
this kind of argument as ‘Omitting Types’ for reasons that will become appar-
ent, but from the point of view of topology (as discussed in Section 10.3) it is
very close to the Baire Theorem for compact Hausdorff spaces.

The Omitting Types Theorem is an important and useful result in model the-
ory, and many more advanced texts on model theory rightly give it a thorough
presentation and a long discussion of its applications, how the proof works, and
how the proof may be varied to give related results. Here I shall present only
the very shortest of proofs for readers comfortable with the topological termi-
nology used before. Throughout this section we work with first-order logic in
countable languages.

We start by taking a countable first-order language L and a consistent set
Σ0 of L-sentences. We add a countably infinite set of constants, W (so the
cardinality of W is the same as the cardinality of L) and denote by LW the
expanded language with these constant symbols added. We note the key fact
that LW is also a countable first-order language.

Now consider sets of LW -sentences Σ that are deductively closed, i.e. for
which

Σ�σ implies σ ∈ Σ

for each sentence σ of LW . The set of all such Σ is called the set of LW -theories
extending Σ0 and will be denoted here by T . Thus

T = {Σ ⊆ LW : Σ is consistent, deductively closed and Σ ⊇ Σ0} .

As in Section 10.3, we make T into a topological space by defining Uσ =
{Σ ∈ T : σ ∈ Σ} and saying that open sets are unions of sets of the form Uσ .

If X is a topological space, i.e. a set with specified open subsets, and Y ⊆ X
is a subset of X , then we can regard Y as a topological space with topology
inherited from X by saying that a set U ⊆ Y is open if and only if U = Y ∩V
for some open V ⊆ X . This topology on Y is called the subspace topology.

Exercise 10.21 In the case when Σ0 = ∅, we can recover our space X of

10.4 The Omitting Types Theorem* 153

Section 10.3 as a subspace of T . Show this as follows. First say that a set of
L-sentences Σ is complete for L if Σ�σ or Σ�¬σ for all sentences σ from L.
Now prove that the set X of all ThM for some L-structure M is exactly the set
of all consistent, deductively closed sets of L-sentences which are complete for
L, and that the subspace topology induced on this by the topology on T is the
same as the one given for X before.

Exercise 10.22 Prove that the space T is compact. (Hint: essentially the same
proof as for X in the last section should work.)

In the proof of the Completeness Theorem, we focused on maximal elements
of T , where maximal denotes with respect to set inclusion ⊆. Let us denote the
set of maximal elements of T as Tmax, and equip it with the subspace topology
as before.

Theorem 10.23 The space Tmax is compact.

Proof Consider a set C of sets of the form Uσ and suppose no finite subset of
C covers Tmax. Let

Γ = {¬σ :Uσ ∈C}

and verify from our assumptions on C that Γ � �⊥. Then Γ extends to a maximal
Γ′ ⊇ Γ, which is clearly deductively closed and in Tmax but not in any Uσ ∈
U .

We met the idea of a totally disconnected space in Sections 8.4 and 10.3.
Totally disconnected spaces are topological spaces X with the property that
whenever x �= y in X then there are open sets U , V such that x ∈ U , y ∈ V ,
U ∩V = ∅ and X = U ∪V . (The sets U , V here are complements of each other
and hence closed as well as open.) Totally disconnected spaces are extreme
types of Hausdorff spaces which have the property that whenever x �= y in X
then there are open sets U , V such that x ∈U , y ∈V and U ∩V = ∅.

Proposition 10.24 The space Tmax is totally disconnected and hence Haus-
dorff.

Proof Let Σ, Γ ∈ Tmax be distinct. Then as these are distinct there is some
σ ∈ Σ that is not in Γ or some τ ∈ Γ that is not in Σ. Assume the first, so σ �∈ Γ.
Then by maximality of Γ we have ¬σ ∈ Γ and hence Σ ∈ Uσ , Γ ∈ U¬σ and
Tmax = Uσ ∪U¬σ is a disjoint union.

154 Completeness and compactness

In a small number of very special cases in certain languages L and base sets Σ0

we can build an L-structure M�Σ+ directly from the set Σ+ ∈ Tmax, often using
an argument similar to the proof of the Completeness Theorem. Unfortunately,
these arguments do not work in all cases and in general it requires the Henkin
axioms to work. So we next abstract from the Henkin axioms those properties
of a set Σ+ ∈ Tmax that are required for the construction in the Completeness
Theorem to work.

Definition 10.25 Say that a set of LW -sentences Σ has the Henkin property
if whenever φ(x) is an LW -formula in a single free variable then there is a
constant c ∈W such that the sentence

∀x (¬φ(x)∨φ(c))

is Σ.

The Henkin property appears to be a rather technical property of a set of
sentences in LW . We are really interested in LW -structures. The following
lemma indicates the connection.

Lemma 10.26 Suppose Σ+ ∈ Tmax has the Henkin property. Then there is
M �Σ+ such that for all elements a ∈ M there is some constant symbol w ∈W
such that a realises w.

Proof This is identical to the proof of the Completeness Theorem. We let
M = W/∼ where u ∼ v if and only if u = v ∈ Σ+ and M � R([u1], . . ., [uk]) if
and only if R(u1, . . ., uk) ∈ Σ+ for a k-ary relation symbol R, and similarly for
functions. Then M is well defined and by an induction on formulas using the
maximality of Σ+ and the Henkin property we get that M �Σ+.

So, not only do sets of sentences with the Henkin property have structures, but
these structures can be chosen to consist entirely of constants from W .

By Lemma 10.4 and a Zorn’s Lemma argument, maximal sets Σ+ ∈ T with
the Henkin property exist, at least when we choose the constants W to be the
Henkin constants in Lemma 10.4. But by renaming these constants, we see that
maximal sets Σ+ ∈ T with the Henkin property exist whatever W is, provided it
has the same cardinality as L. With the topological setting here we can review
this argument and understand it in a more useful form.

First we need some more definitions and a result from topology.

Definition 10.27 Let X be a topological space and A ⊆ X . Then A is co-rare
if whenever U ⊆ X is open and non-empty then there is a non-empty open set

10.4 The Omitting Types Theorem* 155

V ⊆ A∩U . The set A is co-meagre if there are countably many co-rare sets Ai

such that A ⊇ ⋂∞
i=0Ai.

In the case of our space T where the topology is given by the sets Uσ , the
definition of co-rare is easily seen to be equivalent to the following more con-
venient form: A is co-rare if for all non-empty Uσ there is a non-empty set
Uτ ⊆ A∩Uσ .

Both of the notions ‘co-rare’ and ‘co-meagre’ just defined describe ‘large’
subsets. (There are corresponding notions of ‘rare’ and ‘meagre’ describing
‘small’ sets too.) In fact, the collection of co-meagre subsets A ⊆ T is a filter
in the boolean algebra P(T) of all subsets of T , and this filter is closed under
countable intersections. That this filter is proper is the content of the next
result.

Theorem 10.28 (Baire) Let X be a compact Hausdorff topological space and
A ⊆ X co-meagre. Then A is non-empty. In fact A is dense in X, meaning for
any non-empty open U ⊆ X the intersection U ∩A is non-empty.

Proof Suppose A ⊇ ⋂
Ai where each Ai is co-rare and i ranges over elements

of N. Let U0 = U , an arbitrary non-empty open set.
We now present an inductive construction of a sequence of non-empty open

sets Ui. Assume we have Ui, where U0 is as above, choose a non-empty open
Vi ⊆ Ai ∩Ui using the property that Ai is co-rare. Let ui ∈Vi. We find an open
set Ui+1 containing ui and a closed set Fi+1 such that Ui+1 ⊆ Fi+1 ⊆ Vi. To
do this choose for each x �∈ Vi an open neighbourhood Ax of x and an open
neighbourhood Bx ⊆ Vi of ui such that Ax ∩Bx = ∅. These neighbourhoods
exist by the Hausdorff property of the space. The set Vi together with the
collection of Ax forms an open cover of X , which is compact, and hence there
is a finite subcover of X consisting of certain sets Vi, Ax1 , . . . , Axk . Then let
Ui+1 =

⋂
jBx j and Fi+1 =

⋃
j(X −Ax j). These have the required properties, as

you may check.
The construction in the last paragraph gives a sequence of non-empty open

sets Ui and closed sets Fi with U0 ⊇ F1 ⊇ U1 ⊇ F2 ⊇ U2 ⊇ . . . and Ui+1 ⊆ Ai

so
⋂

Ui ⊆ A. It suffices to show
⋂

Ui �= ∅. But if this were not the case,
the set

⋃
i(X \ Fi) would be an open cover of X without any finite subcover,

contradicting compactness.

In fact the last theorem can be generalised slightly. In particular it is true for
locally compact Hausdorff spaces – full compactness is not required. This
generalisation will not be required here, however.

156 Completeness and compactness

The real power of Baire’s Theorem is that it shows that any countable inter-
section of co-meagre sets is also co-meagre and hence non-empty. To see this,
let Ai be co-meagre and Ai ⊇ ⋂

Ai j where each Ai j is co-rare. But N×N is
countable so there are in total a countable number of co-rare sets Ai j and hence⋂

iAi ⊇ ⋂
i, jAi j which is non-empty by the Baire Theorem.

The next theorem connects these ideas with logic.

Theorem 10.29 The set of Σ+ ∈ Tmax with the Henkin property is a co-meagre
subset of Tmax.

Proof Consider a formula φ(x) in a single free variable x. To ‘witness’ this x
with some c ∈ W we need to look at the Henkin sentence ∀x (¬φ(x)∨φ(c)).
The set of Σ+ ∈ Tmax that makes this statement true is U∀x (¬φ(x)∨φ(c)). In fact,
we do not mind which particular constant witnesses x in φ(x). The set of
Σ+ ∈ Tmax that witnesses x in φ(x) by some constant from W is the open set
Hφ(x) =

⋃
c∈WU∀x (¬φ(x)∨φ(c)).

We stop a moment at this point to show that Hφ(x) is co-rare. Given a typical
non-empty basic open set Uσ we need to consider Uσ ∩ Hφ(x). This set is
open; we need to show it is non-empty. Since Uσ is non-empty, Σ0 ∪ {σ}
is consistent. But the sentence σ can only mention finitely many constants
c ∈ W . So some constant d ∈ W is not mentioned in σ , and so by the lemma
on Henkinisation (Lemma 10.4) σ ∧∀x(¬φ(x)∨φ(d)) is consistent. It follows
by Zorn’s Lemma that this sentence is contained in some maximal Σ+ ∈ Tmax

and hence Σ+ ∈ Hφ(x) ∩Uσ , as required. Since this works for all Uσ , Hφ(x) is
co-rare.

However, we are not interested in the set of Σ+ that witness φ(x) for a single
φ(x), but those that witness φ(x) for all φ(x). The set of these is

H =
⋂

φ(x)
Hφ(x)

which is a countable intersection of co-rare sets, hence co-meagre, since the
set of all φ(x) is countable as LW is a countable language. This completes the
proof

As mentioned, any countable intersection of co-meagre sets is co-meagre and
hence non-empty. This suggests that we should find other co-meagre sets to
intersect with the set of Σ+ having the Henkin property.

Definition 10.30 Let p be a set of L-formulas φ(x) in a single free variable
x. Say that a set of LW -sentences Σ omits p if whenever c ∈ W is a constant
symbol then there is a formula φ(x) ∈ p such that ¬φ(c) ∈ Σ.

10.4 The Omitting Types Theorem* 157

We are going to find Σ ∈ Tmax with the Henkin property that omits one or
more sets p. However we will not be able to omit every set p. For example,
when Σ0 is a theory of numbers and p is the set of all properties φ(x) true of
a prime x, then presumably p cannot be omitted as Σ0 already implies that the
prime number x exists. More subtly, constructions using the Baire theorem are
usually complex affairs with many parts happening ‘simultaneously’ and we
may not be able to omit p because some other part of the construction may
have made some statement ∃x ψ(x) true and p is a set of properties true of
any x satisfying ψ(x). We define the class of p we can hope to omit in the
following definition.

Definition 10.31 Suppose p is a set of L-formulas φ(x) in a single free variable
x, and Σ0 is a set of L-sentences. Say that p is isolated over Σ0 if there is some
formula ψ(x) of L such that Σ0∪{∃x ψ(x)} ��⊥ and Σ0�∀x (ψ(x)→φ(x)) for
all φ(x) ∈ p. Such a formula ψ(x) as here is said to be a support of p.

Lemma 10.32 Suppose p is a countable set of L-formulas with no support
over Σ0. Then the set of Σ+ ∈ Tmax which omits p is a co-meagre subset of
Tmax.

Proof Start by looking at a single c ∈ W . We want this c to fail to satisfy all
properties in p. That is we want some ¬φ(c) to be true. That tells us to look
at the set

Sp, c =
⋃

φ(x)∈p
U¬φ(c).

The set of Σ+ in Sc are those that omit the set p at c. Let us show that Sc is
co-rare. It is clearly open, so let σ be a sentence of LW and suppose Uσ is
non-empty. The sentence σ might involve c, so we write it as σ(c). However
the sentence ∃x σ(x) is not a support of p, by our assumptions on p. So, as
Σ0 ∪{∃x σ(x)} is consistent, by the definition of support there must be some
φ(x) ∈ p such that Σ0 {∃x (σ(x)∧¬φ(x))} is consistent. But that means that
Uσ(c)∧¬φ(c) = Uσ(c) ∩U¬φ(c) is non-empty, as required. The lemma now fol-
lows as the set of Σ+ omitting p is

Sp =
⋂

c∈W
Sp, c

which is a countable intersection of co-rare sets and hence is co-meagre.

Similar considerations apply to sets of first-order properties of a collection of
variables.

158 Completeness and compactness

Definition 10.33 Suppose p is a set of L-formulas φ(x1, . . ., xk) in free vari-
ables x1, . . ., xk, and Σ0 is a set of L-sentences. Then p is isolated over Σ0 if
there is some formula ψ(x1, . . ., xk) of L such that Σ0 ∪{∃x ψ(x1, . . ., xk)} ��⊥
and Σ0 �∀x (ψ(x1, . . ., xk)→φ(x1, . . ., xk)) for all φ(x1, . . ., xk) ∈ p. Such a
formula ψ(x1, . . ., xk) is said to be a support of p. A set of LW -sentences
Σ omits p if whenever c1, . . ., ck ∈ W are constants from W then there is
φ(x1, . . ., xk) ∈ p such that ¬φ(c1, . . ., ck) ∈ Σ.

Lemma 10.34 Suppose p is a countable set of L-formulas in free variables
x1, . . ., xk with no support over Σ0. Then the set of Σ+ ∈ Tmax which omits p is
a co-meagre subset of Tmax.

Proof Identical to the previous proof, but using

Sp, c1, ..., ck =
⋃

φ(x1, ..., xk)∈p
U¬φ(c1, ..., ck)

and the fact that the set W k of k-tuples c1, . . ., ck of constants from W is also
countable.

The reader can probably guess by now the terminology that is typically used in
situations like this. A set p of formulas of the form φ(x1, . . ., xk) is often called
a ‘type’. (It represents a set of properties that may be held by some a1, . . ., ak ∈
M, and hence represents a ‘kind’ or ‘type’ of k-tuple from M.) Also, a type is
omitted by M if no tuple a1, . . ., ak ∈ M has the property represented by p.

If a type is not omitted in a structure M it is said to be realised in M. In
general, omitting a type is the more difficult thing to do: realising a type simply
requires the Compactness Theorem, as the next exercise shows.

Exercise 10.35 Let Σ0 be a consistent set of L-sentences, where L is a count-
able first-order language, and for each n let p be a set of L-formulas of the form
φ(x1, . . ., xkn) in free variables x1, . . ., xkn . Suppose that each pn is finitely sat-
isfiable over Σ0, that is, for each finite q ⊆ pn there is Mq � Σ0 with some
a1, . . ., akn ∈ Mq which satisfy every φ(x1, . . ., xkn) in q. Using the Compact-
ness Theorem show that there is a single M � Σ0 in which none of the pn is
omitted.

In contrast, the Omitting Types Theorem says that isolated types can be
omitted. All that remains is to state this formally and put all the ingredients
above together to give the proof.

Theorem 10.36 (Omitting Types) Let Σ0 be a consistent set of L-sentences,
where L is a countable first-order language, and for each n ∈ N suppose that

10.4 The Omitting Types Theorem* 159

pn is a set of L-formulas φ(x1, . . ., xkn) in free variables x1, . . ., xkn and pn is
isolated over Σ0. Then there is a countable L-structure M such that M �Σ0 and
in which each pn is omitted.

Proof We will find a maximal Σ+ ∈ Tmax with the Henkin property. By Lemma
10.26 this gives an LW -structure M � Σ+ in which every element is a constant
from W . If in addition Σ+ omits each pn then each type pn is omitted by each
tuple of constants, and hence is omitted in M.

Thus we must find

Σ+ ∈ H ∩
⋂

n∈N
Spn

where H is the set of Σ+ with the Henkin property, in Theorem 10.29, and Spn

is the set of Σ+ that omits pn from Lemma 10.34. But this is a countable in-
tersection of co-meagre sets, hence is non-empty by the Baire Theorem. Thus
some Σ+ exists and we have proved the theorem.

11

Model theory

11.1 Countable models and beyond

Model theory is the study of arbitrary L-structures for first-order languages L.
It is a sort of generalised algebraic theory of algebraic structures. We talk of
a structure M being a model of a set of L-sentences Σ when M � Σ, and this
gives the name to the theory. Actually, in practice, model theory tends to be
much more about the structures themselves and the subsets and functions that
are definable in those structures by first-order formulas, and much less about
first-order sentences, but the term ‘model theory’ seems to be fixed now. This
chapter attempts to give a flavour of model theory and presents some of the
first theorems. It also contains a considerable amount of preliminary material
on countable sets and cardinalities that we have somehow managed to put off
until now.

Model theory starts off with the Compactness Theorem for first-order logic,
which is phrased entirely in terms of the notion of semantics, �, but was proved
in the last chapter by an excursion into the realm of formal proofs. The key
result guaranteeing the existence of models of a set of sentences Σ is the Com-
pleteness Theorem for first-order logic which provides us with a model M of Σ,
under the assumption that Σ � �⊥. We will start by looking at the Completeness
Theorem in a little more detail to see what extra it can say for us.

The construction of the model M that the proof of the Completeness Theo-
rem gives us is rather mysterious, as it relies on Zorn’s Lemma to do the work
of finding the maximal set extending Σ, and aside from choosing the sentences
in Σ in the first place, we have little input. It is natural to ask a little more about
this structure M we end up with.

As it happens, we cannot really say very much more about it: most questions
about M that can be settled at all are answered by looking at the initial data Σ.
In other words, almost all we know about M is the Σ that we started with.

160

11.1 Countable models and beyond 161

If you need a particular M with special properties it is usually necessary to
start with a different Σ (possibly in a different language) or, for more advanced
work, apply more sophisticated variations of the Henkin construction given
above such as the Omitting Types Theorem of Section 10.4. One of the few
exceptions to this rule is the ‘size’ or cardinality of M. This is what we shall
start our study of model theory with here.

We shall start with the countable case, and then explain how similar results
apply in other infinite cases. As the discussion of uncountable structures in-
evitably involves some set theoretic background, the key technical results will
be stated here but proved in an optional section, later on in this chapter.

The idea of a countable set was introduced earlier, in Definition 2.13. Our
definition said that a set X is countable if it is empty or if there is a surjection
from N to X . There is an alternative that is also convenient at times, indicated
in the following proposition.

Proposition 11.1 A set X is countable if and only if there is an injection
f : X →N.

Proof Suppose X is countable. Then if X is empty, by convention the empty
function f from X to N is a perfectly good injection. (We do not have to
specify any values f (x) because there are none.) Otherwise, suppose g: N→X
is a surjection. Then we can define f : X →N by letting f (x) be the least n ∈ N

such that g(n) = x. This is well defined as g is onto X , and is clearly an
injection as no two distinct x, y ∈ X can receive the same n since this would
mean x = g(n) = y.

Conversely, if f : X →N is an injection, then if X is empty it is countable, so
suppose not. Choose x0 ∈ X and let g(n) = x0 if n �∈ im(f) and let g(n) be the
unique x ∈ X such that g(x) = n otherwise. It is easy to check that this defines
a surjection g: N→X .

We are mainly interested in infinite countable sets, also called countably infi-
nite sets. The canonical example of such a set is the set N of natural numbers.
However, many other such sets are countable, and there are some surprises
here too. We start with some reasonably pleasant consequences of our notion
of ‘countable’.

Proposition 11.2 Let A be a countable set and f : A→B a bijection. Then B is
countable.

Proof If A is empty, then B must be too, for otherwise f cannot be surjective.

162 Model theory

And if g: N→A is a surjection then the composition of g and f is a surjection
N→B.

Proposition 11.3 Any subset of a countable set is countable.

Proof If A is countable and f : A→N is an injection, then for each B ⊆ A the
restriction of f to B is also an injection B→N.

Proposition 11.4 If A is a countable set and ∼ is an equivalence relation on
A then the set A/∼ of equivalence classes of A is countable.

Proof Suppose f : N→A is a surjection and define g: A→A/∼ by g(a) = a/∼,
the equivalence class of a. Then the composition of f and g is a surjection
N→A/∼.

Proposition 11.5 If A and B are countably infinite sets then there is a bijection
f : A→B.

Proof We suppose A is countably infinite and show that there is a bijection
g: N→A. The result will follow from a similar fact about B and by composing
bijections.

So suppose h: A→N is an injection. Then im(h) cannot be empty nor have a
largest element n, for if it did, A would have at most n+1 elements and would
be finite. Thus im(h) contains arbitrarily large natural numbers and there is a
function k: N→N such that k(0) is the first element of im(h), k(1) is the second
element of im(h), . . ., and k(n) is the n+1st element of im(h). (This function
k is defined inductively by k(0) is the least element of im(h) and k(n + 1) is
the least element of im(h)∩{m ∈ N : m > k(n)}.) Then the function g: N→A
defined by g(n) = h−1(h(n)) is a bijection.

The surprise comes next.

Proposition 11.6 If A, B are countable sets then their union A∪B and carte-
sian product A×B are both countable.

Proof Suppose f : A→N and g: B→N are injections.
We can define an injection h: A ∪ B →N by h(x) = 2 f (x), if x ∈ A, and

h(x) = 2g(x)+ 1, if x �∈ A. It is easy to check this is also an injection, hence
A∪B is countable.

For the cartesian product, note that the function p: N×N→N given by

11.1 Countable models and beyond 163

�x

�

y

0 1 2 3 4 · · ·

0 0 � 1
�

��

3
�

��

6
�

��

10
�

��
1 2������

4
�

��

7
�

��

11
�

��
2 5

�
�

�
�

�
��	

8
�

��

12
�

��
3 9

�

13
���

4 . . .

...

Figure 11.1 A pairing function for the natural numbers.

p(x, y) = (x + y)(x + y + 1)/2 + y is in fact a bijection pairing up two natural
numbers as a single number. This is because (x + y)(x + y + 1)/2 gives the
number of points (r, s) ∈ N×N for which r + s < x + y and thus the pairs
mapping to values between k(k + 1)/2 and (k + 1)(k + 2)/2− 1 are the pairs
(x, y)∈N×N with x+y = k (see Figure 11.1). Thus we can define an injection
k: A×B→N by k(a, b) = p(f (a), g(b)), showing A×B is countable.

The first time you see this, it is quite startling news. For example, this propo-
sition implies that Z and Q are countable. Z is countable because it is the
disjoint union of two copies of N (namely the non-negative and the nega-
tive integers) and Q is countable since it can be constructed as a quotient of
the set Z× (Z \ {0}). The countability of the set of Z and Q seems to be
counter-intuitive as Q contains so many more elements than N, but as we can
now see Q and N turn out to be exactly the same size.

These simple propositions on countability are enough to sharpen the Com-
pleteness Theorem quite considerably.

Definition 11.7 A countable first-order language is a first-order language L in
which the set of variables, the set of constants, the set of relation symbols, and
the set of function symbols, are all countable.

164 Model theory

Proposition 11.8 Let L be a countable first-order language. Then there are
countably many finite strings of symbols from L.

Proof We use the bijection p: N×N→N of Proposition 11.6, and extend it to
bijections pk: Nk →N by defining p1(n) = n and

pk+1(n1, n2, . . ., nk, nk+1) = p(pk(n1, n2, . . ., nk), nk+1).

Now given an injection f : L→N from the set of symbols of L to N, we define
g from strings σ1σ2. . .σk of L-symbols σ1, σ2, . . ., σk to natural numbers by

g(σ1σ2. . .σk) = p(k, pk(f (σ1), f (σ2), . . ., f (σk)))

and it is easy to check this is an injection.

Proposition 11.9 Let L be a countable first-order language. Then the com-
plete Henkinisation LH is countable, and the set of closed terms of LH is also
countable.

Proof It suffices, by the previous proposition, to show that there are countably
many symbols in LH , for the set of closed terms in this language is a set of
strings from these symbols.

Now there are countably many strings of the form φ(x) from L, and so the
first Henkinisation H(L) consists of a union of a countable set of symbols L
and an additional countable set

{
εφ(x) : φ(x) from L

}
. So H(L) is countable

by Proposition 11.6, and what is more this process gives a completely definite
method for obtaining an injection H(f): H(L)→N from an injection f : L→N.

To define an injection LH →N, take a symbol s of LH and let n ∈ N be least
such that s is in the nth Henkinisation Hn(L) of L. Then we define g(s) =
p(n, Hn(s)), the number for the pair consisting of n and the number for the
symbol s in Hn(s).

Definition 11.10 An L-structure M is said to be countable if its domain or
underlying set is countable.

Theorem 11.11 (Completeness Theorem, countable version) Let Σ be a set
of sentences in a countable first-order language L, and suppose that Σ � � ⊥.
Then there is a countable model of Σ.

Proof Just repeat the previous proof of the Completeness Theorem, noting
that the structure obtained has domain which is a quotient of the set of closed

11.1 Countable models and beyond 165

terms of the Henkinised language, so is countable by Proposition 11.9 and
Proposition 11.4.

This new version of the Completeness Theorem is quite striking too. For ex-
ample, consider the structure R consisting of the real numbers together with
the constants 0, 1, the functions +, ×, −, and the relation <. The correspond-
ing first-order language L is countable. Now let Σ be the set of all L-sentences
true in R. By the Soundness Theorem Σ � �⊥, so by the countable form of the
Completeness Theorem Σ has a countable model. This cannot be R itself, as R

is uncountable.
Even more disconcertingly, it is possible to express all our axioms of set the-

ory, the Zermelo–Fränkel theory of sets, in a countable first-order language. In
Zermelo–Fränkel set theory it is possible to discuss and prove all of our re-
sults on countability and uncountability – including the uncountability of R.
It follows that there is a countable model M of set theory, with its own count-
able version of R, that makes the statement ‘R is uncountable’ true. This
paradox is known as ‘Skolem’s paradox’. It is resolved by observing that the
notions of ‘countable’ in our M and in the real world are actually rather dif-
ferent. Rather than concluding that we cannot in fact talk about countable and
uncountable sets in any coherent way, it is perhaps better to conclude that a
countable first-order language is not actually expressive enough to capture our
notion of countability in the real world correctly.

We now turn to other infinite sets, such as the set of real numbers, which
was shown to be uncountable by Cantor (see Exercise 2.28). We will need
some results on the sizes of these sets analogous to our results on countable
sets, and as these results are really ‘set theory’ rather than ‘logic’ we shall not
prove them here. They can all be proved from Zorn’s Lemma, and proofs are
given in an optional section in this chapter. The size of a set will be called
its cardinality, and we will need to compare cardinalities, saying when two
cardinalities are equal, or when one is larger than the other. The next two
definitions explain this.

Definition 11.12 Two sets A and B have the same cardinality if there is a
bijection f : A→B.

Definition 11.13 Let A and B be sets. We write cardA � cardB to mean there
is an injection f : A→B. We write cardA < cardB to mean there is an injection
f : A→B but no bijection g: A→B.

A very special case of this is that of 0, the cardinality of the empty set: this

166 Model theory

is less than or equal to all other cardinalities, since there is always an injection
from ∅ to any other set, the empty function, as discussed earlier.

Remark 11.14 Definitions 11.12 and 11.13 beg a difficult question: what
mathematical object is the cardinality of a set? In fact nothing later on will
require a specific answer to this question, so unless you are curious, this re-
mark can be safely skipped. But there are perfectly reasonable definitions of
‘cardinal’. One attempt goes as follows. As the relation of ‘having the same
cardinality’ is an equivalence relation on the class of all sets, the cardinality
cardA of a set A should be the equivalence class of A under this relation. That
will be good enough for us here, but it is not quite right since – as it happens –
this equivalence class is not a set in the official sense of Zermelo–Fränkel set
theory. A technical variation of this definition (known as Scott’s trick) does
succeed in defining a set cardA representing the cardinality of A as the equiva-
lence class of all sets in a specially chosen sub-universe of sets containing sets
of the same cardinality as A. With the Axiom of Choice there are several more
attractive alternative definitions of cardA, including defining it to be the least
ordinal in one-to-one correspondence with A, so the problem can be resolved,
though not without going somewhat beyond the scope of this book.

Definition 11.15 For a finite set A with n elements we let cardA = n and,
following the notation first given by Cantor, if A is a countably infinite set we
write ℵ0 for the cardinality cardA, where ℵ is the first Hebrew letter ‘aleph’.

The next three propositions explore the � relation further; they do not seem
very surprising, but should not be belittled. None of these propositions is ob-
vious or straightforward to prove. Proofs appear later in the optional section.

Proposition 11.16 Suppose there is a surjection f : A→ B. Then cardB �
cardA, i.e. there is an injection g: B→A.

Proposition 11.17 (Schröder–Bernstein Theorem) Let A and B be sets and
suppose that cardA � cardB and cardB � cardA; then cardA = cardB. In
other words if there are injections A→B and B→A then there is a bijection
A→B.

Proposition 11.18 (Trichotomy Theorem) Let A and B be sets. Then exactly
one of the following is true: cardA < cardB; cardA = cardB; or cardB <

cardA.

There are results analogous to earlier propositions on countable sets for ar-

11.1 Countable models and beyond 167

bitrary cardinalities. For example, if A ⊆ B then cardA � cardB since the
map a �→ a is an injection A→B. If ∼ is an equivalence relation on A then
card(A/∼) � cardA as the map a �→ a/∼ is a surjection A→A/∼ and we
may apply Proposition 11.16 to obtain an injection A/∼→A. Here is another
application of the above results.

Proposition 11.19 Let A be infinite. Then ℵ0 � cardA, i.e. there is an injection
N→A.

Proof By trichotomy, if the conclusion is false then cardN > cardA. This
would mean that there is an injection f : A→N but no bijection between A
and N. This is impossible since A is infinite, so the image im f ⊆ N is also
infinite and any infinite subset of N is in one-to-one correspondence with the
whole of N, by Proposition 11.5, which would mean A is also in one-to-one
correspondence with N.

We are interested in uncountable versions of the Completeness Theorem. For
that we need to compute the number of symbols in the complete Henkinisation
LH of an uncountable language L. To do this we will need to add and multiply
infinite cardinalities.

Definition 11.20 Let A, B be sets, and κ = cardA, λ = cardB. Then

(i) κ +λ is the cardinality of the set (A×{0})∪ (B×{1}),
(ii) κλ is the cardinality of the set A×B.

Proposition 11.21 The cardinal arithmetic operations of addition and multi-
plication are well defined. That is, they do not depend on the choice of sets
A, B.

Proof Suppose cardA = cardA′ and cardB = cardB′, so there are bijections
f : A→A′ and g: B→B′. Then

h: (A×{0})∪ (B×{1})→ (A′ ×{0})∪ (B′ ×{1})
defined by

h(a, 0) = (f (a), 0) ∈ A′ ×{0} and h(b, 1) = (g(b), 1) ∈ B′ ×{1}
for a ∈ A and b ∈ B, is a bijection, since f , g are. (Exercise: verify this.) Also,

k: A×B→A′ ×B′

168 Model theory

defined by

k(a, b) = (f (a), g(b)) ∈ A′ ×B′

is also a bijection. Thus card(A×{0}∪B×{1}) = card(A′ ×{0}∪B′ ×{1})
and card(A×B) = card(A′ ×B′).

Other natural properties of cardinal arithmetic such as associativity, commuta-
tivity and distributivity also work as you might expect. For infinite cardinali-
ties, these operations are quite straightforward, and the next proposition is our
key result for calculating the cardinality of LH . Again, it is not at all easy, and
a proof from Zorn’s Lemma will be found in an optional section later on.

Theorem 11.22 (Cardinal Arithmetic) Let A, B be infinite sets, and κ =
cardA, λ = cardB. Then κ +λ = κλ = max{κ, λ}.

With all these preliminaries out of the way, we can get back to logic. Since
proofs are finite objects, there is never any need for more than countably many
variable symbols in a first-order language, so from now on we shall assume all
of our first-order languages have countably many variables.

Definition 11.23 Let L be a first-order language. Then the cardinality cardL
of L is the cardinality of the set of symbols in L. In other words, using Theo-
rem 11.22, cardL is the maximum of: (a) ℵ0; (b) the cardinality of the set of
constant symbols of L; (c) the cardinality of the set of relation symbols of L;
(d) the cardinality of the set of function symbols of L.

Proposition 11.24 Let L be a first-order language. Then the cardinality of the
set of strings of symbols from L equals cardL

Proof This is similar to the countable case, but using the proposition on cardi-
nal arithmetic instead of a directly constructed pairing function.

Let S be the set of symbols from L, so cardS = κ is infinite. By cardinal
arithmetic (Theorem 11.22) there is a bijection p: S×S→S. We extend this to
pk: Sk →S by p1(s) = s and

pk+1(n1, n2, . . ., nk, nk+1) = p(pk(n1, n2, . . ., nk), nk+1).

Also, as S is infinite, there is an injection q: N→ S, by Proposition 11.19. So
we may define g from strings of symbols of L to S by

g(σ1σ2. . .σk) = p(q(k), pk(σ1, σ2, . . ., σk))

and this is readily seen to be an injection.

11.1 Countable models and beyond 169

Proposition 11.25 Let L be a first-order language. Then the cardinality of the
complete Henkinisation LH of L is the same as that of L; the cardinality of the
set of closed terms of LH is also equal to cardL.

Proof This proof is almost identical to the countable case, Proposition 11.9.
Let κ = cardL. It suffices to show that there are κ many symbols in LH .

Now there are κ many strings of the form φ(x) from L, and so the first
Henkinisation H(L) consists of a disjoint union of L with a set of constant
symbols

{
εφ(x) : φ(x) from L

}
of cardinality κ . So cardH(L) = κ +κ = κ by

cardinal arithmetic, and this gives a bijection h1: H(L)→L from the symbols
of H(L) to the symbols of L. Similarly we can choose for each k ∈N a bijection
hk: Hk(L)→L from the symbols of the kth Henkinisation of L to the symbols
of L. We also have, by Proposition 11.19 and cardinal arithmetic, an injection
p: N×L→L.

Now, to define an injection LH → L, take a symbol s of LH and let k ∈ N

be least such that s is in the kth Henkinisation Hk(L) of L. Then define a map
g(s) = p(k, hk(s)) taking the symbol s to a symbol in L ‘encoding’ the pair
consisting of k and the symbol s. This is readily seen to be an injection.

Definition 11.26 The cardinality of an L-structure is the cardinality of its
underlying set, i.e. the cardinality of the non-empty domain of elements of the
structure.

Theorem 11.27 (Completeness Theorem, arbitrary cardinalities) Let Σ be
a set of sentences in a first-order language L, and suppose that Σ � �⊥. Then
there is a model of Σ of cardinality at most cardL.

Proof Just repeat the previous roof, noting that the domain of the structure it
gives is a quotient of the set of closed terms of the Henkinised language, and
therefore has cardinality at most this.

It does not take very much work to modify this result to obtain models of all
possible infinite cardinalities. All we need is an additional assumption that
our set Σ has some infinite model. More specifically, we use the following
theorem.

Theorem 11.28 Let Σ be a consistent set of sentences in a first-order language
L, let κ � cardL, and suppose that Σ has at least one infinite model. Then Σ
has an infinite model of cardinality κ .

170 Model theory

Proof Let Cκ be a set of constants of cardinality κ and let L+ be the language
L with these constant symbols added. Then cardL+ is exactly κ , by cardinal
arithmetic. Also, let Tκ be the set of all statements ¬c = d for c �= d ∈ Cκ .
Observe that Tκ ∪Σ is consistent. This is because in any infinite model M of Σ,
any finite subset of constants from Cκ can be interpreted in M in a way making
them all different.

It follows by the Completeness Theorem that there is a model Mκ � Tκ ∪Σ
of cardinality at most κ . That is, there is an injection M →C, where C is our
set of new constants which has cardinality κ . But by the statements Tκ , the
map c �→ [c] taking the constant symbol c ∈ C to the element of M realising
it, i.e. to the equivalence class of c, is also an injection C→M. It follows by
the Schröder–Bernstein Theorem that there is a bijection C →M and hence
cardM = cardC. By discarding the additional constants in Cκ we obtain an
L-structure of cardinality κ making Σ true.

At last, we can do some model theory and give an application of these ideas
to mathematical theories formalised in first-order languages. First, we need a
definition.

Definition 11.29 Let L be a first-order language and Σ be a set of L-sentences.
We say that Σ is complete (for L) if whenever σ is an L-sentence we have either
Σ�σ or Σ�¬σ .

This should not be confused with the Completeness Theorem. The Com-
pleteness Theorem says that our logic is complete, i.e. can prove all valid as-
sertions. Think of Σ as a mathematical theory, such as a theory of groups,
formalised in a first-order language L using first-order logic. Then Σ is com-
plete if it can decide all mathematical statements that can be expressed in L, for
example our theory of groups is complete if it decides all first-order statements
about groups.

Example 11.30 Let L be the first-order language with the usual logical sym-
bols, including =, but with no additional logical symbols. Let σn be an L-
sentence expressing the fact that there are at least n elements (see Exercise
10.7). Let Σ = {σn : n ∈ N}. Then it turns out that Σ is complete, i.e. for every
σ in L either Σ�σ or Σ�¬σ . (We will prove this in a moment.) On the other
hand, no finite subset Σ0 of Σ is complete since, given Σ0 there is always some
n ∈ N such that Σ0 � �σn and Σ0 � �¬σn as we may take models of any particular
finite cardinality above some minimum cardinality determined by Σ0.

Complete sets Σ are of interest for many reasons, not least in the study of the

11.1 Countable models and beyond 171

foundations of mathematics, where complete sets provide examples of math-
ematical theories where all mathematical statements (in the appropriate lan-
guage) can be determined true or false by a formal proof. It was a sort of
Holy Grail of logic in the early twentieth century to find a proof system for
the whole of mathematics, or a large part of it such as number theory or set
theory, that was complete for its language. Such a system would, in principle,
put mathematicians out of work, to be replaced by a computer churning out
theorems in the system. That this Grail is in fact unattainable was eventually
proved by Gödel in 1931. However, in looking for such theories a number of
people, such as Tarski and Hilbert, found interesting first-order systems that
were complete for their (limited) languages.

In a way exactly analogous to isomorphisms in traditional algebraic con-
texts, we say that two models M, N for the same language L are isomorphic if
there is a bijection from M to N that preserves the L-structure on M, N. Such
isomorphisms necessarily preserve the truth of L-sentences. (A formal proof
of this fact is an induction on the number of symbols in a formula, and is left
as an exercise for the pedantic reader.) We now use this idea to give another
important model theoretic notion.

Definition 11.31 Let L be a first-order language, Σ be a set of L-sentences,
and κ an infinite cardinal. We say Σ is κ-categorical if all models of Σ of
cardinality κ are isomorphic to each other.

Theorem 11.32 Let L be a first-order language, and Σ be a set of L-sentences.
Suppose Σ is κ-categorical for some infinite cardinal κ � cardL and Σ has no
finite models. Then Σ is complete.

Proof If Σ is not complete there is an L-sentence such that both Σ1 = Σ∪{σ}
and Σ2 = Σ∪{¬σ} are consistent. Since Σ has no finite models, by Theorem
11.28 there are models M1 �Σ1 and M2 �Σ2 of cardinality κ . But these models
cannot be isomorphic since they do not agree about the truth of the sentence
σ , so Σ is not κ-categorical.

Example 11.33 The set Σ of Example 11.30 is complete, as any two countably
infinite models for the language with no non-logical symbols are necessarily
isomorphic, and Σ has no finite models.

Theorem 11.32 gives interesting information in the following example.

Example 11.34 Let F be a field, such as R, and consider infinite vector spaces

172 Model theory

over F . We will present a first-order language LF for such vector spaces. LF

has binary function + for addition of vectors, unary function − for additive
inverses, and a constant symbol 0 for the zero vector. It also has, for each
λ ∈ F , a unary function sλ for scalar multiplication by λ . It is possible to
write down a set ΣF of first-order axioms for F-vector spaces in this language
(Exercise 11.37). Note that our language works for a fixed F only, and there
are no symbols for addition or multiplication in F .

Then ΣF is complete, since there are models of ΣF of every infinite cardinal-
ity κ � cardF , and any two vector spaces of cardinality κ > cardF have bases
of cardinality κ and hence are isomorphic. See also Exercises 2.32, 2.33, and
11.38.

This example is rather good in that it gives the flavour of the subject from
this point. There is a huge amount of extra information to be gleaned from the
algebraic arguments on vector spaces and the logical information on the theory
of F-vector spaces. It is possible to classify, for example, all the possible
formulas in our language of F-vector spaces, what they say and what they can
define.

The example of F-vector spaces is typical in one other important regard, in
that it is categorical for all cardinalities greater than the cardinality of the lan-
guage. A remarkable theorem due to Morley shows that this is generally true
for theories categorical in some cardinality greater than that of their language.

Theorem 11.35 (Morley) Let T be a set of sentences in a language L and
suppose that T has no finite models. Suppose further that T is κ-categorical
for some cardinality κ > cardL. Then T is κ-categorical for all cardinalities
κ > cardL.

A proof of Morley’s Theorem is well beyond the scope of this book. One
proof goes by trying to associate a notion of dimension to a model of T . Then
by some subtle generalisation of the argument for vector spaces a model of T
is determined exactly by its dimension, which for cardinalities greater than that
of the language can only be the same as the cardinality of the whole model.

Model theory says a lot about theories of dimension for rather general L-
structures. In particular, a set of sentences Σ in a countable language which is
κ-categorical for all uncountable κ will have the property of being ω-stable,
and ω-stable structures have an elegant independence and dimension theory
that generalise the idea of independence in a vector space. More generally,
there is a slightly weaker notion of a stable structure which includes ω-stable
structures as a special case, and stable structures also have an elegant (but not
in general quite so well behaved) notion of independence. For example, the

11.2 Examples and exercises 173

first-order theory of modules over a ring R is a stable theory with a nice notion
of independence, that generalises and includes the idea of independence in a
vector space over a field as a special case. Stability theory is a large branch of
model theory that tries to analyse and classify algebraic theories of groups,
rings, fields, modules, according to their properties concerning the model-
theoretic notion of stability and these corresponding independence properties,
and say something useful about these theories, such as what sets are definable
by first-order formulas in the language.

For further information on model theory the reader should consult a more
advanced text, such as the one by Marker [9].

11.2 Examples and exercises

Exercise 11.36 (a) Let A be a set of circular discs in the plane, no two of which
intersect. Show that A is countable.

(b) Let B be a set of circles in the plane, no two of which intersect. Show
that B may be uncountable.

(c) Let C be a set of figures-of-eight in the plane, no two of which intersect.
Can C be uncountable?

Exercise 11.37 Write down the axioms for infinite F-vector spaces in the
language LF of Example 11.34. (Note that, to ensure the models of this theory
are all infinite, it may be necessary to add the statements σn of Example 11.30.)

Exercise 11.38 Suppose V is an F-vector space of cardinality κ > cardF . Let
B be a basis of V . Show that cardB = κ . What can happen when κ = cardF?

Definition 11.39 The theory DLO (for Dense Linear Orders) has single binary
relation < and axioms

• ∀x∀y∀z (x < y∧ y < z→ x < z)
• ∀x¬(x < x)
• ∀x∀y (x < y∨ x = y∨ y < x)
• ∀x∃y∃z (x < y∧ z < x)
• ∀x∀y (x < y→∃z (x < z∧ z < y))

For example, the structures (Q, <) and (R, <) both satisfy DLO.

Exercise 11.40 Prove that DLO is ℵ0-categorical.
(Hint: prove that a countable model (A, <)�DLO is isomorphic to (Q, <)

174 Model theory

by building an isomorphism A→Q inductively. At any stage in the construc-
tion we have n distinct elements a1, a2, . . ., an of A and n distinct elements
q1, q2, . . ., qn of Q. Inductively assume ai < a j if and only if qi < q j for all
i, j, i.e. the ai can be ordered as ai1 < ai2 < .. . < ain with the qi ordered by the
same indices, qi1 < qi2 < .. . < qin . Show how the DLO axioms allow, given
some new an+1 from A, a new element qn+1 to be added to the qi list with the
induction hypothesis preserved, and that, given some new qn+2 from Q, a new
element an+2 to be added to the ai list with the induction hypothesis preserved.
(These two steps are traditionally called ‘back-and-forth’.) Explain also how
the countability of A and Q, and hence enumerations of each, allow this induc-
tive back-and-forth construction to build an isomorphism between (A, <) and
(Q, <).)

Exercise 11.41 Explain why the previous exercise shows that DLO is complete
for its language.

Exercise 11.42 Find sets of sentences Ta, Tb, Tc, Td in countable languages
La, Lb, Lc, Ld such that none of Ta, Tb, Tc, Td has any finite models, and

• Ta is κ-categorical for all infinite κ ,
• Tb is κ-categorical for all infinite κ > ℵ0 but is not ℵ0-categorical,
• Tc is ℵ0-categorical but is not κ-categorical for any κ > ℵ0,
• Td is not κ-categorical for any infinite κ .

(Hint: for Tc consider the theory DLO. Why is it not κ-categorical for κ > ℵ0?)

A formula of the language of DLO can always be rewritten without the ¬
sign. For example, ¬x = y is equivalent in DLO to x < y∨ y < x and ¬(x < y)
is equivalent in DLO to x = y∨ y < x. We shall see soon that the quantifiers ∀
and ∃ can also be eliminated.

Definition 11.43 A formula is said to be quantifier free if it contains neither ∀
nor ∃.

Exercise 11.44 Using induction on the number of connectives of θ , prove that
any quantifier free formula θ which only uses connectives ∨ and ∧ is logically
equivalent to a formula of the form

∨k

r=1

∧lr
s=1

φr, s

where each φr, s is atomic, i.e. is an equation t1 = t2 or is R(t1, t2, . . ., tn) for
some relation symbol R.

11.2 Examples and exercises 175

A number of theories have the property that all formulas are equivalent in
them to a quantifier free formula. The process showing this is called elimi-
nation of quantifiers. When a theory has elimination of quantifiers we usually
have a nice description of sets that are definable in models of the theory. Quan-
tifiers are not eliminated from the discussion completely: they are still needed
in the axioms of the theory, for example. Also, from the point of view of de-
scribing the set defined by a formula, adding an existential quantifier ∃xn . . .

to a formula φ(x1, . . ., xn−1, xn) corresponds to a projection of the set onto the
first n − 1 coordinates. Elimination of quantifiers shows that the quantifier
free definable sets are closed under projection functions, and this is often very
powerful.

We will illustrate this with the theory DLO. The following lemma contains
the main step in the elimination of quantifiers for DLO.

Proposition 11.45 Suppose a formula θ(x1, . . ., xk) of the language of DLO is
of the form

∃y
∧k

n=1
φn(y, x1, . . ., xk)

where each φn is either ‘xi < y’, ‘y < xi’, ‘y = xi’, ‘xi = x j’, or ‘xi < x j’, for
some i, j. Then θ is equivalent (in the theory DLO) to a formula which is
quantifier free.

Proof If some φn is ‘y = xi’ then we may replace y throughout with xi and
remove the quantifier. So assume that the φn involving y are all of the form
‘xi < y’, or ‘y < xi’, and let L be the set of indices of lower bounds,

L = {i : some φn is xi < y} ,

and U be the set of indices of upper bounds,

U = {i : some φn is y < xi} .

Also, let A = {n : φn does not involve y}. The more interesting case is when L
and U are both non-empty, and in this case we try to rewrite θ as∧

n∈A
φn ∧

∧
i∈L

∧
j∈U

xi < x j.

I have to explain why this statement is equivalent to θ .
The easiest way to do this is to think about a specific model of DLO with

specific elements x1, . . ., xk in our model and argue that for these the equiva-
lence of θ and the statement above holds. Then by the Completeness Theo-
rem and by the fact our model and elements x1, . . ., xk were arbitrary we have
that the equivalence is provable in DLO. But there are finitely many elements

176 Model theory

x1, . . ., xk in our list, so from {xi : i ∈ L} there is a maximum element (as the
order is linear), and from {xi : i ∈U} there is a minimum element. The state-
ment

∧
i∈L

∧
j∈U xi < x j says that max{xi : i ∈ L} is less than min{xi : i ∈U}.

So by an axiom of DLO there is some y between these. Therefore, if all the
φn not involving y are also true, we deduce that θ(x1, . . ., xn) is true, and this
shows one direction of the equivalence of the formula above with θ . The other
direction is easier since if there is y such that xi < y for all i ∈ L and y < x j for
all i ∈U then xi < x j for all i ∈ L, j ∈U by transitivity.

In the cases when U or L is empty, we claim that θ is equivalent in DLO to∧
n∈Aφn, and use another axiom of DLO (the one that states there is no least or

greatest element) to find a y such that y is greater than all xi for i ∈ L (in the
case when U = ∅) or to find a y such that y is less than all x j for j ∈U (in the
case when L = ∅).

Exercise 11.46 Using induction on the number of quantifiers in a statement θ ,
and also Exercise 11.44 and Proposition 11.45, show that every formula θ in
the language of DLO is equivalent in DLO to a quantifier free formula in the
same language with the same free variables.

(Hint: treat the universal quantifier ∀y . . . by converting it to an existential
one ¬∃y¬)

Definition 11.47 A subset A of a model M is definable if there is a formula
θ(x, y1, . . ., yk) of the language of M and parameters a1, . . ., ak ∈ M such that

A = {b ∈ M : M �θ(b, a1, . . ., ak)} .

Exercise 11.48 Show that every definable set in a model of DLO can be
described as a disjoint union of singleton sets {a} and intervals of the form
(a, b) = {x : a < x∧ x < b} or (a, ∞) = {x : a < x} or (−∞, b) = {x : x < b}.

11.3 Cardinal arithmetic*

The object of this section is to provide the proofs of the various results on car-
dinal arithmetic that were needed above. With the exception of the Schröder–
Bernstein Theorem, they all require Zorn’s Lemma in some form or other. All
of the results here are ‘set theory’ rather than logic and although the results are
important for more advanced model theory they may be taken on trust.

We will start by giving Tarski’s proof of the Schröder–Bernstein Theorem.
The idea is that, given sets A and B and injections f : A→B and g: B→A we
would like to partition A = A0 ∪A1 and B = B0 ∪B1 so that f : A0 →B0 and

11.3 Cardinal arithmetic* 177

g: B1→A1 are onto, for then we could define h: A→B as h(a) = f (a) if a ∈ A0

and h(a) = g−1(a) if a ∈ A1. To get this to work we need to find A0, and
you should note that A0 would have to satisfy A0 = A \ g(B \ f (A0)). The
following lemma is designed to provide us with such a set A0.

Lemma 11.49 (Tarski’s Fixed Point Lemma) Let A be any set and let k be
an order preserving map k: P(K)→P(K) defined on the power set P(K) =
{U :U ⊆ K} of U, where ‘order preserving’ means that if X ⊆ Y ⊆ A then
k(X) ⊆ k(Y). Then there is some A0 ⊆ A such that k(A0) = A0.

Proof The idea is to define A0 to be the ‘limit’ (or more precisely, the union) of
all sets X ⊆ A which are too small in the sense that X ⊆ k(X). More precisely,
let A0 =

⋃
T where T = {X ⊆ A : X ⊆ k(X)}.

Then if X ∈ T then X ⊆A0 so X ⊆ k(X)⊆ k(A0). This shows that A0 ⊆ k(A0)
since each x ∈ A0 is in some X ∈ T . Also, as k is order preserving and A0 ⊆
k(A0) we have k(A0) ⊆ k(k(A0)) so k(A0) ∈ T , showing that k(A0) ⊆ A0.

Proof of the Schröder–Bernstein Theorem Given sets A and B and injections
f : A→B and g: B→A, define a map from k: P(A)→P(A) by

k(X) = A \ g(B \ f (X)),

and verify that it is order preserving. By Tarski’s Lemma there is a fixed point
A0 ⊆ A. Given this we may define A1 = A \ A0 and h: A→B as h(a) = f (a) if
a ∈ A0 and h(a) = g−1(a) if a ∈ A1. It is straightforward now to check that h
is a bijection from A to B.

The next result shows that in almost all cases we could have defined the ‘less
than’ operation on cardinals in terms of surjections rather than injections. (The
case that would not work is that of the empty set.) Despite its apparent sim-
plicity the Axiom of Choice or Zorn’s Lemma is necessary here.

Proposition 11.50 Suppose f : A→B is a surjection. Then cardB � cardA,
i.e. there is an injection g: B→A.

Proof Let S be the set of all injections g: U →A such that U ⊆ B and f (g(b)) =
b for all b ∈U . Order S by the idea of extending functions, i.e. say that g � h
if and only if domg ⊆ domh and g(x) = h(x) for all x ∈ domg. Then the
empty function is in S and S has the Zorn property as all functions in a chain
of elements of S are ‘compatible’ so the union of this chain is also an injection
from some subset of B to A satisfying the required condition.

178 Model theory

By Zorn’s Lemma there is a maximal injection g: U →A such that f (g(b)) =
b and we may check that U = B. For if not then there is b ∈ B \U and b = f (a)
for some a ∈ A as f is surjective. Then we may define h(x) = x if x ∈ U and
h(b) = a. This would be an extension of g in S, but g is maximal so there can
be no such extension. Therefore U = B as required.

If X is a non-empty set and ∼ an equivalence relation on X then there is always
a surjection X→X/∼ given by x �→ [x], so a quotient by an equivalence relation
always has the same or smaller cardinality than the original set.

The Trichotomy Theorem is a direct consequence of the following applica-
tion of Zorn’s Lemma.

Proposition 11.51 Let X , Y be sets. Then either there is an injection X →Y ,
or there is an injection Y →X.

Proof Let S be the set of all bijections U →V where U ⊆ X and V ⊆ Y . S is
non-empty because it contains the empty function ∅→∅. Order S by the idea
of extending functions, i.e. say that f � g if and only if dom f ⊆ domg and
f (x) = g(x) for all x ∈ dom f . Our set S has the Zorn property as all functions
in a chain of elements of S are ‘compatible’ so the union of this chain is also
a bijection from the union of the domains of the functions in the chain, to the
union of their images.

By Zorn’s Lemma there is a maximal bijection f : U →V where U ⊆ X and
V ⊆ Y . Since this function is maximal and cannot be extended further, there
are two possibilities: either U = X in which case f is an injection X →Y ; or
V = Y , in which case f−1 is an injection Y →X .

We now prove some results in cardinal arithmetic, starting with the more
straightforward results and using these to prove more powerful results. We
shall use Zorn’s Lemma throughout; indeed all the remaining results in this
section need Zorn’s Lemma or the Axiom of Choice for their proof, including
the proposition which says that the cardinality of the set of natural numbers is
the least infinite cardinal. This is not quite as trivial as it may seem.

Proposition 11.52 Let X be an infinite set, i.e. suppose that for no n ∈ N is
there a bijection f : X →{1, 2, . . ., n}. Then cardX � cardN, i.e. there is an
injection N→X.

Proof Let S be the set of finite sequences

(x0, x1, . . ., xn−1)

11.3 Cardinal arithmetic* 179

of elements of X with xi �= x j for all i �= j. We give S a partial order by defining

(x0, x1, . . ., xn−1) � (y0, y1, . . ., ym−1)

to hold if and only if n−1 � m−1 and xi = yi for all i < n. In other words S
is ordered by the ‘initial segment of’ relation.

Our set S has no maximal element. This is because if (x0, x1, . . ., xn−1) is
maximal then X = {x0, x1, . . ., xn−1} (otherwise we could extend the sequence
by at least one place), but this would contradict the assumption that X is not
finite. Therefore S fails to have the Zorn property. In other words there is a
chain C ⊆ S with no upper bound in S. Since C is a chain, of any two sequences
in C, one will always be an initial segment of the other, and since C has no
upper bound in S it contains elements of arbitrarily large finite length. Thus the
map n �→ xn where (x0, x1, . . ., xk−1) ∈C with k > n defines an injection N→
X .

A variation of this says essentially that κ + n = κ for each infinite cardinal κ
and each finite number n.

Proposition 11.53 Let X be an infinite set and x0, . . ., xn−1 ∈ X. Then there is
a bijection X →X \ {x0, . . ., xn−1}.

Proof Assume without loss of generality that the x0, . . ., xn−1 are all distinct.
As in the proof of the last proposition, find an infinite sequence

(x0, x1, . . ., xn−1, xn, . . .)

of distinct elements of X by defining S to be the set of finite sequences of
distinct elements of X starting with x0, x1, . . ., xn−1. Then define f : xi �→ xi+n

for xi in this sequence and f : x �→ x for all other x ∈ X . This is the required
bijection.

Proposition 11.54 Let X be an infinite set. Then there is a bijection f : X →
(X ×{0})∪ (X ×{1}).

Proof Suppose for the sake of obtaining a contradiction that there is no such
function f .

Let

S = { f : U → (U ×{0})∪ (U ×{1}) :U ⊆ X and f is a bijection} .

This is a poset where the order relation is the notion of one function extending
another, as before, and is non-empty (because S contains the empty function)

180 Model theory

and has the Zorn property (because the union of a chain of functions in S is a
function with the required properties). Therefore there is a maximal element
f : U → (U ×{0})∪ (U ×{1}) of S, with U ⊆ X . We must show that this
maximal f gives a bijection X → (X ×{0})∪ (X ×{1}).

If U is in one-to-one correspondence with X , i.e. there is a bijection g: X →
U , then we would have a bijection h: X → (X ×{0})∪ (X ×{1}) given by
h(x) = (r, 0) if f (g(x)) = (g(r), 0) and h(x) = (r, 1) if f (g(x)) = (g(r), 1).
(You can check the properties.) So X \ U must be infinite, for else if X \ U =
{x1, . . ., xn} then by the previous proposition there would be a bijection g: X =
U ∪{x1, . . ., xn}→U . Therefore there must be an injection N→X \ U , which
will be notated here i �→ xi, and using this we can extend our function f to g
defined by g(x) = f (x) for x ∈U , g(x) = (xi, 0) for x = x2i, and g(x) = (xi, 1)
for x = x2i+1. Thus f is not maximal after all.

Proposition 11.55 Let X be infinite. Then there is a bijection f : X →X ×X.

Proof This argument is similar in structure to the last, but uses that result to
obtain the contradiction to maximality. Suppose then for the sake of obtaining
a contradiction that there is no such function f .

Let

S = { f : U →U ×U :U ⊆ X and f is a bijection} .

This is made into a poset where the order relation is the notion of one function
extending another, and is non-empty and has the Zorn property for the same
reasons as before. Therefore there is a maximal element f : U →U ×U of S,
with U ⊆ X . We must show that this maximal f gives a bijection X →X ×X .

If U is in one-to-one correspondence with X , i.e. there is a bijection g: X →
U , then we would have a bijection h: X → X × X given by h(x) = (r, s) if
f (g(x)) = (g(r), g(s)). It follows that there can be no injection X \ U →U for
then there would be an injection X →U and hence by the Schröder–Bernstein
Theorem a bijection between X and U . To see this suppose g: X \U →U is an
injection; then considering X \ U via g as a subset of a second copy of U and
composing maps in the obvious way we have an injection X = U ∪ (X \ U)→
(U ×{0})∪ (U ×{1})→U by the previous proposition.

Since there is no injection X \ U →U , by trichotomy there is an injection
U → X \ U , and we let V be the image of this, so V ⊆ X \ U and V is in
one-to-one correspondence with U . Then by using the previous proposition
again twice together with the fact that there is a bijection U →U ×U we find
a bijection

g: V → (U ×V)∪ (V ×V)∪ (V ×U).

11.3 Cardinal arithmetic* 181

The union of f and g is a bijection U ∪V → (U ∪V)× (U ∪V) contradicting
the maximality of our f .

These last two propositions and the Schröder–Bernstein Theorem easily imply
the Theorem on Cardinal Arithmetic.

12

Nonstandard analysis

12.1 Infinitesimal numbers

The Completeness and Compactness Theorems for first-order logic are inter-
esting from the point of view of the foundations of mathematics, which is what
they were originally designed for, but they also provide a powerful logical
toolkit that can be applied to other areas of mathematics. One of the most
exciting applications of the Completeness and Compactness Theorems is the
discovery by Robinson that they may be used to make perfectly rigorous sense
of the idea of an infinitesimal number, and to use infinitesimals to present
the material of traditional analysis, including continuity and differentiability.
Robinson called his method ‘nonstandard analysis’, which to my mind is a
somewhat unfortunate name as there is nothing at all improper about his ap-
proach. Indeed, if historical circumstances had been different, nonstandard
analysis might even have been mainstream analysis. That it is not is possibly
due to the logical difficulties some mathematicians have in understanding how
the analysis is set up – difficulties we aim to set to rights in this chapter.

Throughout this chapter I shall spell the word ‘nonstandard’ without a hy-
phen, to emphasise that this word is being used in the technical sense of ‘per-
taining to infinite or infinitesimal numbers’, and not in the more common
everyday sense of ‘not standard’ – which will never be used and always spelled
‘non-standard’.

The nonstandard method involves using methods from logic to build an ex-
tended version of the real number line with infinitesimals (called the ‘hyperreal
number line’) and moving between the hyperreals and the usual reals. There
are several possible approaches to this, including axiomatic ways that make
the job of transferring information between the hyperreals and the reals almost
completely automatic. For workers in nonstandard analysis, these mechanical
methods of transfer are the quickest and preferred way. The approach here is

182

12.1 Infinitesimal numbers 183

somewhat slower than many, and has been chosen to emphasise the reasoning
behind it and, in particular, the use of the Compactness Theorem.

We shall discuss analysis on the reals. (Analysis on other sets can be done
in exactly the same way.) We start with a first-order structure for the reals
with its familiar constants, operations and relations: (R, 0, 1, +, ×, <). If we
like, we can add other relations and functions to this structure, such as a unary
(or binary) function symbol − for ‘subtraction’ and a unary function −1 for
reciprocal. (In the case of −1 we need to take care to define 0−1 since, accord-
ing to the official definition of a structure, all functions must be defined on all
elements of the domain. The choice of a value for 0−1 is entirely arbitrary;
0−1 = 0 seems to be the simplest one to take.) By the usual abuse of notation,
we will use the symbol R for both the set of reals and the structure with this
domain under consideration. (If this structure and its first-order language is
not clear from context it will be indicated in detail.) As the structure R is our
main interest, we shall say that a first-order sentence σ for which R�σ holds
is true, since it is true in the real world.

Our first goal is to build a system of ‘hyperreals’ that looks as similar to R as
possible but which contains infinitesimal numbers. We would like our hyper-
reals to contain the ordinary reals, and to achieve this we need to name all the
ordinary reals with constant symbols. We introduce a constant symbol cr for
each real number r ∈ R and insist that r represents cr itself in the structure R.
Thus we have expanded the language by adding infinitely many new symbols
and saying how they are all to be interpreted. From now on, R will denote
the corresponding structure in this expanded language. Actually, the use of the
letter c and subscript r becomes cumbersome very quickly and as the constant
symbol cr always denotes the real number r we will be safe in identifying these
two and using the same symbol r for each.

The set of true sentences in this expanded language{
σ : (R, 0, 1, . . ., r, . . ., +, ×, −, −1, <)�σ

}
will be denoted Th(R).

We still do not have any infinitesimals, and this is achieved by adding yet
another constant symbol, h. (I prefer to use the letter h for an infinitesimal as
it is the symbol usually used in numerical analysis for a small increment, and
this h and the small increment in numerical analysis play very similar roles, as
we shall see.) We need to say that h is positive and smaller than any normal
positive real, and this is now easy in the first-order language we have. Let

Σ = {0 < h}∪{h < r : r ∈ R, r > 0} .

This is a set of infinitely many sentences, one for each positive r ∈R. We want

184 Nonstandard analysis

to show that Th(R)∪Σ has a model, and to do this we use the Compactness
Theorem.

Let Σ0 ⊆ Σ be finite. Then there are finitely many sentences h < r in Σ0

and hence amongst these sentences there is one, h < r0, where r0 is minimum.
Clearly r0 > 0 (since otherwise h < r0 would not be in Σ), so we may temporar-
ily interpret h as r0/2. In so doing we make a new structure (R, . . ., h) for the
language of Σ∪Th(R) and as this h is positive and less than all r appearing in
Σ0, we have

(R, 0, 1, . . ., r, . . ., +, ×, −, −1, <, h)�Σ0 ∪Th(R).

This applies to any Σ0 ⊆ Σ, though the choice of the interpretation of h will
differ for different Σ0. Thus the conditions of the Compactness Theorem are
met, and the conclusion is that there is a new structure ∗R that makes all the
statements in Σ∪Th(R) true simultaneously. That is,

∗R = (∗R, 0, 1, . . ., r, . . ., +, ×, −, −1, <, h)�Σ∪Th(R)

where we identify the name of the structure with its underlying set, as usual.
The Compactness Theorem provided us with this new structure, but gives us

little extra information about it that we did not have already in the sentences
from Σ∪Th(R). The procedure to find out anything about ∗R is to write down
sentences from Th(R) and use the fact that they are also true in ∗R. For exam-
ple, if r, s are distinct real numbers then they represent distinct values of ∗R.
This is because the sentence ¬(r = s) is true in R and hence in ∗R. Therefore
we may safely continue to identify r with the value it represents in ∗R; in other
words we may regard ∗R as a superset of R. This embedding of R into ∗R
preserves all the structure in R, for if r + s = t is true, then this is a sentence in
Th(R) and hence is true in ∗R too. The same argument applies to all the other
function and relation symbols of the language. Thus R is a subfield of ∗R, and
we are justified in thinking of ∗R as an extension of the number line R that also
contains infinitesimals such as h.

The hyperreals, ∗R, contains many infinitesimals, such as

3h, 2h, h/2, h/3, h2, h3, . . .

To see that these are all different, it is necessary to write down true first-order
statements again. For example,

∀x (0 < x→¬(x = 2× x))

is true, hence true in ∗R, and shows that h �= 2h. As well as containing in-
finitesimal numbers, ∗R also contains infinite numbers such as h−1. That this

12.1 Infinitesimal numbers 185

is greater than all standard reals is because of the sentences

0 < r→0 < r−1

and

∀x (0 < x∧ x < r−1 → r < x−1)

which are both true for all positive r ∈ R. There are of course infinitely many
infinite numbers in ∗R for similar reasons, and near each standard real r ∈ R

there are hyperreals such as r + h and r− h which are ‘infinitesimally close’
to r.

To further develop our picture of ∗R and to draw some conclusions about
first-order logic, it may be helpful to consider the Archimedean Property of R.
The Archimedean Property for an ordered field F states that

• For all x ∈ F there is n∈N such that x < 1+1+ · · ·+1 where 1 appears
n times.

This is not true for our hyperreals, as infinite numbers such as h−1 are not
bounded above by natural numbers. Thus there is no statement in Th(R) which
is equivalent in both R and ∗R to the Archimedean Property, because if there
were, it would be true, hence hold in ∗R and ∗R would be Archimedean. Put
another way: the Archimedean Property is not first-order. If we examine the
statement above we see the cause of the problem. The expression ‘there is a
natural number n such that . . . ’ cannot be rewritten using quantifiers ∀x . . . and
∃y . . . where the variables range over elements of the field in question.

A similar problem occurs for another familiar property of the reals, that for
every bounded subset there is a least upper bound. R itself is a bounded subset
of ∗R (bounded above and below by h−1 and −h−1) but has no least upper
bound, since if x ∈ ∗R is infinite then x− 1 ∈ ∗R would also be infinite (ex-
ercise). This property of R (confusingly for us also called completeness of,
though it has nothing to do with the Completeness Theorem of logic) is there-
fore also not first-order. Once again, the offending phrase is a quantification
over objects that are not elements of the field, in this case ‘for every bounded
subset . . . ’.

To see how the hyperreals can be used to define derivatives, etc., consider
the function f : x �→ x2. Suppose x ∈ R and h is an infinitesimal (any positive
or negative infinitesimal, not necessarily our original h). Then we have

f (x+h)− f (x)
h

=
(x+h)× (x+h)− x× x

h
=

2xh+h2

h
= 2x+h.

This is because these facts are all represented by true first-order statements

186 Nonstandard analysis

starting ∀x∀h (h �= 0→ . . .) hence true in ∗R. Thus (f (x + h)− f (x))/h is 2x
plus an infinitesimal, and this should be used to conclude that the derivative of
f (x) is 2x.

To make this precise we need a way of ‘disregarding an infinitesimal’ like h
in 2x+h.

Definition 12.1 A hyperreal x ∈ ∗R is finite if it is bounded above and below
by standard reals. That is, x is finite if there are r, s ∈ R such that s < x < r.
The set of finite hyperreals is denoted ∗Rfin.

If x ∈ ∗R is finite, then the set {r ∈ R : r < x} is non-empty and bounded
above. Sets of reals A like this which are non-empty and bounded above have
a least upper bound or supremum denoted supA.

Definition 12.2 If x ∈ ∗R is finite, we define its standard part, st(x) by

st(x) = sup{r ∈ R : r < x} .

Thus the standard part operation is a map st : ∗Rfin →R, taking finite hy-
perreals to the standard reals. For any r ∈ R and any (positive or negative) in-
finitesimal h, we have st(r +h) = r, since st(x) = sup{s ∈ R : s < r +h} which
is sup{s ∈ R : s � r} = r if h > 0 and sup{s ∈ R : s < r} = r if h � 0. Since
there are many infinitesimals, this means that many hyperreals get sent to the
same standard part.

Using this idea we can say the derivative of a function like f (x) = x2 should
be 2x since

st((f (x+h)− f (x))/h) = 2x

for all x ∈ R and all infinitesimals h �= 0.

12.2 Examples and exercises

Exercise 12.3 Prove that for any r ∈R and any (positive or negative) infinites-
imal h, we have st(r +h) = r.

Exercise 12.4 Let h be infinitesimal. Prove that st 1
1+h = 1.

Exercise 12.5 Explain why the relation < in ∗R is a linear order.

12.3 Overspill and applications* 187

Exercise 12.6 Show that there is no first-order formula θ(x) such that, for all
a ∈ ∗R,

∗R�θ(a) if and only if a is infinitesimal.

(Hint: assuming such a formula exists, write down a sentence of Th(R) that
shows R�∃x θ(x) and deduce that some r �= 0 in R satisfies θ(r) in ∗R.)

Exercise 12.7 Prove in detail the assertion made above that if h ∈ ∗R is in-
finitesimal and positive and r ∈ R is positive then r× h ∈ ∗R is infinitesimal
and, for r, s ∈ R, r×h = s×h implies r = s.

Exercise 12.8 Let h ∈ ∗R be a positive infinitesimal. Show that h−1 > n for
all n ∈ N.

Exercise 12.9 Show that the standard part map st : ∗Rfin →R preserves +, ×
and �. That is, if x, y, z∈ ∗Rfin we have: x+y = z implies st(x)+st(y) = st(z);
x×y = z implies st(x)×st(y) = st(z); and x � y implies st(x) � st(y). Explain
why similar statements for the strict order < and reciprocal −1 fail.

12.3 Overspill and applications*

We are now going to develop the ideas presented in the previous section and
apply them to give some applications for real analysis. The discussion above
was comparatively simple – simplistic perhaps – and our first task is to extend
the ideas to more difficult problems than differentiating functions like x2.

Our discussion in the last section relied on x2 being definable in the lan-
guage. In fact, the language we took for the reals was rather limited and very
few functions we might be interested in are definable there. The solution is to
start from a richer structure for the reals with more functions.

In the approach I am taking here, there are some choices to be made con-
cerning the structure to study, and in particular what functions and relations it
should have. In some sense any nonstandard approach to analysis seems to re-
quire some choice of structure at the outset, but the process is not nearly as bad
as it sounds, and there are some good ways to get round this issue which more
or less guarantee that all the functions you are interested in will be there. (See
Lindstrøm’s article in Cutland [5] for example.) I want to emphasise the pre-
cise links with the Completeness Theorem, so my approach will be somewhat
more pedestrian.

For the rest of this section we shall take as our structure R with all possible

188 Nonstandard analysis

functions f : Rk →R and all possible relations R ⊆ Rl (k, l ∈ N). This gives a
structure for set of

R = (R, . . ., r, . . ., R, . . ., f , . . .)

for a huge uncountable language (where constant symbols r, relation symbols
R, and function symbols f are identified with the real number, set or function
they represent), but it has the advantage that all functions (such as sin, cos, exp)
and sets (such as N, Q) are represented. Of course the usual arithmetic func-
tions such as +, ×, etc., and the usual relations such as < are represented just
as before.

Let Th(R) be the set of sentences true in this structure. By the Compact-
ness Theorem there is a structure ∗R ⊇ R for the same language, containing
infinitesimals and making every sentence in Th(R) true. The usual notation
for the functions and relations in ∗R corresponding to f : Rk →R and R ⊆ Rl

is to add a star, so these are notated ∗ f : ∗Rk →∗R and ∗R ⊆ ∗Rl . The set ∗R is
often called the set of hyperreals.

Of course N⊆R, so there is a relation symbol for the naturals in R. We start
by considering its nonstandard version ∗N ⊆ ∗R.

Adding new relations as we did makes new properties first-order. For in-
stance the Archimedean Property is now a first-order statement about R,

∀x ∈ R∃n ∈ N x < n,

or, as variables range over real numbers anyway, we may as well write

∀x∃n (n ∈ N∧ x < n).

Thus this statement is in Th(R) and the corresponding version is true for the
hyperreals:

∀x ∈ ∗R∃n ∈ ∗N x < n.

The hyperreal field ∗R is not however Archimedean: it still contains infinites-
imals and infinite numbers just as before. Instead, the statement above shows
that for each infinite number such as h−1 there are elements n ∈ ∗N greater
than it. This is such an important fact we shall record it here as a proposition.

Proposition 12.10 The nonstandard version ∗N of the set of natural numbers
contains infinite numbers. The finite elements of ∗N are exactly the standard
naturals n ∈ N.

Proof The first part has already been explained. For the second, suppose
x ∈ ∗N∧ x < r where r ∈ R. Then let n ∈ N be the largest integer such that

12.3 Overspill and applications* 189

n < r. So ∀x (x < r∧ x ∈ N→ x = 0∨ x = 1∨ . . .∨ x = n) is a true first-order
statement, hence true in the nonstandard world. It follows x is equal to one of
the standard natural numbers 0, 1, . . ., n.

The main tool for nonstandard analysis is the overspill principle, which in its
simplest form says that the set of standard natural numbers cannot be given by
a first-order formula in the structure ∗R.

Definition 12.11 A set A ⊆ ∗Rn is parameter-definable in ∗R if there is a
formula θ(x1, . . ., xn, y1, . . ., yk) in the free-variables shown and hyperreals
r1, . . ., rk ∈ ∗R such that

A =
{
(x1, . . ., xn) ∈ ∗Rn : ∗R�θ(x1, . . ., zn, r1, . . ., rk)

}
.

A function f : ∗Rn →∗R is parameter-definable in ∗R if the set{
(x1, . . ., xn, xn+1) ∈ ∗Rn+1 : f (x1, . . ., xn) = xn+1

}
is parameter-definable in ∗R. Parameter-definable sets and functions will also
be called internal.

Theorem 12.12 (Overspill) The set N is not parameter-definable in ∗R. In
fact, if a set A ⊆ ∗R is parameter-definable in ∗R and contains all standard
natural numbers n∈N then it must also contain some infinite natural numbers.

Proof Suppose θ(x, y1, . . ., yn) and r1, . . ., rn ∈ ∗R are such that

N = {x ∈ ∗N : ∗R�θ(x, r1, . . ., rn)} .

Then ∗R�θ(0, r1, . . ., rn) and also

∗R�∀x (x ∈ ∗N∧θ(x, r1, . . ., rn)→θ(x+1, r1, . . ., rn))

since x ∈ ∗N and θ(x, r1, . . ., rn) implies x ∈ N hence x + 1 ∈ N. But then it
would follow from the true statement

∀ȳ (θ(0, ȳ)∧∀x (x ∈ N∧θ(x, ȳ)→θ(x+1, ȳ))→∀x (x ∈ N→θ(x, ȳ)))

(where ȳ denotes y1, . . ., yn) that

∗R�∀x (x ∈ ∗N→θ(x, r1, . . ., rn)),

or in other words

∗N = {x ∈ ∗N : ∗R�θ(x, r1, . . ., rn)} .

But ∗N contains infinite numbers, so this contradicts our assumption that the
formula θ(x, r1, . . ., rn) is only true for finite natural numbers x.

190 Nonstandard analysis

The scope of this book prevents us from giving many applications of nonstandard
analysis. Those that we do give will use ∗R to define new functions on R. The
procedure typically is to take an internal function f : ∗R→∗R definable in the
first-order language (with parameters) such that the restriction of f to the fi-
nite hyperreals maps into the finite hyperreals: f � ∗Rfin: ∗Rfin →∗Rfin. We
may then define a new function st f : R→R by (st f)(x) = st(f (x)), for x ∈ R.
Overspill is the main tool used to prove properties of st f such as continu-
ity, differentiability. As a by-product our theory also gives elegant alternative
characterisations of continuity, differentiability, etc., for standard functions.

We start by looking at continuity. For a function defined as above, the next
theorem says that st f is continuous at a if and only if f (y) is infinitesimally
close to f (a) whenever y is infinitesimally close to a.

Theorem 12.13 Suppose f : ∗R→∗R is internal, a ∈ R, and f � ∗Rfin: ∗Rfin →
∗Rfin. Suppose also that

for all y ∈ ∗R, st(y) = a implies st(f (y)) = st(f (a)).

Then the function st f : R→R defined by (st f)(x) = st(f (x)) is continuous at a.

Proof Suppose st(y) = a implies st(f (y)) = st(f (a)) for all y ∈ ∗R, and let
ε > 0 be an arbitrary standard real. We look at the internal set

A =
{

n ∈ ∗N :∃y ∈ ∗R
(
|y−a| > 1

n+1
∧| f (y)− f (a)| � ε

)}
.

If A ⊇ N then by overspill there is an infinite n ∈ ∗N in A and hence some y
in the interval (a− 1

n+1 , a + 1
n+1) with | f (y)− f (a)| � ε . This would mean

st(y) = a and st(f (y)) �= st(f (a)), contradicting the assumption. So instead
there must be some standard n ∈ N in A for which the statement

∀y ∈ ∗R
(
|y−a| � 1

n+1
→| f (y)− f (a)| < ε

)

is true in ∗R. It follows that for all standard y ∈ R with y ∈ (a− 1
n+1 , a+ 1

n+1)
we have f (a)− ε < f (y) < f (a)+ ε true in ∗R so

st(f (a))− ε � st(f (y)) � st(f (a))+ ε,

which suffices to show st f is continuous at a.

Every standard function f : R→R has a nonstandard version ∗ f : ∗R→∗R;
also, for each x ∈ R and y = f (x) ∈ R the statement y = f (x) is true and first-
order, so y = ∗ f (x) holds in the nonstandard world. Thus f (x) = st(∗ f (x)) for
all x ∈ R, so the above result gives a useful criterion for when a function f

12.3 Overspill and applications* 191

is continuous at a ∈ R. In fact this criterion is exact, as the following result
shows.

Theorem 12.14 A function f : R→R is continuous at a if and only if for all
y ∈ ∗R, st(y) = a implies st(∗ f (y)) = a.

Proof One direction has already been proved. For the other, suppose f is
continuous at a, so

∀ε > 0∃δ > 0∀h < δ | f (a+h)− f (a)| < ε.

Let ε > 0 be a standard real number and choose another standard real number
δ > 0 such that

∀h < δ | f (a+h)− f (a)| < ε.

This last statement about ε, δ is first-order hence true in ∗R, so

∀h < δ |∗ f (a+h)−∗ f (a)| < ε.

So in particular |∗ f (a+h)−∗ f (a)| < ε holds for any infinitesimal h. But ε
was arbitrary, so |∗ f (a+h)−∗ f (a)| is also infinitesimal, hence

st(∗ f (a+h)) = f (a)

for any infinitesimal h.

We can define differentiation in a similar way.

Theorem 12.15 Suppose f : ∗R→∗R is internal, suppose a, b ∈ R, and that
f � ∗Rfin: ∗Rfin →∗Rfin. Suppose also that

st
(

f (a+h)− f (a)
h

)
= b

for all non-zero infinitesimals h ∈ ∗R. Then the function st f is differentiable
at a with derivative b.

Proof Let ε > 0 be a standard real. We will find a positive n ∈ N such that for
all standard h ∈ R with 0 < |h| < 1/n,

∣∣∣∣ st f (a+h)− st f (a)
h

−b
∣∣∣∣ � ε.

192 Nonstandard analysis

Note that as the difference of two infinitesimals is infinitesimal and h is stan-
dard and positive (st f (a+h)− st f (a))/h = st((f (a+h)− f (a))/h). It there-
fore suffices to find a positive n ∈ N such that

∀h
(

0 < |h| < 1/n→
∣∣∣∣ f (a+h)− f (a)

h
−b

∣∣∣∣ < ε
)

holds in ∗R. But by assumption, the statement just given is first-order and true
for all infinite n ∈ ∗N. If it is false for all finite n ∈ ∗N then the formula

n ∈ ∗N ∧ ∃h
(

0 < |h| < 1/n ∧
∣∣∣∣ f (a+h)− f (a)

h
−b

∣∣∣∣ � ε
)

would define the set N in ∗R, which is impossible by overspill. Therefore such
a finite n ∈ N exists as required.

This idea can be used to give a nonstandard characterisation of differentiability.

Theorem 12.16 Suppose f : R→R, and a, b ∈ R. Then the function f is
differentiable at a with derivative b if and only if

st
(∗ f (a+h)−∗ f (a)

h

)
= b

for all infinitesimals h ∈ ∗R.

Proof Left as an exercise.

We are finally in a position to prove a more substantial result: we will prove the
Peano Existence Theorem for a solution to a first-order differential equation,
and the argument will be based on the classical Euler method for its numerical
solution.

The Euler method for solving a differential equation y′(t) = F(y(t), t) nu-
merically, subject to a given value for y(0), asks us to choose a small step-
size h and define a sequence of points (xn, yn) approximating the solution
by x0 = 0, y0 = y(0), xn+1 = xn + h, and yn+1 = yn + hF(xn, yn). Notice
that this approximates the differential equation with a ‘difference equation’
yn+1 − yn = hF(nh, yn). The connections between differential equations and
difference equations go very deep.

Theorem 12.17 (Peano Existence Theorem) Let F : R× [0, 1]→R be a con-
tinuous function, which is bounded, i.e. there is B ∈ R such that |F(t, y)| < B
for all t, y. Suppose also y0 ∈ R. Then there is a continuous and differentiable
function y: [0, 1]→R such that y(0) = y0 and y′(t) = F(y(t), t) for all t ∈ [0, 1].

12.3 Overspill and applications* 193

Proof Using the idea of the Euler method, we inductively define for each
positive h ∈ R a function Yh(t) so that

Yh(t) = y0 if t ∈ [0, h)

and

Yh(t) = Yh(t −h)+hF(([t/h]−1)h, Yh(t −h)) if t ∈ [h, 1]

where [t/h] denotes the integer part of t/h. Thus Yh(t) is just a stepped version
of the Euler method solution defined on the whole of [0, 1]. (Using the simpler
looking t − h instead of ([t/h]− 1)h would give a slightly different function,
but one that would work just as well for the proof that follows.)

There is no difficulty about the existence of the function Yh. It is defined
using induction in approximately 1/h steps. In fact, we can regard Yh(t) as a
function of two arguments, writing it as Y (h, t). This will enable us to use the
function ∗Y (h, t) in our nonstandard universe.

Now let h ∈ ∗R be a positive infinitesimal and define y(t) = st(∗Y (h, t)). We
need to show that this is well defined (i.e. that ∗Y (h, t) is finite for all t ∈ [0, 1])
and differentiable with derivative satisfying y′(t) = F(y(t), t).

To do this, use the fact that F is bounded and there is B ∈ R such that
|F(t, y)| < B for all t, y. Thus |Yh(t1)−Yh(t2)| < B|t1 − t2| for all t1, t2 and
h, since at most |t1 − t2|/h steps are required in going from t1 to t2 and each
one adds or subtracts less than hB. This is a first-order statement about Yh(t) =
Y (h, t) so transfers to ∗Y (h, t):

∀h > 0∀t1, t2 ∈ [0, 1] |∗Y (h, t1)−∗Y (h, t2)| < B|t1 − t2|.

It follows from ∗Y (h, 0) = y0 that y0 −B < ∗Y (h, t) < y0 +B for t ∈ [0, 1] and
hence ∗Y (h, t) is always finite and y(t) is well defined.

We use Theorem 12.15 to show that y(t) is differentiable and find its deriva-
tive. Let t ∈ [0, 1] be standard and k ∈ ∗R a non-zero infinitesimal. For sim-
plicity assume k > 0; the case when k < 0 is identical with signs reversed.
We need to estimate ∗Y (h, t + k)−∗Y (h, t). This number is the sum of [k/h]
terms of the form h×∗F(t ′, ∗Y (h, t ′)) where t � t ′ � t + k. For such t ′, note
that |t − t ′|� k is infinitesimal and we can employ the formula above bounding
|∗Y (h, t1)−∗Y (h, t2)| to see that

∣∣∗Y (h, t)−∗Y (h, t ′)
∣∣ < B

∣∣t − t ′
∣∣

is also infinitesimal. Thus ∗F(t ′, ∗Y (h, t ′)) = ∗F(t + r, ∗Y (h, t)+ s) for some

194 Nonstandard analysis

infinitesimals r, s and therefore |∗F(t ′, ∗Y (h, t ′))−∗F(t, ∗Y (h, t))| is infinites-
imal by Theorem 12.14 and the continuity of F . Putting all this together,

∗Y (h, t + k)−∗Y (h, t)
k

=
[k/h]×h× (∗F(t, ∗Y (h, t))+ infinitesimal)

k

which is ∗F(t, ∗Y (h, t))+ infinitesimal. We conclude that y(t) is differentiable
with derivative y′(t) = st(∗F(t, ∗Y (h, t))) = F(t, y(t)), by the continuity of F
again.

We are going to conclude with one further example of nonstandard analysis: its
use in constructing a function f : [0, 1]→ [0, 1] which is everywhere-continuous
and nowhere-differentiable. The idea once again is to define a family of func-
tions fn(x) in R indexed by n ∈ N and then consider the function fn(x) in ∗R
where n ∈ ∗N is infinite. This use of an infinite n replaces the usual limit pro-
cess of classical analysis.

We define, for all x ∈ [0, 1], f0 by

f0(x) = 0

and f1 by

f1(x) = f0(x)+(x−1/4) for all x ∈ [1/4, 1/2],

and

f1(x) = f0(x)+(3/4− x) for all x ∈ [1/2, 3/4],

where f1(x) = f0(x) for all other x. More generally, for n ∈ N, we define fn+1

by

fn+1(x) = fn(x)+(x−a) for all x ∈ [a, (a+b)/2],

and

fn+1(x) = f0(x)+(b− x) for all x ∈ [(a+b)/2, b],

for all [a, b] with a, b given by a = (4k + 1)/4n+1 and b = (4k + 3)/4n+1, for
k ∈ N, setting fn+1(x) = fn(x) for all other x. Figure 12.1 shows the first four
functions in this sequence.

Once again, there is no problem in defining fn(x) for each n ∈ N by this
induction. In fact, we may consider fn(x) as a two-argument function f (n, x) as
soon as we make some arbitrary choice of f (y, x) for y �∈N such as f (y, x) = 0
for such y.

One helpful fact about this family of functions is that at the ‘corner’ points
where x = i/4n (i ∈N, 0 � i � 4n) the value fm(x) is fixed for sufficiently large

12.3 Overspill and applications* 195

0 11/2

Figure 12.1 The construction of a nowhere-differentiable function.

m: in fact, fm(x) = fn(x) for all m � n. This fact can be written as a first-order
statement about R:

∀n ∈ N∀i ∈ N (0 � i � 4n →∀m ∈ N (m � n→ fm(i/4n) = fn(i/4n))).

Another useful fact about these functions is that fn and fn+1 do not differ by
very much. Indeed, checking the definition one can see that

| fn+1(x)− fn(x)| � 1
4n+1

for all x ∈ [0, 1] and hence for all k � n

| fk(x)− fn(x)| � 1
4n+1 +

1
4n+2 + · · ·+ 1

4k <
1

4n+1

(
1+

1
4

+ · · ·
)

=
1

3×4n .

In particular, fk(x) < 1/3 for all k and all x. Once again these facts may be
written down in a first-order way and transferred to ∗R.

We now define the actual function we are interested in. It is the function
f = st ∗ f n where ∗ f n(x) = ∗ f (n, x) in ∗R and n ∈ ∗N is some fixed infinite
natural number. Thus, for x ∈ [0, 1], f (x) = st(∗ f n(x)).

Theorem 12.18 The function f : [0, 1]→R is continuous at all a ∈ [0, 1] and
differentiable at no a ∈ [0, 1].

Proof We prove continuity by using Theorem 12.14. Let a ∈ [0, 1] and x ∈
∗[0, 1] be infinitesimally close to a. Suppose a < x, the other case being argued
in an almost identical way, and take i ∈ ∗N and k ∈ ∗N such that

i
4k � a < x � i+1

4k .

Since st(x) = a we may take k � n to be an infinite natural number here.

196 Nonstandard analysis

Then ∗ f n(i/4k) = ∗ f k(i/4k), and ∗ f n((i+1)/4k) = ∗ f k((i+1)/4k), and ∗ f k
is a straight line between ∗ f k(i/4k) and ∗ f k((i+1)/4k). Thus

|∗ f k(a)−∗ f k(x)| <
1
4k .

But also,

|∗ f k(a)−∗ f n(a)| < 1
3×4k

and

|∗ f k(x)−∗ f n(x)| <
1

3×4k

giving

|∗ f n(a)−∗ f n(x)| <
5

3×4k

which is infinitesimal. Hence f is continuous at a.
To see that f is not differentiable at any a ∈ [0, 1] we use the classical defi-

nition of differentiability. Let a ∈ [0, 1] and let δ > 0 be an arbitrary positive
standard real number. Choose i, k ∈ N such that i/4k � a � (i + 1)/4k with
1/4k < δ , and write x1 for i/4k and x2 for (i + 1)/4k. We are going to look at
fk, fk+1 and f on the interval [x1, x2].

Note first that for all x ∈ [x1, x2] we have 0 � fk(x) � fk+1(x) � f (x) with
| f (x)− fk+1(x)| � 1/(3×4k+1). The interval [x1, x2] may be divided into four
parts, as [u0, u1], [u1, u2], [u2, u3], [u3, u4], where u0 = x1, u1 = x1 + 1/4k+1,
u2 = x1 +2/4k+1, u3 = x1 +3/4k+1, and u2 = x1 +4/4k+1 = x2. We also have
f (u) = fk+1(u) when u is an endpoint ui of one of these intervals. Note also
that f (u2) = fk+1(u2) = fk(u2)+1/4k+1 and that fk is a straight line between
u0 and u4. Let vi = fk(ui) for each i.

We suppose first that u0 � a � u1 and v0 � v4 and we shall estimate the
gradients of the chords from (a, f (a)) to (u2, f (u2)) and from (a, f (a)) to
(u4, f (u4)). Set t = (a− u0)/(u4 − u0), the proportion of [u0, u4] covered by
[u0, a]. Then for the first chord, we have

f (u2)− f (a) �
(

fk(u2)+
1

4k+1

)
−

(
fk(a)+

1
3×4k+1

)
.

But fk is a straight line on this interval, so

f (u2)− f (a) � 1
4k+1 +

1
2
(v0 + v4)− (1− t)v0 − tv4 − 1

3×4k+1

hence

f (u2)− f (a) �
(

1
2
− t

)
(v4 − v0)+4−(k+1) × 2

3
.

12.3 Overspill and applications* 197

The horizontal distance from a to u2 is (1/2− t)/4k and so the gradient of this
chord from (a, f (a)) to (u2, f (u2)) is at least

4k(v4 − v0)+
1
6

(
1
2
− t

)−1

.

As t � 0 this is at least

4k(v4 − v0)+
1
3
.

The gradient of the chord from (a, f (a)) to (u4, f (u4)) is a little easier to
estimate. As f (a) � fk(a) it is at most

fk(u4)− fk(a)
(1− t)×4−k =

v4 − (1− t)v0 − tv4

(1− t)×4−k =
(1− t)(v4 − v0)
(1− t)×4−k = 4k(v4 − v0).

Thus the difference between these two gradients is at least 1/3, which is a
positive number, independent of k and hence independent of δ . Therefore the
function f is not differentiable at a since for each δ we can find two chords
within distance δ of a that differ in gradient by 1/3.

The cases for the other values for a, between u1 and u2, etc., and when
v4 < v0 are treated with a similar calculation of gradients of suitably chosen
chords, and are left for the reader to complete and verify. In all cases the
conclusion is that f is not differentiable at a, as we require.

Overspill, as we have seen, is an important tool for nonstandard analysis. In its
simplest form it is, however, only a statement about how the standard natural
numbers sit inside the set of nonstandard natural numbers. As such, it is also
a tool for understanding number theory, Th(N, 0, 1, +, ×, <) say. Thus in
principle nonstandard techniques might be applied to number theory, though it
turns out that there are (at present) fewer convincing applications in this area.
On the other hand, nonstandard models of number theory (or arithmetic, as
they are more usually called) are interesting objects with links and applications
to many other areas, especially model theory and algebra. For an introduction
to models of arithmetic, see Kaye [7].

Exercise 12.19 Show that ∗N contains infinitely many infinite prime numbers.

Exercise 12.20 Suppose that ∗N contains an infinite prime number p such that
p+2 is also prime. Show that this would imply that N contains infinitely many
primes p such that p+2 is also prime.

The last exercise shows how nonstandard methods may be of use in number
theory too: proving the existence of a single nonstandard number with a given

198 Nonstandard analysis

property implies the existence of infinitely many standard numbers with the
same property.

Exercise 12.21 Let f : R→R and g: R→R be functions and a ∈ R. Suppose
f and g are continuous at a and g(a) �= 0. Use nonstandard methods to show
f (x)/g(x) is continuous at a (when considered as a function of x). Contrast
your proof with a traditional epsilon-delta proof.

Exercise 12.22 Prove Theorem 12.16 giving the nonstandard characterisation
of differentiability.

Exercise 12.23 Prove the chain rule, that if g is differentiable at a ∈R and f is
differentiable at g(a) ∈ R then the composition f ◦g is differentiable at a with
derivative (f ◦ g)′(a) = f ′(g(a))×g′(a). (Hint: work in a hyperreal structure
with versions ∗ f and ∗g of both f , g.)

References

[1] Martin Aigner and Günter M. Ziegler, Proofs from The Book. Berlin:
Springer-Verlag, third edition, 2004.

[2] George S. Boolos and Richard C. Jeffrey, Computability and Logic. Cambridge:
Cambridge University Press, 1989.

[3] Lewis Carroll, Symbolic logic: Part II. Advanced, edited with annotations and an
introduction by William Warren Bartley. New York: Clarkson N. Potter, 1977.

[4] Nigel Cutland, Computability. Cambridge: Cambridge University Press, 1980.
[5] Nigel Cutland, editor, Nonstandard Analysis and its Applications, Volume 10 of

London Mathematical Society Student Texts. Cambridge: Cambridge University
Press, 1988.

[6] Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid. New
York: Basic Books, 1979.

[7] Richard Kaye, Models of Peano Arithmetic, Volume 15 of Oxford Logic Guides.
Oxford: Oxford University Press, 1991.

[8] Azriel Lévy, Basic Set Theory. Berlin: Springer-Verlag, 1979. Reprinted
Mineola, NY: Dover Publications, 2002.

[9] David Marker, Model Theory: an Introduction, Volume 217 of Graduate Texts in
Mathematics. New York: Springer-Verlag, 2002.

[10] Thomas L. Saaty and Paul C. Kainen, The Four-Color Problem: Assaults and
Conquest. New York: Dover Publications, second edition, 1986.

[11] Stephen G. Simpson, editor, Reverse Mathematics 2001, Volume 21 of Lecture
Notes in Logic. La Jolla, CA: Association for Symbolic Logic, 2005.

[12] Robin Wilson, Four Colors Suffice: How the Map Problem Was Solved.
Princeton, NJ: Princeton University Press, 2002.

199

Index

abelian group, 50

aleph, 166
ℵ0, 166
algorithm, 77, 96
alphabet, 35

and (logical connective), ix, 55, 58
ant, 3
Appel and Haken, 8
Archimedean Property, 185, 188
arithmetic, models of, 197
arity, 118

assumption, 67
atom, 107

atomic formula, 78, 119, 138
Axiom of Choice, 16, 20, 50, 110, 166
axiom scheme, 139
axiomatisable theories, 146

back-and-forth, 174
Baire’s Theorem, 152, 155
Barber Shop Paradox, 76
basis, 19, 20
bijection, 161, 165
binary tree, 5, 12
BOOL, 113
Boole, George, 61
boolean algebra, 56, 57, 100, 113

degenerate, 57
dual space of, 110, 111

free, 105
improper, 57
proper, 103
quotient of, 103
representation theorem for, 110

Boolean Prime Ideal Theorem, 107, 110, 111
boolean ring, 62, 102
boolean term, 64, 81, 90, 104

positive, 92

bottom (logical constant), 58

Cantor, Georg, 14, 165, 166
cardinal arithmetic, 167, 178
cardinality, 161, 165, 166
cardinality of

first-order language, 168
Carroll, Lewis, 76
categoricity, 171, 174
category theory, 114
chain, 15

chain rule, 198
change of variables, 131
characteristic function, 62

choice function, 20
clopen set, 112
closed term, 118, 164
closure of a set, 108

co-meagre set, 155

co-nondeterministic computation, 99
co-rare set, 154

compact space, 7, 108, 150
Compactness Theorem

first-order logic, 145, 150, 160
propositional logic, 89

complementation, 57, 58, 60, 61
complete theory, 153, 170

completeness of a formal system, 43, 86
completeness of the reals, 185
Completeness Theorem, viii, 30, 43, 44, 48

arbitrary cardinalities, 169
countable version, 164
first-order logic, 142, 160, 163
propositional logic, 85, 86, 89, 106
uncountable version, 167

complexity theory, 96
comprehension, axiom scheme of, 139
computability, 37, 96
computation tree, 9
concatenation, 4

conjunction, 91
Conjunctive Normal Form (CNF), 92

200

Index 201

connected nodes, 5

connective, 143
consistent set, 41, 42, 65, 86
constant symbol, 117, 132
continuity, 190
contradiction, 39
Contradiction Rule, 39, 65
contrapositive, 59

Cook Wilson, John, 76
countable set, 14, 161, 162
counter-example, 134
cyclic group, 50, 147

decidability, 37, 77
Dedekind, Richard, 138
Deduction Theorem, 77
deductively closed, 152

definable, 160, 175, 176, 187, 189

degenerate algebra, 57

degree, 6

Dense Linear Order (DLO), 173
difference equation, 192
differential equation, 192
differentiation, 185, 191
dimension, 20, 172
discharged assumption, 67
disjunction, 91
Disjunctive Normal Form (DNF), 91
distributive lattice, 56

Dodgson, Charles, 76
domain, 116, 121, 132, 164

empty, 137
dual of a propositional connective, 101
dual of a quantifier, 136

dual of boolean algebra, Bdual, 110
duality, 114

elective element, 62

elimination of quantifiers, 175
∧-Elimination, 65
∨-Elimination, 65
∃-Elimination, 122
∀-Elimination, 122
→-Elimination, 76, 124
¬-Elimination, 65
empty function, 161, 166
empty string, 24
Equality Rules, 122
equivalence relation, 49, 129, 162, 167, 178
Erdős, Paul, 1
Euler method, 192

excluded middle, 75
extensionality, axiom of, 139

false (logical constant), 58
field, 20
filter, 102

maximal, 106

finitely satisfiable, 158

first-order language, 117, 119
cardinality of, 168

countable, 163

first-order logic, 116, 133
forest, 147
formal proof, 25, 29, 39, 122

first-order logic, 122
propositional logic, 65

formal system, 24
complete, 43

formally real field, 54

formula, 119

closed, 120

foundations of mathematics, 171
free boolean algebra, 105

free(X), 105
Friedman, Harvey, 10
Fränkel, Abraham, 16
full binary tree, 2

function symbol, 117, 133
binary, 118

ternary, 118

unary, 118

Given Statements Rule, 39, 65, 122
Given Strings Rule, 24
graph, 1, 8, 135, 147

colouring, 8

connected, 147
planar, 8

greatest lower bound, 55∧
A, 82

group, 147
simple, 137, 149
torsion, 50, 149

Gödel, Kurt, 171

Hausdorff space, 110, 153
Henkin axiom, 141

Henkin property, 154

Henkin, Leon, 140
Henkinisation, 140, 156, 164, 167, 169
Hilbert, David, 171
homomorphism, 100

hyperreal number, 182
finite, 186

ideal, 20, 101

idempotent element, 62

implication, 58, 59, 61, 76, 77, 124
incompleteness of arithmetic, 138
inconsistent set, 41, 65

independence, 172
infinite paths, 29
infinitesimal, 182, 184, 187

202 Index

informal mathematical proof, 70
injection, 161, 165, 166, 177
internal set or function, 189

∧-Introduction, 65
∨-Introduction, 65
∃-Introduction, 122
∀-Introduction, 122
→-Introduction, 76, 124
Irreflexivity Rule, 39
isolated, 158

isolated type, 157

isomorphism, 101, 171, 174

join (logical connective), 58
joke (logical), 182

kernel, 101

König’s Lemma, 3, 5, 7, 23

largeness, 102, 155
lattice, 55

least upper bound, 55, 186∨
A, 82

length, 4

length of the input, 97
Lengthening Rule, 24
linear order, 11, 15, 46, 49
linearly independent, 19
logical symbol, 117

logically equivalent, 91

maximal element, 11, 13

maximal filter, 106

maximally consistent set, 142, 149
meagre set, 155
meet (logical connective), 58
metamathematics, 29
metaproof, 29
metarule, 70, 75
metatheorem, 29
metric space, 7, 109
MIU system, 34
model

countable, 164
infinite, 169
isomorphic, 171

model theory, 160, 170
M �σ , 133

module over a ring, 173
modus ponens, 76, 124
Morley’s Theorem, 172

natural language, 59, 76
natural number, 4

infinite, 188
nonstandard, 188, 197

negated atomic formula, 78

negation, 39, 57
node, 1
non-deterministic computation, 9, 98
non-distributive lattice, 56
non-logical symbol, 117

non-strict partial order, 12

nonstandard analysis, ix, 182, 190
not (logical connective), 55, 58
nowhere-differentiable function, 194
NP, 98
NP-complete, 99

number theory, model of, 197
numerical analysis, 183

omits p, 158

omitting a type, 156

Omitting Types Theorem, 152, 158
Bop, 101
open cover, 108

open set, 108, 150
opposite, 101
optimism, 104
or (logical connective), ix, 55, 58
order relation, 11
ordered abelian group, 50

ordered field, 54, 185
overspill, 197
overspill principle, 189

pairing function, 163
parameter-definable, 189

partial order, 11, 38
linearised, 46
non-strict, 12
strict, 12

partially ordered set, 11
path, 3, 5

Peano Existence Theorem, 192
Peano, Guiseppe, 138
pedantic logician, 133
pessimism, 104
planar graph, 8

polynomial time, 97

Pope, 126
poset, 12, 38

directed, 14

maximal element in, 13
positive cone, 54

Post system, 35

power set, 11

predicate logic, 116
prenex normal form, 137

preorder, 17, 49
pre-positive cone, 54

prime filter, 106

prime ideal, 106

Prime Ideal Theorem, 106

Index 203

problem, 96

product space, 109

projection function, 109, 175
proof strategy, 70, 77
proof theory, 26
propositional letters, 64

propositional logic
algorithm, 95
decidability, 77

provability, 24

punctuation symbol, 117

quantifier, 119, 133, 137
quantifier elimination, 175
quantifier free, 174

quotient, 101, 103

rare set, 155
rationals

as ordered set, 173
countability of the set of, 18, 163

real number
standard, 186

reals
completeness of, 185
countable model of the theory of, 165
structure for set of, 183, 188
theory of, 116
uncountability of set of, 18

reciprocal, 183
Reductio Ad Absurdum (RAA) Rule, 39
Reductio Ad Absurdum Rule, 38, 39, 65
Reflexivity, 122
relation symbol, 117, 133

binary, 119

ternary, 119

unary, 119

representation theorem, 110
restriction, 4
reverse mathematics, 10
right-ordered group, 53

ring, 20, 101
ring theory, 100
Robinson, Abraham, 182
root, 1

SAT, 96

satisfiable, 82, 96

Schröder–Bernstein Theorem, 166, 176
scope of a quantifier, 119

Scott’s trick, 166
second-order logic, 133, 138
semantic deduction, 44
semantics, 3, 29, 42, 80, 90, 160
sentence, 120, 133
sequence, 4

k-sequences, 8

sequential compactness, 7

set theory, 139, 165, 176
countable model of, 165

Shortening Rule, 24
Simpson, Stephen, 10
simultaneous substitution, 122
Skolem’s paradox, 165
smallness, 102, 155
Soundness Theorem, viii, 4, 25, 30

first-order logic, 134
logic of posets, 42
propositional logic, 84, 105

square-free sequence, 8

stable, 172
standard part, 186, 187
statement

negative, 45

positive, 45, 47
STONE, 113
Stone Representation Theorem, 110
Stone space, 113

strings, 24
structure, viii, 132

cardinality of, 169

countable, 164

L-structure, 132, 133
subformula, 119

subgroup, 18
subproof, 38, 40, 67
subspace topology, 152

substitution, 121
valid, 123

Substitution Rule, 122, 127
subtraction, 183
subtree, 5, 6

support of a type, 157, 158

supremum, 186
surjection, 161, 166, 177
Symmetry, 122

tableau, 94
Tarski’s Fixed Point Lemma, 177
Tarski, Alfred, 171, 176
TAUT, 96

tautology, 82, 96

term, 118, 122
theory, 170

categorical, 171

complete, 170

theory of M, 149

Th(R), 183

tiling problem, 9
top (logical constant), 58
Top Rule, 65
topological space, 108, 149
torsion group, 50, 149

torsion-free group, 50, 149

204 Index

total order, 11, 15

totally disconnected space, 111, 150, 153
transfer, 182
Transitivity, 122
transitivity, 38
Transitivity Rule, 39
transversal, 19

tree, 1, 5, 29
binary, 1

describing computations, 9
infinite, 3, 5

walk, 3

Trichotomy Theorem, 166, 178
true (logical constant), 58
truth, 42, 133

in the reals, 183

truth table, 81, 83
2 (boolean algebra), 57
Tychonov’s Theorem, 108, 109
type, 158

omitted, 158

realised, 158

ultrafilter, 106, 108, 110
uncountable set, 165
Unique Readability Theorem, 69
upper bound, 15

vacuously, 42

valency, 6

valuation, 80

variable, 35, 117, 119
bound, 120

free, 120

renaming, 137
substitution of, 122

vector space, 19, 20, 171, 172

well-ordered set, 21, 54

Well-Ordering Principle, 22

Zermelo, Ernst, 16
Zermelo–Fränkel set theory, 139, 165
zero, 4
Zorn property, 15

Zorn’s Lemma, 16, 18, 20, 50, 106, 110, 160,
168, 176

Zorn, Max, 22

