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I argue for an interpretation of the connection between Descartes’ early mathematics and metaphysics
that centers on the standard of geometrical intelligibility that characterizes Descartes’ mathematical
work during the period 1619 to 1637. This approach remains sensitive to the innovations of Descartes’
system of geometry and, I claim, sheds important light on the relationship between his landmark Geom-
etry (1637) and his first metaphysics of nature, which is presented in Le monde (1633). In particular, I
argue that the same standard of clear and distinct motions for construction that allows Descartes to dis-
tinguish ‘geometric’ from ‘imaginary’ curves in the domain of mathematics is adopted in Le monde as Des-
cartes details God’s construction of nature. I also show how, on this interpretation, the metaphysics of Le
monde can fruitfully be brought to bear on Descartes’ attempted solution to the Pappus problem, which
he presents in Book I of the Geometry. My general goal is to show that attention to the standard of intel-
ligibility Descartes invokes in these different areas of inquiry grants us a richer view of the connection
between his early mathematics and philosophy than an approach that assumes a common method is
what binds his work in these domains together.
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1. Introduction

That René Descartes holds an important place in both the his-
tory of mathematics and the history of philosophy is hardly a mat-
ter of dispute. In the domain of mathematics, he proposed a novel
algebraic approach to the study of geometrical curves in his land-
mark Geometry (1637),1 which helped motivate the development of
modern-day analytic geometry. In the domain of philosophy, he pro-
moted a ‘rationalist’ program of metaphysics and epistemology that
shed new light on problems surrounding the existence of God and
the human soul, and which directed the course of philosophical
investigations in the decades (arguably even the centuries) to follow.
Though the historical importance of these Cartesian innovations is
uncontroversial, questions remain regarding whether and to what
extent Descartes’ contributions to the progress of mathematics and
to the progress of philosophy are in fact connected.
ll rights reserved.

ry are taken from Descartes (1954)
rtes’ works, I use ‘AT’ to refer to De
If we turn to Descartes’ own work for answers, his Discourse on
method (1637) appears to offer an important clue. For here Des-
cartes claims that his study of mathematics offered him a guide
to understanding how we ought to approach the general problems
of human knowledge, and he presents mathematics as offering the
very standard for certainty that we ought to embrace when inves-
tigating what can be known in the domain of philosophy. More-
over, he urges us to produce ‘long chains composed of very
simple reasonings, [such as] geometers customarily use to arrive
at their most difficult demonstrations’ when we investigate ‘all
the things which can fall under human knowledge’ (AT VI, pp.
18–19; CSM I, pp. 119–120).2 Thus, the suggestion from Descartes
himself is that a method characterized by deduction from simple,
easily known objects serves as the thread that connects his mathe-
matical work with his philosophical work.
, and I use G to indicate references to this translation by Smith and Latham.
scartes (1996), ‘CSMK’ to refer to Descartes (1991), ‘CSM’ to refer to Descartes (1985),
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Using the suggestive remarks of the Discourse as a springboard,
recent scholars have pursued a method-oriented strategy in their
attempts to pinpoint a meaningful connection between Descartes’
work in mathematics and philosophy. Put briefly, their goal has
been to reveal similarities between the Cartesian method of math-
ematics and the Cartesian method of philosophy. For instance,
Hintikka (1978) claims that Descartes’ early philosophical works,
as well as his later metaphysical writings, such as the Meditations
(1641), show Descartes using a method to which he was exposed
during the course of his mathematical studies. In particular,
according to Hintikka, we find Descartes employing a modified ver-
sion of the ancient method of analysis, which was prominent in the
Platonist tradition of mathematics (Hintikka, 1978, p. 74).3 A sim-
ilar approach to the purported connection between Descartes’ math-
ematics and philosophy is taken by Grosholz (1991), who agrees
with Hintikka that there is a Cartesian method (in the singular) that
binds Descartes’ work in these domains together. She draws atten-
tion to the method Descartes employs in his mathematical work
and attempts to build a bridge between the method used in the
Geometry and the method that is applied to metaphysical problems
in the Meditations, as well as in the Principles of philosophy (1644).4

To be sure, the method-centered approaches taken by those such
as Hintikka and Grosholz have gone a long way to illuminate some
important similarities between Descartes’ mathematical and philo-
sophical work. But nonetheless, such approaches, which rely on Des-
cartes’ Discourse account of method, only inadequately capture the
novelty of Descartes’ approach to mathematical problem-solving.5

Careful attention to his innovations in geometry makes it diffi-
cult, if not impossible, I think, to maintain that the method Des-
cartes actually employs from 1619 to 1637 is the same sort of
deductive method that he describes in the Discourse. Though in
the domain of geometry he lays focus on intuitively clear objects,
namely, ‘simple’ curves, Descartes plainly ventures beyond a
straightforward deductive method of reasoning in his program-
matic treatment of these geometrically simple curves. For his goal
in his early mathematical writings as well as in the Geometry is to
distinguish legitimately ‘geometric’ curves from ‘imaginary’ non-
geometrical curves, and to do so he lays emphasis on the clear
and distinct motions of construction whereby curves are generated.
This peculiar feature of Descartes’ approach to mathematics guided
his ground-breaking innovations in mathematics, and this feature
resists straightforward subsumption under the sort of deductive
method of reasoning he promotes in the Discourse. Thus, to take
the sort of method-centered approach to Descartes’ mathematics
that Hintikka and Grosholz do is to miss a crucial moment in Des-
cartes’ work in mathematics, and his thinking about geometrical
curves in particular. As a consequence, a method-centered ap-
proach leaves us a limited perspective on the connections that
may in fact bind Descartes’ mathematics with his philosophy.

To make better sense of how Descartes’ peculiar innovations in
mathematics may be connected to his philosophical program, I
3 The account of ancient analysis that Hintikka (1978) invokes is explicitly drawn from
4 Grosholz is certainly not the only commentator to pay attention to the method of the

(1952) have treated the method of the Geometry in great detail in their attempts to situate D
account, both here and below, because her treatment of the Geometry nicely brings to ligh
Descartes’ mathematics and philosophy. I should also note here that Grosholz’s even more s
philosophical works a common method of ‘reductionism’ and ‘intuitionism’: one that affo
ultimately, one that, she argues, prevented Descartes from advancing further than he actual
‘reductionism’ and ‘intuitionism’ in geometry below.

5 There is a further problem that plagues such approaches, which has been brought to li
Hintikka and Grosholz do, that issues of method remain central to Descartes’ philosophical
and it is not explicitly granted a central role by Descartes in the metaphysics of the Meditat
also Garber (1989) on this issue.
take the central role Descartes grants motion and construction in
his study of geometrical curves as my point of departure, and
aim to reveal a particular connection between Descartes’ mathe-
matics and philosophy that has gone unappreciated by those
who have adopted a narrow view of his mathematical method.
Specifically, I hope to show that Descartes attempts to incorporate
his geometrical account of intelligibility into his philosophical
work after 1628, and, in particular, as he composes his first meta-
physics of nature, as presented in Le monde (1633). For in both the
Geometry and Le monde intelligibility and exactness are conspicu-
ously tied to clear and distinct motions for construction—in one
case the construction of geometrical curves, and in the other God’s
construction of natural motions and the natural world more gener-
ally. Taking seriously the similar accounts of intelligibility and
epistemological exactness assumed in these works, we see Des-
cartes appealing to the very mathematical principles of construc-
tion that characterize his study of geometrical curves as he
details his account of God’s creation of the world. Moreover, there
is, I think, a connection running in the other direction: the intelli-
gibility of God’s creation in Le monde allows Descartes to justify, at
least implicitly, a contentious mathematical claim that he needs to
situate his general solution to the Pappus problem in the program
of the Geometry. In this manner, Descartes’ metaphysics is fruitfully
brought to bear on his mathematics.

Before turning to the specific ties between the Geometry and Le
monde, I offer in Section 2 a brief overview of Descartes’ early
mathematical works, which illuminates the concerns with intelli-
gibility and construction that remain constant throughout his
mathematical researches. Appealing to the work of Bos (1981,
2001), I emphasize that, in the domain of geometry, the simple mo-
tions needed for the construction of legitimately ‘geometric’ curves
remain the cornerstone of the standard of geometrical intelligibil-
ity that Descartes adopts throughout the most productive period of
his mathematical work, 1619 to 1637. In Section 3, I detail Des-
cartes’ general solution to the Pappus problem, which he presents
in Book I of the Geometry, and bring to light a tension in his argu-
ment for the ‘geometrical’ status of those curves that represent
solutions to the Pappus problem. I then turn, in Section 4, to God’s
geometrical construction of nature in Le monde, and draw out con-
nections between Descartes’ early metaphysics and the mathemat-
ical program of his 1637 Geometry. As indicated above, my goal is
to shed light on how Descartes brings geometrical intelligibility to
bear on God’s construction of nature and also on how the meta-
physics of God’s creation can help us address the problems plagu-
ing Descartes’ treatment of the Pappus problem.

2. Mathematics and philosophy from 1619 to 1628

In his early mathematical practice, Descartes followed in the
footsteps of the ancients and investigated the methods by which
to construct curves that could be used to solve geometrical prob-
Hintikka & Remes (1974).
Geometry. As she notes in her Introduction, others such as Vuillemin (1960) and Beck
escartes’ mathematics in the context of his philosophical corpus. I focus on Grosholz’s

t some problems we face if we too narrowly focus on method as that which connects
pecific goal in Grosholz (1991) is to show that we find in Descartes’ mathematical and
rded Descartes a considerable amount of success in geometry and metaphysics but,

ly did (ibid., pp. 2–5). I will return to some of her specific criticisms of Descartes’ use of

ght in Garber (1992). As Garber points out, it is difficult to maintain, as those such as
work after the Discourse. For in his post-1637 works, method is very rarely mentioned,
ions or the metaphysics and physics of the Principles (see Garber, 1992, pp. 48 ff.). See



Fig. 1. The trisecting instrument (ca. 1619; adapted from Bos, 2001, p. 238). Fig. 2. Generating the curve KLM for trisection of an Angle (from Bos, 2001, p. 238;
used with kind permission of Springer Science + Business Media).
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Fig. 3. Constructing a spiral.
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lems. For instance, when Descartes tackled the classic problem of
trisecting an angle, he contrived an instrument by which to gener-
ate a curve that could be used to trisect any given angle. We start
with four rulers (OA, OB, OC, OD) that are hinged at point O (Figure
1). We then take four rods (HJ, FJ, GI, EI), which are of equal length
a, and attach them to the arms of the instrument such that they are
a distance a from O and are pair-wise hinged at points J and I. Leav-
ing OA stationary, we now move OD so as to vary the measure of
angle DOA from 0 to 180, and following the path of point J, we gen-
erate the curve KLM (Figure 2). As Descartes has it, we can con-
struct the curve KLM on any given angle by appeal to the
instrument described above, and then, by means of some basic
constructions with straight lines and circles, the given angle can
be trisected.6 In this respect, the curve KLM is, for Descartes, the
means for solving a geometrical problem, or, to be more specific,
for solving a general class of problems, for the above mechanism
and the resulting curve KLM can be used to trisect any given angle.

Though ancient geometers also constructed curves to solve geo-
metrical problems, Descartes’ use of an instrumental construction
shows him advancing beyond the ancient standards of mathemat-
ical practice. According to ancient geometers (and Pappus in par-
ticular), the instrumental construction of a curve was considered
unacceptable for geometrical problem-solving, because it allegedly
lacked the same exactness as constructions that relied on straight
lines and circles.7 Descartes disagreed. He claimed that the con-
structions made with his ‘new compasses’ (such as the one seen
above) are ‘just as exact and geometrical as those drawn with ordin-
ary compasses’, because his instruments involve a single motion
(Descartes to Beeckman, 26 March 1619; AT X, pp. 157–158; CSMK,
pp. 2–3). In the case above, the single motion of OD is adequate for
generating the triseting curve KLM, and this single motion is one
which, according to Descartes, we can clearly conceive.

Constructions were inexact by Descartes’ standards if they re-
quired ‘distinct independent motions’, which could not be clearly
conceived. A favorite example of Descartes’ is the spiral, whose
construction requires the rectilinear motion of a point (P) and
6 To get a better sense of why this instrument can be used to generate a curve that can be
will remain equal in measure, regardless of where OD is positioned, owing to the way that t
equal length no matter where we position the arm OD, and this in turn preserves the cong
series of angles that have been trisected. My treatment of the trisecting instrument follows
Descartes uses to trisect a given angle once KLM has been constructed on the angle.

7 This was the letter but not the spirit of the law, for Pappus himself presents instru
prohibition against instrumental constructions is made. For translations of Pappus’ classifi
(2000, p. 151) and Bos (2001), p. 37.

8 Descartes’ claim regarding the unintelligibility of simultaneous straight- and curved-lin
‘imaginary’ curves. Historically, however, it did not hold sway for very long. Very soon a
rectifying curves—that is, for determining the length of curved segments—which thereby
distinguishing ‘geometric’ and ‘imaginary’ curves. See Bos (1981), pp. 314–315.
the circular motion of a line segment (L) (Figure 3). We begin with
point P at one end of the segment L, and then allow P to move uni-
formly toward the other endpoint as L moves uniformly in a circle.
Following the path of P, we generate the spiral. As Descartes would
explain in the 1637 Geometry, the problem with this sort of con-
struction is that it relies on simultaneous rectilinear and circular
motions. Descartes maintains that ‘the ratios between straight
and curved lines are not known’, and ‘cannot be discovered by hu-
man minds’; therefore, he concludes, ‘no conclusion based upon
such ratios [or relations] can be accepted as rigorous and exact’
(G, p. 91). Thus, these sorts of constructions are, for him, inadmis-
sible in the rigorous and exact domain of geometry, and as early as
1619 he deemed the curves generated by means of such construc-
tions ‘imaginary’, which is for him equivalent to saying that they
are non-geometrical. His new instrumental constructions, on the
other hand, relied solely on the ratio (or relation) between straight
lines, a ratio that is intelligible to us and which therefore meets the
standards of geometrical exactness.8
used for trisection, notice that as OD moves (Figure 1), the angles DOC, COB, and BOA
he instrument is constructed. Namely, the rods HJ, FJ, GI, and EI are and will remain of
ruence of the three angles DOC, COB, and BOA. KLM is thus the curve generated by a
Bos’ presentation in Bos (2001), pp. 237–239. See Bos (2001), p. 239, for the procedure

mental solutions in the Mathematical collections, the very same work in which the
cation of curves and his apparent dismissal of instrumental constructions, see Cuomo

e motions is a centerpiece of his project in the Geometry to demarcate ‘geometric’ from
fter the publication of the Geometry, Fermat and others had discovered methods for

challenged Descartes’ claim of unintelligibility and, along with it, his program for



122 M. Domski / Studies in History and Philosophy of Science 40 (2009) 119–130
As we will see below, Descartes would later expand the domain
of acceptable construction procedures beyond straight lines, cir-
cles, and his ‘new compasses’ as his studies progressed, but his
concern with demarcating legitimately ‘geometric’ curves from
non-geometrical curves remained a constant throughout his math-
ematical researches.9 In 1619 he reports to Beeckman (in the letter
dated 26 March) that he aims to show that some problems can be
solved by straight lines and circles, some by appeal to his new com-
passes, and others only by use of non-geometrical ‘imaginary’ curves
that lack exactness. If he is successful in demonstrating ‘what sorts
of problems can be solved exclusively in this or that way’, then he
is optimistic that ‘almost nothing in geometry will remain to be dis-
covered’.10 He is, in this early period, also optimistic that he will be
able to complete this ‘gigantic task’, and complete it he does, when
the Geometry is published almost twenty years later (how successful
his proposals are is an issue I will broach later in the paper). And as
in 1619, Descartes will in 1637 appeal to the simple and intelligible
motions involved in construction as the standard by which to distin-
guish ‘geometric’ curves from ‘imaginary’ ones.11

Before we take a closer look at the Geometry, it is important to
note that the emphasis on clearly conceivable construction proce-
dures that is characteristic of Descartes’ early mathematical work
is incorporated into the Rules for the direction of the mind, an incom-
plete philosophical work that Descartes began in 1619 and wrote
in stages until its abandonment in 1628. Put briefly, his goal in this
work is to develop a general science of all human wisdom, and he
explicitly appeals to the method of mathematics as his guide (cf.
Rule 4, especially AT X, pp. 377–378; CSM I, p. 19). Thus, we see
that just as Descartes focused on simple, intuitively clear objects
in his early geometrical researches, he indicates in the Rules that,
in all our rational investigations, ‘We must concentrate our mind’s
eye totally upon the most insignificant and easiest of matters, and
dwell on them long enough to acquire the habit of intuiting the
truth clearly and distinctly’ (AT X, p. 400; CSM I, p. 33). A similar
emphasis on cognition through the imagination (or the ‘mind’s
eye’) is apparent in Rules 13 through 21, where he addresses the
methods appropriate for mathematical problem-solving. For in-
stance, in Rule 14 he says that the ‘perfectly understood’ problems
of mathematics ‘should be re-expressed in terms of the real exten-
sion of bodies and should be pictured in our imagination entirely
by means of bare figures. Thus it will be perceived much more dis-
tinctly by our intellect’ (AT X, p. 438; CSM I, p. 56).

In the context of the Rules, the imagination clearly plays a foun-
dational role for Descartes’ new science of human wisdom, as well
as for his general account of mathematical problem-solving. And as
Schuster (1980) and Bos (2001) point out, this emphasis on the
9 In the 1637 Geometry, Descartes will again appeal to the instrumental construction of c
domain of geometry. As Bos points out, the focus of the Geometry is the construction of curv
are meant to illustrate that composite motions can be used to generate clearly and dist
construction procedures (Bos, 1981, pp. 309–310).

10 The full passage from the letter reads:

I am hoping to demonstrate what sorts of problems can be solved exclusively in this o
course a gigantic task, and one hardly suitable for one person; indeed it is an incredibl
glimpse of some sort of light, and with the aid of this I think I shall be able to dispel ev
CSMK, p. 3)

Bos offers a slightly different translation in Bos (2001), p. 232.
11 In the text of the Geometry, Descartes refers to ‘imaginary’ curves, such as the spiral and

between ‘geometrical’ and ‘mechanical’ curves. See Molland (1976) for Descartes’ use of the
use of the term ‘imaginary’ in reference to the Geometry to make clear the continuity in De
also use ‘geometric’ and ‘imaginary’—placed in single quotes—when I am referring to Des

12 The exact date of Descartes’ work on 3rd- and 4th-degree equations is unknown, thoug
Beeckman. I follow Bos in dating the work to a time around 1625.

13 In the 1620s, it was already known that 4th-degree equations could be reduced to 3r
century, and later reprinted by Vieté early in the seventeenth century.

14 I will forgo the details of the solution here and refer the reader to Bos (2001), pp. 256
15 See Schuster (1980), pp. 77–79; Bos (2001), pp. 266–270.
mental clarity afforded by the imagination fits well with what Des-
cartes had achieved during the early stages of his mathematical re-
search (ca. 1619–1620), when he was working with his ‘new
compasses’ and had embraced the clearly and distinctly perceiv-
able motions for constructing curves (by means of straight lines,
circles, and well-defined instruments) as the standard for intelligi-
bility and geometrical exactness. But as his mathematical research
continued, Descartes became more comfortable using algebraic
techniques to solve geometrical problems. For instance, jumping
forward approximately six years to 1625–1626, Descartes investi-
gated the method by which to determine the roots of any curve
that can be represented by a 3rd- or 4th-degree equation, and dis-
covered a general technique for solution.12 The technique required
that the curve’s equation first be reduced to standard form:
x4 = ±px2 ± qx ± r.13 The algebraic representation in turn indicates
the type of construction that ought to be used for the solution, for
any curve whose corresponding equation can be reduced to the
above standard form requires a parabola and circle for the construc-
tion of its roots.14

As Descartes was composing the Rules, he tried to incorporate
the new algebraic features of his mathematical method into his
philosophical account of mathematical problem-solving. This is
most apparent when we look at Rules 19 to 21, which were com-
posed in the mid to late 1620s and which ended the work when
he abandoned it in 1628 (AT X, pp. 468–469; CSM I, p. 76). In these
rules, he tells us that we should reduce mathematical problems to
equations, but he fails to cash out how exactly this is to be done; he
simply presents these rules and offers no exposition. What is more
problematic is that, in Rule 18, Descartes attempts to link geomet-
rical construction with algebraic operations such as addition, mul-
tiplication, and division (AT X, pp. 461–468; CSM I, pp. 71–76), but
the argument for a geometrical representation of these operations
is ultimately unsuccessful.15

So while it is clear that from 1619 to 1628 mathematics serves
as Descartes’ model for rational thinking, and while it is also clear
that Descartes tried to incorporate his new algebraic techniques
into his general method for all rational sciences, he ultimately
failed to build a bridge between his early mathematics and his
early philosophy. In particular, he could not find a way to marry
the algebraic operations he was integrating into his mathematical
method with the construction of curves, or, more generally, with
the cognition and movements of the imagination that were central
to his early philosophy. As both Bos and Schuster have suggested, it
was this failure that motivated Descartes’ abandonment of the
Rules in 1628, and Bos claims as well that, at this moment of aban-
donment, we see ‘the beginning of the gradual separation of the
urves, but he is more reserved about admitting these construction techniques into the
es by means of ideal geometrical curves, and the instruments we find in the Geometry
inctly conceivable curves. They are not meant to serve as legitimately geometrical

r that way, so that almost nothing in geometry will remain to be discovered. This is of
y ambitious project. But through the confusing darkness of this science I have caught a
en the thickest obscurities . . . (To Isaac Beeckman, 26 March 1619; AT X, pp. 156–158;

quadratrix, as ‘mechanical’ curves, and claims to be modifying the ancient distinction
ancient distinction to underscore the novelty of his program in the Geometry. I retain

scartes’ thinking from his early mathematical studies to 1637. Throughout the paper I
cartes’ peculiar interpretation of these terms.
h we do know it must have occurred before 1628, the year he reported his solution to

d-degree equations. The method was discovered by Lodovico Ferrari in the sixteenth

–257.



Fig. 4. The Pappus problem (from Bos, 2001, Fig. 19.1, p. 273; used with kind
permission of Springer Science + Business Media).
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ways of Descartes the mathematician and Descartes the philoso-
pher’ (Bos, 2001, p. 270). Certainly, mathematical reasoning con-
tinues to play a role in Descartes’ later writings but, as Bos
points out, the analogies that Descartes makes with mathematical
method are less strict, even as early as his 1637 Discourse. On this
reading, then, by 1628, the peculiar innovations that characterize
Descartes’ mathematical work cease to offer him a guide as he
develops his mature philosophical program.

Though I agree with the general spirit of Bos’ claim, his remark
about the relationship between Descartes the mathematician and
Descartes the philosopher deserves some further qualification. It
is indeed the case that the method of mathematics is no longer
explicitly linked with the method of philosophy in Descartes’ later
work as it is in the 1619-to-1628 period. However, there is a differ-
ent strategy that I think Descartes adopts as he tries to bridge his
mathematical work with his philosophical work in the post-1628
period. Namely, what I will emphasize below is that, in the
1632-to-1637 period, Descartes’ conception of intelligible motions
replaces his conception of method as that which binds his mathe-
matics with his philosophy, and his metaphysics in particular. To
appreciate the central role of motion in Descartes’ post-1628 pro-
gram, we need to turn our attention to his treatment of the Pappus
problem, which he initiated in 1632 and developed more fully in
1637, when he published the Geometry. Attending to the tension
in his proposed solution will open the way for a clearer under-
standing of how the early metaphysics of Le monde is connected
to the mathematics of the Geometry, as well as a clearer under-
standing of the central role that intelligibility and motion play in
these two seemingly unconnected works. Ultimately, I hope to
show in the sections that follow that a standard of intelligibility
grounded on simple and clearly conceivable motions is the thread
that binds Descartes’ multi-faceted ‘rationalist’ program together
in this early period.
16 My presentation of the general Pappus problem follows Bos (2001), pp. 272–273. Tho
helpful for making sense of Descartes’ general solution to the problem, as presented in Bo
finding of tangents, see Boyer (1968), pp. 159–160.

17 Mathematicians prior to Pappus attempted solutions to the problem, though, as he note
solution, he used a technique that relied on his theory of conic sections and the transfor
Apollonius could only provide solutions for Pappus problems of six lines or less, not the g

18 Bos (2001) provides a partial translation of the letter as well as the original text (p. 3
3. Descartes’ solution to the Pappus problem16

Though around since the time of Euclid, the version of the Pap-
pus problem that most concerned seventeenth century mathema-
ticians was that presented by Pappus in Book VII of his
Mathematical collections.17 In brief, the problem is as follows (see
Figure 4):

Given: n lines Li in the plane, n angles hi, a ratio b, and a line seg-
ment a. For any point P in the plane, let d be the oblique dis-
tance between P and Li such that P creates hi with L.
Problem: Find the locus of points P such that the following ratios
are equal to the given ratio b:
ugh there are differ
ok I of the Geomet

s, they did not solv
mation of areas. By
eneral problem.
50).
For three lines:
ent ways of presenting th
ry. For an alternative acco

e the general problem. Fo
means of this technique
(d1)2
e problem, the v
unt of the proble

r instance, when A
, also known as t
:

ersion
m tha

pollon
he app
d2d3
For four lines:
 d1d2
 :
 d3d4
For five lines:
 d1d2d3
 :
 ad4d5
For six lines:
 d1d2d3
 :
 d4d5d6
In general,

For an even 2k number of
lines:
d1. . .dk
 :
 dk+1. . .d2k
For an uneven 2k + 1 lines:

d1. . .dk + 1
 :
 adk+2. . .d2k + 1
For any n-line Pappus problem, there are an infinite number of
points P that satisfy the sought-after ratios. Following Bos, I call
the locus of points P that represents the solution to a given n-line
Pappus problem the ‘Pappus curve’.

Descartes first tackled this problem in early 1632 at the urging
of the Dutch mathematician Jacob van Golius. Unfortunately, it is
difficult to know exactly what Descartes had discovered about
the problem’s solution at this point, because Descartes’ initial reply
to Golius is lost. Based on remarks in a follow-up letter from Janu-
ary 1632, we do know what Descartes claimed to have discovered
about the general solution, namely, that the locus that is the solu-
tion for any Pappus problem can be traced by ‘one single continu-
ous motion completely determined by a number of simple
relations’, and these ‘simple relations’ are simple insofar as they
‘involve only one geometrical proportion’ (Bos, 2001, p. 350).18

Descartes also differentiates Pappus curves from ‘imaginary’ curves,
such as the spiral and the quadratrix (both of which are mentioned
explicitly in the letter), based on his proposal that Pappus curves can
be generated by continuous motions. The claims are not without
their problems. First, as Bos points out, the terms ‘single continuous
motion’, ‘simple relations’, and ‘geometrical proportions’ are vague,
and Descartes’ usage of these terms can be interpreted in different
ways (ibid.). Second, as Bos also points out, it is difficult to believe
that Descartes had at this time actually found a general method
for tracing Pappus curves by continuous motion, not only because
no such method is published by Descartes in the 1637 Geometry,
where he treats the problem in great detail, but also because a
I use is the most
t is linked to the

ius proposed his
lication of areas,



Fig. 5. The four-line Pappus problem in Book I of the Geometry (from G, p. 27; used
with kind permission of Dover Publications, Inc.).
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general method was not published by any mathematician until the
late nineteenth century.19

However, given the tools available to Descartes in 1632, it
seems safe to say that, at the time he was writing to Golius, Des-
cartes had determined that, at least in special cases of the Pappus
problem,20 the sought-after ratio could be expressed by an equa-
tion.21 This is a claim that will be made in the 1637 Geometry, and,
as we will see, appeal to the algebraic representation of the
sought-after ratio plays a central role in Descartes’ treatment of
the problem in that context, where his goal is not simply to offer
his general solution but also to show that all Pappus curves are ‘geo-
metric’, that is, are constructible by legitimately clear and distinct
motions, and are thereby fundamentally different from ‘imaginary’
non-geometrical curves.

In the Geometry, Descartes first treats the Pappus problem at the
end of Book I. In this context he shows that, for any n-line Pappus
problem, the sought-after ratio can be expressed as an equation.
Based on the degree of the resultant equation, Descartes claims
we can determine which curves are required to construct the locus
of points P that serve as the solution to the problem. For instance, if
the Pappus problem involves three, four, or five lines, but not five
parallel lines, the equation that represents the ratio will be of de-
gree 1 or 2 and we will use a ruler and compass to construct the
locus of points. In this specific case, the Pappus problem is a ‘plane’
problem, for the solution is constructible by appeal to the intersec-
tion of the straight line and circle.

Descartes takes a different approach to the Pappus problem in
Book II of the Geometry. Whereas in Book I Descartes investigates
the curves necessary to construct the solution to the problem, in
Book II he examines the form of the Pappus curve, that is, the form
of the curve produced by the points P that satisfy the sought-after
ratio. He again appeals to the equation that represents the sought-
after ratio, but the classification is different. In this context, he tells
us, for instance, that given a three- or four-line Pappus problem,
the equation of the Pappus curve will have degree less than or equal
to 2, and thus, the locus of points will be a curve of the first class:
namely, a straight line, parabola, hyperbola, circle, or ellipse.22 The
concern here is not the types of curves required to construct a solu-
tion but rather the curve insofar as it is itself the solution to the
problem.
19 In particular, A. B. Kempe published a method for the continuous motion construction
20 Such as in the above figure where we do not have n or n—1 parallel lines.
21 Bos speculates that Descartes discovered in 1632 that the sought-after ratio could be

y(a2x + b2y + c2) . . . = d(a)(alx + bly + cl)(al + 1x + bl + 1y + cl + 1) . . .

where l = k + 1 if there are 2k lines, and l = k + 2 if there are 2k + 1 lines.

The factor a on the right-hand side only occurs if the number of lines is uneven; d is the giv
the Pappus problem in 1632 suggested the following to him as he continued his work in

(1) that curves should be accepted in geometry insofar as they were traced by geom
(2) that these legitimately traced curves were precisely the Pappus curves;
(3) that Pappus curves were precisely the ones that admitted polynomial equations;
(4) that therefore the totality of geometrically acceptable curves could be classified equ

number of given lines in the pertaining Pappus problem. (Ibid., p. 282)

In short, Bos suggests that Descartes’ work on the Pappus problem around 1632 helped D
22 Descartes’ general classification of geometrical curves, which is based on the degree of t

includes the circle, parabola, hyperbola, and ellipse: curves whose corresponding equation
23 ‘. . . if we think of geometry as the science which furnishes a general knowledge of the

curves than the simpler ones, provided they can be conceived of as described by a
determined by those which precede; for in this way an exact knowledge of the magn

As noted above (n. 9), Descartes presents his account as an alternative to the ancient cla
24 ‘I could give here several other ways of tracing and conceiving a series of curved lines

together all such curves and then classify them in order, is by recognizing the fact that
precise and exact measurement, must bear a definite relation to all points of a straight

25 ‘Then, since there is always an infinite number of different points satisfying these req
containing all such points’ (G, p. 22).
There is something curious about the placement of Descartes’
account of the Pappus problem in the larger context of the Geom-
etry. He claims in Book II that all ‘geometric’ curves can be con-
structed by clearly and distinctly perceived continuous motions
(G, p. 43),23 and moreover, that all ‘geometric’ curves can be repre-
sented by an equation (G, p. 48).24 He also indicates that a general
solution to the Pappus problem requires we both locate the locus
of points P and trace the curve described by this locus (G, p. 22).25

So, if it is the case that all Pappus curves are legitimately ‘geometric’,
it then follows that these curves can be generated by suitably clear
continuous motions. This, however, is not something that Descartes
proves; he does not offer a general method of tracing Pappus curves
by continuous motions to justify that the Pappus curves are legiti-
mately ‘geometric’. And perhaps even more curious is that in some
cases Descartes explicitly appeals to the point-wise construction of
Pappus curves, not constructions that rely on continuous motions.

For instance, at the end of Book I, Descartes presents his general
solution to the Pappus problem and begins by reducing the sought-
after ratio to an equation. Appealing to Figure 5, where our goal is
to find all points C that meet the requirements of the problem, he
considers the segments AB and BC as coordinates, and designates
of any curve represented by an nth-degree equation. See Bos (1981), p. 324 n. 26.

expressed by an equation of the following form:

en constant value of the ratio (Bos, 2001, p. 274). On Bos’ account, Descartes’ work on
geometry:

etrically legitimate motions;

and
ivalently by the complexity of the tracing motion, the degree of the equation, and the

escartes bring focus to the program of geometry that he would later present in 1637.
heir corresponding equations, is presented in Book II (G, p. 48). The first class of curves
s do not have degree higher than 2.

measurement of all bodies, then we have no more right to exclude the more complex
continuous motion or by several successive motions, each motion being completely
itude of each is always attainable.’ (G, p. 43)

ssification of ‘geometrical’ and ‘mechanical’ curves.
, each curve more complex than any preceding one, but I think the best way to group
all points of those curves which we may call ‘geometric’, that is, those which admit of
line, and that this relation must be expressed by means of a single equation.’ (G, p. 48)

uirements [of the Pappus problem], it is also required to discover and trace the curve
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Fig. 6. The point-wise construction of the quadratrix CG.
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AB as y and BC as x. Since we know the measures of angles CRA and
ABR from what is given in the problem, Descartes appeals to the
properties of similar triangles to show that we can express the
distance from C to the given lines by an equation in the two
unknowns, y and x. In particular, referring to the case presented
in Figure 5, he determines the equations that express the distances
CD, CF, CB, and CH, where each equation includes only the two un-
knowns (G, pp. 29–30).26 And now that we have algebraic represen-
tations of the distances between C and the given lines, what remains
is that we find the specific points C such that d1d2 is to d3d4 as the
given ratio b is to 1, which in the four-line Pappus problem above
is equivalent to finding the points C such that CD*CF is to CB*CH
as b is to 1. Each side of the ratio will have two unknowns, and after
we multiply the distances, the equations on each side of the propor-
tion will not have an unknown variable of degree higher than 2.
Finding the values x and y that satisfy the ratio is now straightfor-
ward; what we must do is assign some value to x or y and then solve
for the other variable. Here is how Descartes puts it:

Assigning a value to y, we have x2 = ±ax ± b2, and therefore x can
be found with ruler and compasses by a method [for construct-
ing the roots of a curve represented by a 2nd-degree equation]
already explained [earlier in Book I]. If then we should take suc-
cessively an infinite number of different values for the line y, we
should obtain an infinite number of values for the line x, and
therefore an infinity of different points, such as C, by means of
which the required curve could be drawn. (G, p. 34)

At first glance, there is nothing blatantly odd about Descartes’
claim here, since it is in fact that case that we can substitute in val-
ues for y to determine the corresponding value for x, and thereby
determine the locus of points with coordinates (x, y) that satisfy
the requirements of the Pappus problem. What is odd, though, is
Descartes’ appeal to a point-wise construction for the Pappus curve;
using the technique he describes, we generate the sought-after
curve by locating points along the curve and then connecting the
dots, so to speak.27 But this is not the type of construction that we
ought to be using for a curve that is legitimately ‘geometric’; as he
presents it, we should use a construction by continuous motion.28

However, Descartes doesn’t have a general method for tracing Pap-
pus curves by continuous motion in his arsenal (and as noted above,
no such method was published until the nineteenth century).

In the absence of a general method for tracing Pappus curves,
Descartes instead tries to establish the status of Pappus curves as
legitimately ‘geometric’ by exploiting the difference between the
point-wise construction of Pappus curves and the point-wise con-
struction of ‘imaginary’ curves. After presenting the point-wise
construction of a five-line Pappus curve in Book II, he writes:

It is worthy of note that there is a great difference between this
method in which the [Pappus] curve is traced by finding several
points upon it, and that used for the spiral and similar curves. In
the latter, not any point of the required curve may be found at
pleasure, but only such points as can be determined by a pro-
cess simpler than that required for the composition of the curve
. . . On the other hand, there is no point on these curves which
supplies a solution for the proposed problem that cannot be
determined by the method I have given. (G, pp. 88–91)
26 Based on his treatment of the four-line problem above, Descartes posits that this same
33).

27 A similar allowance for point-wise constructions of Pappus curves is found in Book II
28 Actually, given what Descartes presents in Book I, there is no possibility of using a cons

in our construction, yet the curve we are constructing is a conic section (as he tells us in Boo
conic sections in our construction. Thus, the only way to construct the Pappus curve and f
that Descartes describes, whereby we determine different points along the Pappus curve
To understand the different methods of construction Descartes
is drawing attention to here, consider the point-wise construction
of the quadratrix, a curve Descartes considers ‘imaginary’. We be-
gin with the arc CB, and by means of straightedge and compass, we
divide the arc into equal parts (Figure 6). We then divide the radius
AC into equally many equal parts; in Figure 6, we have divided
both the arc (and therefore the angle CAB) and the segment CA into
four equal parts. We now draw horizontals extending from the
points of division along CA, which will intersect the arc BC, and lo-
cate points p1, p2, and p3 where the horizontals intersect the seg-
ments dividing the angle CAB. Connecting these points we
generate the quadratrix CG.

What Descartes emphasizes in the above passage (though not
by appeal to this or any specific example) is that we cannot find
arbitrary points along the curve when we use a point-wise con-
struction of an ‘imaginary’ curve. In the case of the quadratrix,
for instance, we are only able to divide the given arc into 2n parts
given the restrictions of Euclidean construction; namely, we bisect
the original angle by straightedge and compass, bisect the two
resulting angles, and so on. As such, it is not possible to divide
the arc any way we please, and we cannot therefore locate any
arbitrary point along the curve by use of point-wise construction.
In the case of the Pappus curves, however, we can find any arbi-
trary point on the curve by appeal to the equations corresponding
to the problem; borrowing Bos’ terminology, Descartes is claiming
that Pappus curves can be generated by ‘generic’ point-wise
constructions.

Having thereby distinguished the point-wise construction of
Pappus curves from the point-wise construction of ‘imaginary’
curves, Descartes makes a further and very contentious assertion:
the ‘generic’ point-wise constructions we can use to generate Pap-
pus curves are equivalent to constructions that rely on continuous
motions. He states, in particular, ‘this method of tracing a curve by
determining a number of its points taken at random applies only to
curves that can be generated by a regular and continuous motion’
(G, p. 91). Here Descartes assumes, without argument, that if we
method can be used regardless of the number of lines with which we begin (see G, p.

(G, p. 335). See Bos (1981), p. 316, for discussion of the Book II example.
truction by continuous motion. He tells us that we should use straight lines and circles

k II), and to construct a conic section by the continuous motion we would need to use
ollow Descartes’ criteria for construction is to use the sort of point-wise construction
by substituting values into the given equation. See Bos (1981), pp. 302–303.
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can find arbitrary points along a curve using a point-wise construc-
tion, then we could also trace the curve by continuous motion. He
does not, however, prove this equivalency, and if we are to try to
find an argument, it seems the best we can do is assume, with Des-
cartes, that the distinction he proposes between the point-wise
construction of Pappus curves and the point-wise construction of
‘imaginary’ non-geometric curves renders the Pappus curves non-
imaginary and therefore ‘geometric’ in his sense.

To make this problem clearer, we can schematize the argument
for the ‘geometric’ status of Pappus curves as follows:
(1) For any n-line Pappus problem, we can reduce the problem
to an equation.

(2) Using the equation, we can arbitrarily determine points on
the locus by substituting values into the equation (which
we cannot do in the case of ‘imaginary’ non-geometric
curves such as the quadratrix).

(3) If we can arbitrarily determine points on the locus by substi-
tuting values into the equation, then the locus could also be
constructed by continuous motions.

(4) If the locus can be constructed by continuous motions, then
the locus is a ‘geometric’ curve.

(5) Therefore, any Pappus curve is a legitimately ‘geometric’
curve.

It is, of course, claim (3) that is problematic. Descartes asserts this
equivalency between ‘generic’ point-wise constructions and con-
structions by continuous motions without proof, and even without
much argument. Thus, what Descartes needs to establish he merely
assumes, namely, that there is a general method for tracing Pappus
curves by continuous motion.

This tension in Descartes’ presentation of the Pappus problem is
the focus of Bos (1981), where Bos uses this example to highlight
the difficulties Descartes faced as he attempted to bring algebraic
techniques to bear on geometrical problem solving. Later, Grosholz
(1991) would claim that Descartes is forced to make his conten-
tious equivalence between ‘generic’ point-wise construction and
construction by continuous motions because of the ‘reductionist’
and ‘intuitionist’ approach he takes in the Geometry. In particular,
his attempt to reduce the foundations of geometry to intuitively
clear simple motions and simple objects leaves him no other op-
tion; his method and his chosen foundations for geometrical rea-
soning simply prevent adequate treatment of more complicated
curves. And this is precisely what Grosholz claims Descartes’ ap-
proach to the Pappus curves reveals: a ‘conceptual poverty of his
starting-points’ (Grosholz, 1991, p. 33). Had Descartes broadened
his outlook, he would not have missed the import of ‘his abstract
relational structures’—the equations he uses to represent curves—
and could have, according to Grosholz, advanced further in his geo-
metrical researches (ibid., p. 50).

While Grosholz is correct that Descartes fails to provide a deduc-
tively valid argument for the equivalence between ‘generic’ point-
wise constructions and constructions by continuous motions, to
suggest that he failed to offer a legitimate justification for this claim
rests on the assumption that we should hold Descartes to the stan-
dard of the particular methodology she outlines, namely, a standard
encapsulated in a ‘reductionist’ method of mathematics. Even
though in the Discourse Descartes promotes the use of a method
that begins with simple, clear, and distinct objects and then builds
29 See Grosholz (1991), pp. 5–6, for her explicit appeal to the sections of the Discourse re
30 On this score, Grosholz remarks:

‘I do think that trying to reduce curves to points and lines, or to ideal instruments th
curve a curve, which is the propaedeutic for generating interesting problems about

31 As a historical note, Descartes suppressed Le monde in its entirety in November 1633
clear and distinct chains of reasoning from this foundation (AT VI,
18–20; CSM I, 119–120), it is not altogether clear that this is the
proper standard by which to evaluate the merits of Descartes’ strat-
egy in the Geometry.29 On the one hand, as Bos has convincingly ar-
gued and as outlined above, Descartes conceived of geometry as ‘the
science of solving geometrical problems by the construction of points
through the intersection of curves’ (Bos 1981, p. 331), ‘not . . . as an
axiomatic, deductively ordered corpus of knowledge about points,
lines, etc.’ (ibid., p. 327). To therefore hold Descartes to the standards
of an axiomatic, deductive system, as Grosholz seems to do, flies in
the face of the very program he offers in the Geometry. On the other
hand, and building on Bos’ characterization of Descartes’ program
of geometry, Grosholz’s assessment does not pay due attention to
the central role of construction in the Geometry, and, in particular,
to the relationship Descartes forges between clear and distinct mo-
tions for construction and his accepted standard of geometrical intel-
ligibility. While she does admit, albeit implicitly, that intelligibility is
wedded to the intuitively simple objects and simple motions that
Descartes adopts as his starting-point for investigation,30 she does
not consider the possibility that this focus on intelligible motions is
meant to replace a model of intelligibility centered on method—which
for Grosholz is the other horn of Descartes’ dilemma in the Geometry
as well as his later philosophical works.

By taking seriously the relationship Descartes forges between
construction, motion, and intelligibility in the Geometry, I think
we can make better sense of the controversial equivalence Des-
cartes makes between point-wise and continuous motion con-
structions by turning to Le monde, a metaphysical work in which
construction, motion, and intelligibility also play a central role, this
time as Descartes outlines God’s creation of nature. As I will argue
in the following section, the creation story presented in Le monde
offers an indication of why Descartes may have taken the equiva-
lency between ‘generic’ point-wise constructions and construc-
tions by continuous motions to be intelligible and therefore
acceptable in the domain of Geometry, even without a deductively
valid mathematical proof for this equivalence at hand.
4. God’s creation in Le monde

Le monde was written between October 1629 and 1633, and in-
cludes two major sections: Treatise on light and Treatise on man. In
the Treatise on light, Descartes offers his account of a ‘new world’
that is intended to serve as a more convincing and intelligible mod-
el than that offered by the Scholastics. In short, Descartes is
attempting to replace their ‘old’, earth-centered world of forms
and qualities with a ‘new’, Copernican, sun-centered world of mat-
ter in motion.31

In presenting his new world, Descartes does not make a direct
argument for his mechanical model of nature. Instead, his presen-
tation is hypothetical, and he uses a fable that details God’s crea-
tion of the world and through which he hopes the truth of his
claims will be revealed. The standard for what is admissible in
his creation story is intelligibility, a standard that he claims distin-
guishes his account from the unintelligible Scholastic account of
nature. He writes:

my purpose, unlike theirs, is not to explain the things that are in
fact in the actual world, but only to make up [feindre] as I please
a world in which there is nothing that the dullest minds cannot
conceive, and which nevertheless could not [in reality] be cre-
ferenced above as the basis for her analysis of Descartes’ method in the Geometry.

at can construct them is philosophically misguided, since inquiry into what makes a
curves, must first pay attention to its peculiar integrity.’ (Grosholz, 1991, p. 50)

after hearing of Galileo’s condemnation, which occurred in June of that same year.



M. Domski / Studies in History and Philosophy of Science 40 (2009) 119–130 127
ated exactly the way I have imagined [feint] it. (AT XI, p. 36; WO,
p. 24)

While Descartes admits that basing his account on the standard of
intelligibility forces him to relinquish the absolute truth of his fable,
it nonetheless places the creation story on firm ground as a possible
way in which God created the world and grants it more plausibility
than the less intelligible world of the Scholastics. As Descartes puts
it:
Fig. 7. The sling in Rule 3 (from WO, p. 31; used with kind permission of Cambridge
since everything I propose here can be imagined [imaginer] dis-
tinctly, it is certain that even if there were nothing of this sort in
the old world [of the Scholastics], God can nevertheless create it
in a new one; for it is certain that He can create everything we
imagine [imaginer]. (Ibid.)32

The hypothetical account of creation Descartes offers in Chap-
ters 6 and 7 of Treatise on light runs as follows:
University Press).
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(1) God chooses a finite area of infinite space and creates matter

in it (Chapter 6).

(2) Upon creating matter, God also imposes motion on each
part; that is, God endows each part of matter a particular
direction and a particular speed (Chapter 6).

(3) The speed and direction granted to the parts of matter
result in the formation of material objects as we experience
them and explain all the changes we witness in nature
(Chapter 6).

(4) Since God is immutable, He conserves the motion of matter
in the same way He created it (Chapter 7).

(5) There are rules (or laws) of motion that govern material
bodies and that ultimately rest on God’s immutability and
unchanging conservation of natural motions (Chapter 7).

The central role that Descartes grants matter and motion in this
new world is apparent: the world begins as formless matter and
takes on the forms we see in nature because God grants each part
of matter a particular motion. The motion that Descartes appeals
to, however, is not the obscure motion of the Scholastics, but is
modeled instead on the motions embraced by the geometers. He
writes:

the nature of the motion that I mean to speak of here is so easily
known that even geometers, who among all men are the most
concerned to conceive [concevoir] the things they study very
distinctly, have judged it simpler and more intelligible than
the nature of surfaces and lines, as is shown by the fact that
they explain ‘line’ as the motion of a point and ‘surface’ as the
motion of a line. (AT XI, p. 39; WO, p. 26)
I note the French term of what Gaukroger translates as ‘imagine’ in this and the prev
vious passage (AT XI, p. 36; WO, p. 24), Descartes uses the term feindre, which can be
cartes invokes imaginer, which has a closer affinity to ‘to conceive’ than feindre, and w
In his editorial note on the passage cited above, Gaugroker points out that we see here
ve ‘accounts/definitions in terms of motions are not to be found in the three best-known
rect to say that Euclid defines line as breadthless length (Elements, Book I, Definition 2)
e ancient geometers did describe the construction of curves by appeal to the motion of p

ultaneous motions of a line and point in a manner similar to that used by Descartes:

‘If a straight line is drawn on a plane and if after having rotated uniformly round o
rotation of this line a point is carried uniformly with respect to itself through the len
spiral in the plane.’ (Spirals, in Opera, 2:50–52, cited in DeGandt, 1995, p. 203)

reover, the passage from Descartes reveals his embrace of a kinematical understanding
202–209, on the integration of motion into geometry by sixteenth- and seventeenth-
Of the Scholastic account of motion, Descartes writes:

‘They themselves admit that the nature of their motion is very little understood. An
clearly than in these terms: Motus est actus entis in potentia, prout in potentia est. Th
cannot interpret them.’ (AT XI, 39; WO, p. 26)
While he mentions no specific geometer by name here, it is at least
clear that Descartes himself should be included in the group of
geometers to which he appeals.33 For as we saw above, Descartes
was quite comfortable appealing to the motions of points and lines
to construct curves, both in the Geometry and his earlier mathemat-
ical works. And here, in the context of Le monde, the same sort of
geometrical motions employed by Descartes are now ascribed to
God’s creation of matter in the new world that Descartes describes,
because these motions are more intelligible and ‘easily known’ than
the motion characteristic of Scholastic metaphysics.34

There is also a further and deeper connection we can draw be-
tween Descartes’ account of motion in Le monde and the motions of
construction that characterize his mathematical work. For recall
that in his geometrical work, Descartes appeals to the construction
of curves by continuous motions in order to demarcate legitimately
‘geometric’ curves from ‘imaginary’ non-geometrical curves. This
very same restriction on legitimately ‘geometric’ and thereby intel-
ligible curves is transferred to the intelligible motions of Descartes’
new world, as we see when he remarks in Le monde, ‘I know of no
motion . . . which is easier to conceive [concevoir] of than the lines
of the geometers, by which bodies pass from one place to another
and successively occupy all the spaces in between’ (AT XI, p. 40; WO,
p. 27; my emphasis). The visible motions of his new world are
thereby modeled on the continuous motions used by geometers
to generate clearly conceivable curves; and thus, we see Descartes
integrating his approach to geometry, and his geometrical standard
of intelligibility in particular, with his early mechanical account of
nature.
ious passage to highlight the different terms Descartes uses in these contexts. In the
more literally translated as ‘to feign’ or ‘to make up’. In the passage above, however,
hich at the least is not meant to indicate the activity of making something up.
Descartes putting his own interpretive gloss on the role of motion in geometry, for the
geometers—Euclid, Archimedes, and Apollonius’ (WO, p. 26 n. 53). While Gaukroger is

and surface as that which has length and breadth only (Elements, Book I, Definition 5),
oints. For instance, Apollonius describes the construction of the spiral by appeal to the

ne of its extremities which is held fixed, it returns whence it started, and during the
gth of the line, beginning at the extremity that is held fixed, this point will describe a

of geometry, which was prevalent in the seventeenth century. See DeGandt (1995),
century mathematicians such as Galileo, Toricelli, and Roberval.

d trying to make it more intelligible, they have still not been able to explain it more
ese terms are so obscure to me that I am compelled to leave them in Latin because I
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Further examination of Le monde reveals yet another connection
between Descartes’ mathematics and metaphysics, one which will
help us better understand his treatment of the Pappus problem in
the Geometry. Consider in particular the third of the three rules
that govern the continuous motions in his new world:

[Rule 3: W]hen a body is moving, even if its motion most often
takes place along a curved line . . . nevertheless each of its parts
individually tends always to continue moving along a straight
line. And so the action of these parts, that is the inclination they
have to move, is different from their motion. (AT XI, pp. 43–44;
WO, p. 29)

To get a better handle on what Descartes is proposing in Rule 3, con-
sider his example of the motion of a ball in a sling (Figure 7). We
observe the ball moving along an arc from L to F, but if we consider
the ball’s motion at an instant, we find that it has a centrifugal ten-
dency in a straight line. For instance, when the ball is between
points V and A, it has a straight line tendency, or inclination, toward
E; that is, the ball would continue along the rectilinear path to E if it
were not constrained by the sling. The same holds for all the points
through which the ball moves as it traces the path from L to F: when
the ball is between points V and B, it has a tendency toward Y, when
between V and F a tendency toward G, and so on. Thus, the ball’s
visible motion along the arc LF is analyzable in terms of the ball’s
tendency to motion at each point it occupies along the curve.

What Descartes’ analysis of the ball reveals is that all the con-
tinuous motions we witness in nature can be reduced to a series
of motions at an instant, namely, instantaneous motions that result
from the composition of natural straight line tendencies and the
‘unnatural’ disposition of the matter surrounding the moving ob-
ject.35 On this account, then, apparently continuous motions are fun-
damentally discontinuous, and as Descartes clarifies, it is God who is
ultimately responsible for a body’s motion at every instant along its
path:

This rule rests on the same foundation as the other two, and
depends solely on God’s conserving everything by a continuous
action, and consequently on His conserving it not as it may have
been some time earlier but precisely as it is at the very instant
He conserves it. So, of all motions, only motion in a straight line
is entirely simple and has a nature which may be grasped [com-
prise] wholly in an instant. For in order to conceive [concevoir]
of such motion it is enough to think that a body is in the process
of motion in a certain direction, and that this is the case at each
determinable instant during the time it is moving. (AT XI, pp.
44–45; WO, pp. 29–30)

Notice the connection that Descartes draws here between God’s
simple action and the motions he deems conceivable at an instant.
35 See AT XI, pp. 46–47; WO, p. 30, where Descartes says that ‘it is the various dispositi
36 See Schuster (1977), Ch. 8, for an account of this Rule, which emphasizes the limits De

that I claim underwrites Descartes’ claims.
37 As Descartes puts it:

‘According to this rule [Rule 3], then, we must say that God alone is the author of all the
the various dispositions of matter that render the motions irregular and curved.’ (A

In the remainder of this passage, Descartes draws a connection between God’s actions, s

‘Likewise, the theologians teach us that God is the author of all our actions, in so f

dispositions of our wills that can render them evil.’ (Ibid.)

Based on these remarks, we can generate the following ratio: God’s activity : irregularity
38 In light of my interpretation, notice that Descartes can preserve the important distin

construction of ‘imaginary’ curves that was so crucial to his classification of curves. For g
nature—given, that is, that God’s construction is a ‘generic’ point-wise construction—the mo
‘imaginary’ curves. For recall that, according to Descartes, there are points along ‘imaginary’
these curves cannot be ‘generically’ point-wise constructed (cf. the discussion appended to
clarify this point.
Ultimately, according to the creation story Descartes presents, the
straight line tendencies of bodies in motion derive from God’s con-
tinual and immutable conservation of the motion of all parts of
matter, where in general, God imposes direction and speed onto
every part of matter. However, at any given instant, all we can con-
ceive is the direction of God’s push, so to speak; and because of the
limits of what we can humanly conceive, this direction at an instant
must be in a straight line. Put differently, God creates motion in the
simplest possible way, where simplicity is determined by appeal to
that which is clearest and most distinct to the human intellect—the
very same standard embraced in the geometrical works written
around the same time.36

I want to suggest that here, in the domain of metaphysics—
where Descartes appeals to intelligibility as his standard for
describing God’s creation of the world—we find a justification for
the contentious equivalence that Descartes presented in the Geom-
etry. For recall that in order to maintain the status of Pappus curves
as geometrically intelligible, Descartes had to assume that curves
generated by ‘generic’ point-wise constructions were also con-
structible by continuous motions. In the context of the Geometry,
there is no mathematical argument presented to support the
equivalency, but looking at what Descartes presents in Le monde,
we find that curves generated by continuous motions are in fact
reducible to instantaneous motions, or, more precisely, to the infi-
nite points of motion along the curve. In the case of the ball in the
sling, it traces a continuous path along the curve from L to F; that
is, there is no break in its visible motion. But as Descartes points
out, its continuous motion can be understood as an infinite series
of pushes, where, in this metaphysical context, it is God who im-
poses the instantaneous straight line pushes, which ultimately ex-
plain the body’s motion.37

Though neither God’s activity nor any metaphysical claim plays
an explicit role in Descartes’ program of geometry, I want to sug-
gest that this metaphysical account of continuous motions in nat-
ure presented in Rule 3 provided Descartes with a model for
understanding the equivalency of ‘generic’ point-wise construc-
tions and constructions by continuous motion. For since in both
the domain of metaphysics and the domain of mathematics the
standard of admissibility is the same—namely, intelligibility renders
curves and motions acceptable—to say that God’s point-wise con-
struction of continuous curves in nature is acceptable in metaphys-
ics is to say at the same time that any such ‘generic’ point-wise
construction—one according to which every point along the curve
has a determinable value—could serve as the explanation for the
generation of continuous curves, which is precisely the controver-
sial claim that Descartes makes in the domain of geometry.38 There
is of course an important disanalogy between the two cases insofar
as mathematical points are not attributed tendencies or forces. But if
ons of matter that render the motions irregular and curves’.
scartes places on God’s activity but does not emphasize the criterion of intelligibility

motions in the world in so far as they exist and in so far as they are straight, but that it is
T XI, pp. 46–47; WO, p. 30; my emphasis)

traight lines, and moral values:

ar as they exist and in so far as they have some goodness, but that it is the various

:: straight : curved :: goodness : evil.
ction between the point-wise construction of ‘geometric’ curves and the point-wise
iven that God’s activity applies to every point along the continuous curves found in
del of construction and intelligibility in Le monde does not support the intelligibility of
curves, such as the quadratrix, for which values cannot be determined. In other words,
Figure 6, above). My thanks to Matthew Holtzman and Marco Panza for urging me to
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we consider the geometrical case as an idealization of the motions of
bodies, then the absence of a force or a tendency in a particular
direction does not render the reduction of continuous motion to mo-
tions at an instant any less acceptable in the domain of geometry,
where we generate continuous curves by appeal to point-wise
constructions.

So while the equivalency of ‘generic’ point-wise constructions
to constructions by continuous motions is presented in the Geom-
etry without an explicit argument, my suggestion is that it is not, as
Grosholz suggests, merely presented as an ad hoc assumption that
will allow Descartes to maintain his intuitionist-reductionist pro-
gram of philosophy, or even maintain his geometrical program
for that matter. With the standard of intelligibility as the common
thread running through the metaphysics of Le monde and the
mathematical program of the Geometry, Descartes could, at least
implicitly, rely on the intelligibility of God’s creation of natural mo-
tions to sustain the intelligibility of ‘generic’ point-wise construc-
tions in mathematics and thus its acceptability in his program of
geometry. Without a general method for tracing all Pappus curves
at his disposal, this, it seems, is actually the best that Descartes
could do with the resources available to him.

5. Conclusion

On the account I have presented above, the main thread tying
Descartes’ mathematics and metaphysics together during his early
career is an account of intelligibility grounded on clear and distinct
motions for construction. It is this standard of intelligibility that
we see at play in the Geometry as Descartes attempts to demarcate
legitimately ‘geometric’ curves from ‘imaginary’ non-geometrical
curves and which we also see at play in Le monde as Descartes de-
scribes God’s creation of matter. It is also by appeal to this standard
of intelligibility that we get a better sense of how Descartes can
justify his contentious claim in the Geometry that all curves con-
structible by ‘generic’ point-wise constructions are also constructi-
ble by continuous motions, for as we see in Descartes’ exposition of
Rule 3 of Le monde, the continuous motions of nature are reducible
to the simple, straight-line pushes that God imposes on matter at
each instant. Taking seriously the intelligibility of simple motions
in the mathematics and metaphysics that Descartes develops dur-
ing this period of his career thus grants us a view of the connection
between his mathematics and philosophy that is sensitive to the
innovations of Descartes’ early mathematics and, in this sense,
grants us deeper insight into the connection between Descartes’
mathematics and philosophy than an approach that assumes a
common mathematical and philosophical method as the thread
binding together Descartes’ work in these domains.

Looking forward to the post-1637 period, paying due attention
to the standard of intelligibility that Descartes invokes in his differ-
ent domains of inquiry can, I think, shed further light on Descartes’
struggle to connect mathematics, metaphysics, and natural philos-
ophy in his mature works. Though I cannot fill in the details of such
an account here, I will suggest that Descartes no longer adopts a
standard of intelligibility wedded to simple motions in either the
Meditations or Principles. For in neither context is there reference
to those construction procedures that rendered geometrical curves
intelligible in Descartes’ early mathematical work; his emphasis
instead is on the clarity and distinctness of ideas, whether the idea
39 See for instance Descartes’ characterization of the idea of the triangle in the Fifth Med

‘When, for example, I imagine a triangle, even if perhaps no such figure exists, or h
essence, or form of the triangle which is immutable and eternal, and not invented b

40 As apparently confirmed by Descartes’ report to Mersenne, a year after the Geometry w
problems have to do with the explanation of natural phenomena’ (Letter to Mersenne, 27 Ju
are briefly discussed in Garber (2000).
of God or the ideas of mathematical figures, which are presented to
the mind already constructed, so to speak.39 What this suggests is
that Descartes had to refashion his understanding of mathematical
knowledge as he attempted to integrate mathematical certainty with
the metaphysics of the Meditations and as he attempted to integrate
the mathematical features of material bodies with the physics of the
Principles.40 While the details will be left for a later time, I hope that I
have at least made a convincing case that such a transition in Des-
cartes’ thinking about mathematics and mathematical intelligibility
is lost if we focus too heavily on the methods of Descartes’ mathe-
matical and philosophical work, and it goes unappreciated unless
we pay due attention to the standards of intelligibility that thread
his work together during the different stages of his mathematical
and philosophical career.
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